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The effect of interactions on dynamics of coupled motor proteins is investigated

theoretically. A simple stochastic discrete model, that allows to calculate explicitly

the dynamic properties of the system, is developed. It is shown that there are two

dynamic regimes, depending on the interaction between the particles. For strong in-

teractions the motor proteins move as one tight cluster, while for weak interactions

there is no correlation in the motion of the proteins, and the particle separation

increases steadily with time. The boundary between two dynamic phases is specified

by a critical interaction that has a non-zero value only for the coupling of the asym-

metric motor proteins, and it depends on the temperature and the transitions rates.

At the critical interaction there is a change in a slope for the mean velocities and a

discontinuity in the dispersions of the motor proteins as a function of the interaction

energy.

Motor proteins are active enzyme molecules that are important for molecular transport,

force generation and transfer of genetic information in biological systems [1, 2, 3]. They

move along the rigid linear tracks by utilizing the energy of hydrolysis of ATP or related

compounds, and the chemical energy is transferred into the mechanical work with a high

efficiency. However, the mechanisms of the mechanochemical coupling in the motor proteins

are not fully understood [2].

Structural and biochemical studies of the motor proteins reveal that they consist of

many domains and subunits [2, 3, 4, 5], and frequently these subunits also have enzymatic

activity. An example is the helicase motor protein RecBCD [6] that corrects the DNA

breaks and defects by unwinding the double-stranded DNA molecules into separate chains

[7, 8, 9, 10]. It has three protein subunits, of which two domains, RecB and RecD, also exist

as independent motor proteins [9, 10]. Experiments indicate that the complex motor protein

RecBCD moves significantly faster than the individual RecB and RecD subunits [9]. For

many other motor proteins the coordination between internal domains have a strong effect

http://arxiv.org/abs/cond-mat/0509457v1


2

on the dynamic properties [11, 12]. In addition, many motor proteins work in large groups

[2, 3], although the mechanism of such coordinated motion is largely unknown. In recent in

vivo experiments [13] the transport of organelles by kinesin and dynein motor proteins have

been investigated. Although the kinesins and dyneins move in opposite directions on the

microtubules, it was found that they do not work against each other. Apparently, the motor

proteins moving in different directions coordinate the overall transport of the organelles.

These experimental findings suggest that the inter-domain coupling in the motor proteins

and the interaction between different motor proteins have a strong effect on functioning of

these biological molecules. However, theoretical investigations of these phenomena are still

limited [2, 14, 15]. Recently, we proposed a theoretical approach to explain the internal

interactions in the motor proteins [15], and it was successfully applied to understand the

dynamics of single RecBCD helicases. The purpose of this work is to investigate the general

effect of interactions inside the motor proteins and between the molecules on the dynamic

properties of the system.

We assume that there are two interacting particles that move along the parallel linear

tracks, as shown in Fig. 1. This model describes the motion of RecBCD helicases with two

active subunits on different DNA strands [15], or it might correspond to the transport of

two interacting motor proteins (kinesins, dyneins) on the parallel filaments (microtubules).

The positions of the particles A and B are defined by integers l and m, respectively, on the

corresponding lattices. It is assumed that the interaction between particles favor compact

vertical configurations, while the potential energy of the non-vertical configurations is larger,

U(l, m) = U0+ε|l−m|, where the parameter ε ≥ 0 specifies the interactions. This potential

of interactions seems realistic for the motion of helicases [6], where at each step of the leading

subunit the bond between two strands of DNA should be broken, and it leads to the linear

dependence of the interaction energy on the distance between the subunits.

We introduce P (l, m; t) as a probability to find the system in the configuration where A is

at the position l on the first track and B is at the position m on another track at time t. The

dynamics of the system can be described by a set of transition rates that depend not only

on the particle type, but also on the position of the particles. For configurations (l ± k, l)

[k ≥ 1], the trailing particle can move forward (backward) with a rate uj1 (wj1), where

j = a or b corresponds to the particle A or B, respectively. At the same time, the leading

particle can jump forward (backward) with a rate uj2 (wj2). For the vertical configurations
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(l, l) each particle can hop forward with the rate uj2 or it can move backward with the rate

wj1: see Fig. 1. Note, that in our model the transition rates do not depend on the particles

separation k = |l − m|, but only on the ”type” of transition: where it leads to a more

compact configuration (k decreases) or a less compact (k increases). This is because of the

linear potential of interaction, U = U0 + εk, and it leads to the energy difference between

two consecutive configurations being equal to ε, independent of the particle separation k.

The transition rates are related via the detailed balance relations:

uj1

wj1

=
uj

wj

exp(+ε/kBT ),
uj2

wj2

=
uj

wj

exp(−ε/kBT ), (1)

with j = a or b, and where uj and wj are the hopping rates in the case of no interaction

between the particles (ε = 0).

The dynamics of the system is governed by a set of Master equations for the probability

distribution function P (l, m; t),

dP (l, l; t)

dt
= ua1P (l − 1, l; t) + wa2P (l + 1, l; t) + ub1P (l, l − 1; t)

+wb2P (l, l + 1; t)− (ua2 + wa1 + ub2 + wb1)P (l, l; t); (2)

dP (l, l− k; t)

dt
= ua2P (l− 1, l − k; t) + wa2P (l + 1, l − k; t) + ub1P (l, l− 1− k; t)

+wb1P (l, l + 1− k; t)− (ua2 + wa2 + ub1 + wb1)P (l, l − k; t); (3)

dP (l− k, l; t)

dt
= ua1P (l− 1− k, l; t) + wa1P (l + 1− k, l; t) + ub2P (l − k, l − 1; t)

+wb2P (l − k, l + 1; t)− (ua1 + wa1 + ub2 + wb2)P (l − k, l; t). (4)

At all times these probabilities satisfy the normalization condition,
+∞
∑

l=−∞

+∞
∑

m=−∞

P (l, m; t) = 1.

The solutions of the Master equations can be found be summing over all integers l and m

at the fixed particle separation k. Defining new functions,

P0,0(t) =

+∞
∑

l=−∞

P (l, l; t), P0,k(t) =

+∞
∑

l=−∞

P (l, l − k; t), P1,k(t) =

+∞
∑

l=−∞

P (l− k, l; t), (5)

it can be shown then that in the stationary-state limit,

P0,k = P0,0(β0)
k, P1,k = P0,0(β1)

k, (6)

where

β0 =
ua2 + wb1

ub1 + wa2

, β1 =
ub2 + wa1

ua1 + wb2

. (7)
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These auxiliary functions play a critical role in our analysis. When β0 < 1 and β1 < 1, using

the conservation of probability, we obtain

Pi,k =
(1− β0)(1− β1)

1− β0β1

(βi)
k, i = 0, 1. (8)

This means that the vertical configuration (k = 0) is the most probable one, and the

probabilities of the less compact configurations are exponentially decreasing functions of the

particle separation k. In this dynamic phase, the particles A and B correlate their overall

motion. From the knowledge of the stationary probabilities and the transition rates, the

dynamic properties of the system, such as the mean velocity V and dispersion (effective

diffusion constant) D of the center of mass, can be calculated as

VCM =
1

1− β0β1

[(ua2 − β0wa2)(1− β1) + (ub2 − β1wb2)(1− β0)] , (9)

and

DCM =
1

1− β0β1

[{

1

2
(ua2 + β0wa2)−

(A0 + wa2)(ua2 − β0A0)

ub1 + wa2

}

(1− β1)+

+

{

1

2
(ub2 + β1wb2)−

(A1 + wb2)(ub2 − β1A1)

ua1 + wb2

}

(1− β0)]

]

(10)

where the coefficients Ai are given by

A0 =
β1(ua1 − ua2) + β0β1wa2 − wa1

1− β0β1

, A1 =
β0(ub1 − ub2) + β0β1wb2 − wb1

1− β0β1

. (11)

The dynamic properties of the individual particles coincide with the dynamic properties of

the center of mass of the motor protein cluster. In this case, it can be shown that the average

distance L between the particles is always finite (in units of lattice spacings),

L =
1

1− β0β1

[

β0(1− β1)

1− β0

+
β1(1− β0)

1− β1

]

. (12)

The situation is very different when, at least, one of βi > 1 (i = 0 or 1). Then from Eq.

(6) it can be concluded that less compact configurations (large k) dominate the steady-state

dynamics of the system. In this regime the particles A and B move independently from each

other with mean velocities (assuming A is the leading particle)

VA = ua2 − wa2, VB = ub1 − wb1, (13)

and dispersions

DA = (ua2 + wa2)/2, DB = (ub1 + wb1)/2. (14)
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The dynamic properties of the center of mass of the motor protein cluster is given by

VCM =
1

2
(VA + VB), DCM =

1

4
(DA +DB). (15)

Furthermore, the average particle-particle separation L is steadily increasing with time.

The boundary between two dynamic regimes is determined by the condition β0 = 1

and β1 < 1, or β1 = 1 and β0 < 1, and it depends on the transition rates and energy of

interaction. Using the detailed balance conditions (1), it can be argued that the transition

rates can be expressed as

uj1 = ujγ
1−θj1 , wj1 = wjγ

−θj1 , uj2 = ujγ
−θj2 , wj2 = wjγ

1−θj2 , (16)

where γ = exp(ε/kBT ), and j = a or b. The coefficients θji are energy-distribution factors

that determine the effective splitting of the interaction energy between the forward and

backward transitions [2, 14, 15]. In the simplest approximation, we assume that all energy-

distribution factors are approximately equal to each other, 0 ≤ θji ≈ θ ≤ 1, because they

describe similar transitions in the motion of the individual motor proteins [15]. More general

situation with state-dependent energy-distribution factors can also be analyzed. Substituting

Eq. (16) into the expressions (7), we obtain

β0γ = (β1γ)
−1 = (ua + wb)/(ub + wa). (17)

Then the boundary between two dynamic phases corresponds to the critical value of the

interaction energy,

εc = kBT

∣

∣

∣

∣

ln

(

ua + wb

ub + wa

)
∣

∣

∣

∣

≥ 0. (18)

It is important to note that the critical interaction depends on temperature, and in the

transport of the identical particles (A = B) the critical interaction is always zero. This

indicates that the dynamic phase transition can only be observed for the coupling of the

asymmetric motor proteins.

The existence of two dynamic phases in the transport of interacting asymmetric motor

proteins can be understood using the following arguments. Consider the configuration where

the particle A is k sites ahead of the particle B and ε = 0. The effective rate of the transition

to the configurations where two particles are separated by k + 1 sites is equal to ua + wb,

while the effective rate for k+1 → k transition is given by ub +wa. The free energy change

of making the particle configuration less compact (k → k + 1) can be written as ∆G(0) =
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−kBT ln
(

ua+wb

ub+wa

)

< 0 [2, 16], assuming that ua+wb > ub+wa. If there is interaction between

the particles, then the free energy change increases by the value of ε, ∆G(ε) = ∆G(0) + ε.

The boundary between two regimes corresponds to ∆G(εc) = 0, and it leads to εc = |∆G(0)|.

Thus, for strong interactions (ε > εc), it is thermodynamically unfavorable to make less

compact configurations. The particles cannot run away from each other, and they move

as one tightly-coupled cluster. For weak interactions (ε < εc), the favorable free energy

change of making less compact particle configuration cannot be compensated by the energy

of interaction. As a result, the distance between particles grows linearly with time, and they

move in the uncorrelated fashion.

The dynamic properties of interacting motor proteins are different in two phases, as shown

in Figs. 2 and 3. The mean velocity of the center of mass changes the slope at the critical

energy of interaction, while the mean velocities of the individual particles converge to a

single value - see Fig. 2. The effect of the interaction is much stronger for the dispersions.

As illustrated in Fig. 3, there is a jump in the mean dispersion of the center of mass at

the phase boundary. In addition, the mean dispersions of the individual particles do not

converge to a single value. This discontinuity in the dispersions is a clear sign of the dynamic

phase transition in the system.

In order to illustrate our approach, we consider a simplified model of the motion of the

interacting motor proteins that can only step forward, i.e., wa = wb = 0. This model seems

reasonable for the description of RecBCD helicase transport [15], since the experiments indi-

cate that the backward transitions are small [17]. Assuming that the particle A moves faster

than the particle B (ua > ub), the critical interaction can be written as εc = kBT ln(ua/ub).

For RecBCD motor proteins, where the transition rates for subunits can be approximated as

ua = 300 and ub = 73 nucleotides/s [15], the critical interaction is εc ≈ 1.4kBT . Theoretical

analysis [15] estimates the energy of interaction between the subunits in RecBCD as ≈ 6kBT ,

implying that this motor protein moves in the strong coupling regime, in agreement with

experiments [7, 8, 9, 10]. Using Eqs. (9,10,11), it can be shown that for large interactions

the dynamic properties of the system are given by

VCM(ε ≥ εc) =
(ua + ub)γ

−θ

1 + γ−1
, DCM(ε ≥ εc) = VCM

(

1−
2

γ(1 + γ−1)2

)

. (19)

In the weak coupling regime, from the expressions (13,14,15) it can be derived that

VCM(ε ≤ εc) = (ua + ubγ)γ
−θ, DCM(ε ≤ εc) = VCM/8. (20)
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The jump in the dispersions at the critical interaction is equal to

∆D = (ua/4)(ua/ub)
−θ

[

2
u2
a + u2

b

(ua + ub)2
− 1

]

> 0. (21)

Although for this simplified model the dispersion jump is always positive, it can be shown

in general that the discontinuity might have any sign.

The presented theoretical analysis of the dynamics of the coupled motor proteins is based

on the simplified picture that neglects many important features of the biological transport.

The intermediate biochemical states, sequence dependence of the transition rates, protein

flexibility have not been taken into account in this approach. However, it is expected that

these phenomena will not change the main prediction of our analysis - the existence of the

dynamic phase transitions that depend on the interaction between the particles. The most

crucial assumption in our approach is the assumption of the linear potential of interactions.

An important question is if the predicted dynamic phase transitions will survive for more

realistic potentials of interaction between proteins.

In summary, the effect of interaction between the motor proteins is investigated by an-

alyzing explicitly a simple stochastic model. Using the explicit formulas for the dynamic

properties, it is shown that there are two dynamic phases for asymmetric motor proteins

depending on the interaction energy. Below the critical interaction the particles do not corre-

late with each other, while above the critical interaction the particles move as a tight cluster.

The origin of these phenomena is the balance between the chemical free energy change and

the change in the energy of interactions for different transitions. The critical interaction

depends on the transition rates and it can be modified by changing the temperature. Our

method is applied to analyze the dynamic phase of RecBCD helicases in agreement with the

experiments. This theoretical approach suggests a new way of investigating and controlling

biological transport processes at the nanoscale level.
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Figure Captions:

Fig. 1. Schematic view of the motion of two interacting motor proteins. Transition rates uai

and wai (i = 1 or 2) describe the motion of the particle A (small circles), while ubi and wbi

are the transition rates for the particle B (large circles). Any configuration is specified by

the integers l and m for the positions of the particle A and B, correspondingly. The energy

of interaction in the configuration (l, m) is equal to |l −m|ε ≥ 0.

Fig. 2. Relative velocities for the coupled motor proteins as a function of the interaction

energy. Solid line corresponds to the relative velocity of the center of mass of the particles,

while the dotted lines are the relative velocities of the individual particles below the critical

interaction. The parameters used for calculations are: ua = 4, wa = 0.1, ub = 1, wb = 0.1

and θ = 0.02.

Fig. 3. Relative dispersions for coupled motor proteins as a function of the interaction

energy. Solid line corresponds to the relative dispersion of the center of mass of the particles,

while the dotted lines are the relative dispersions of the individual particles below the critical

interaction. The parameters used for calculations are the same as in Fig. 2.
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Figure 1: E. Stukalin, A. Kolomeisky, Physical Review Letters.
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Figure 2: E.B. Stukalin, A.B. Kolomeisky, Physical Review Letters.
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Figure 3: E. Stukalin, A. Kolomeisky, Physical Review Letters.
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