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Abstract 

It is required on physical grounds that the eigenvalues of the transition-rate matrix of the 
Rubinstein-Duke repton model for all values of the spatial wave number q be invariant to 
the choice of marker repton. This is not immediately obvious from the structure of the 
transition-rate matrix itself, but we show that these matrices for different choices of marker are 
related by similarity transformation and therefore have the same eigenvalues. 

1. Introduction 

Rubinstein in t roduced a lattice model  with which to describe the dynamics  of  

a polymer  chain in a medium with a high density of obstruct ions [-1]. The model 

incorporates  and is an expression of  de Gennes '  reptat ion mechanism, according to 

which the mot ion  of  the chain results from the diffusion of stored length along the 

chain's own con tour  [2]. Rubinstein 's  picture was then adapted by Duke  as a model  of 

the electrophoresis of  charged polymers (DNA) in a gel [3]. The model  is the object of  

much current  interest [4-8] .  

In its projected version [1], the model  is as pictured in Fig. 1 [3]. It is a chain of 

N elements Creptons")  connected by N -  1 bonds. Each element of the chain is 

permanent ly  confined to its own track running in the x direction, where x is 

a coordinate  that  takes only the discrete values . . . .  - 2 ,  - 1 ,  0, 1, 2, . . . .  The 

x coordinates  of adjacent reptons may differ by only 0 or  ___ 1, and this is assured by 

the move rules. Arrows at tached to the reptons show the moves they are allowed to 

make, each such move increasing (T) or decreasing (J,) the x coordinate  of that  repton 
by 1. The rule is that  an interior repton (repton 1, 2 ~< l ~< N - 1) is not  allowed to 
move  (so carries no arrow) unless it is the end one of  a sequence ("cluster") of  two or  

more  consecutive reptons all at the same x; and then it may  move only in the direction 

* Corresponding author. 

0378-4371/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 
PII S03 78-43 7 1 (96)000 1 7-9 



54 A.B. Kolomeisky, B. Widom / Physica A 229 (1996) 53-60 

3 

2 

I 
X 

0 

- I  

- 2  

- 3  
I I I I I l I I I I I 

I 2 3 4 5 6 7 8 9 I0  II 

repton number 

Fig. 1. Typical configuration of a chain of N = 11 reptons. Arrows on the reptons indicate allowed moves. 
The chain drifts and diffuses in the x direction. 

of that  one of  its two neighbors which does not  belong to the cluster; i.e., which lies 

one unit ahead of  or  behind it in the x direction. An end repton (l = 1 or  N) that  is the 

end member  of  a cluster (repton 11 in the example in the figure) is allowed to move  

either up (T) or  down ($) by one unit, while an end repton that  is not  the end member  

of a cluster (repton 1 in the figure) may  move, but only in the direction to which its 

ne ighbor  lies (T, in the example in the figure). 

With each ar row there is associated a transit ion rate (transition probabil i ty per unit 

time) propor t iona l  to a parameter  B if the ar row is 1' and B -  1 if it is J,. Here In B is 

propor t iona l  to an external field E that acts on each repton as a force in the 

x-direction: B = exp (E/2), say, so B = B -  1 = 1 when there is no field. (For  simplicity 

we take B and E dimensionless but the dimensions are easily restored [9].) 

A chain of  N reptons has 3 N- 1 possible internal configurations, these being the 

3 N-~ distinct sequences of bond  variables j l  . . . . .  jN-~ where Jl = x~+~ - x, = 0 or  

_ 1. Let y = 1 . . . . .  3 N- ~ index these chain configurations; i.e., these 3 N ~ different 

sequences of  bond  variables. Choose  any repton of the chain to be the "marker";  i.e., 

the one whose x coordinate  locates the chain as a whole in the x direction. By 

specifying simultaneously the coordinate  x of  the marker  repton and the internal 

configurat ion y of  the chain we fix the coordinate  xz of every repton I and so the exact 
location of the chain and each of  its elements. 

The probabi l i ty  px, y(t) that  at time t the chain is at the posit ion and in the internal 
configurat ion represented by x, y is given by [9] 

7t 

px,y(t) = ~ f cn(q)f~")(q)eiqx+'~"(q)tdq (1.1) 

r~ 

with 

c.(q) = (27~)-1 ~ ~, e-iqx 9~r~)(q) p~, y(O), (1.2) 
x y 
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where fty.)(q), 9(y.)(q), and 2.(q) are, respectively, the y components of the nth right and 
left eigenvectorsf(")(q) and gt")(q), and the nth eigenvalue, of a 3 N- 1 x 3 N- 1 transition- 
rate matrix A (q) to be defined presently; and where the eigenvectors are normalized by 

g(")(q)'f~")(q) = 1. (1.3) 

The rows and columns of A (q) are labeled by the configuration index y. If the chain 
is in configuration y and one of the reptons then moves in the direction of an arrow 
that is attached to it in that configuration, the chain then finds itself in a new 
configuration, y'. The off-diagonal element Ay, y (q) of A (q) is 0 if the two configurations 
y and y' are not connected by an allowed transition (an allowed move by any repton); 
B if the transition y ~ y' results from an allowed move T by a repton other than the 
marker repton and B e-iq if from a move T by the marker; and B-  1 if the transition 
y ~ y' results from an allowed move + by a repton other than the marker and B-  1 elq if 
from a move J. by the marker. The diagonal element A., is independent of q (and of the 
choice of marker) and is given by 

A y y = -  ~ A/y(0). (1.4) 
y'(~y) 

The evolution in time of the locations and configurations of the chains in an 
ensemble of such chains is determined by the eigenvalues and eigenvectors of ,4 (q) via 
Eqs. (1.1)-(1.3). One of the eigenvalues - call it 2o (q) - is 0 at q = 0. Then in particular 
the drift velocity (terminal velocity) and diffusion coefficient of the chains are express- 
ible in terms of the values at q = 0 of the first and second derivatives, d2o/dq and 
d22o/dq 2, of 2o(q) [-9]. 

The left-hand side of (1.1) is independent of the choice of marker repton because, as 
remarked above, specifying x and y simultaneously is equivalent to specifying the 
location x~ of every repton I in the chain. [The x and y in (1.2) are dummy variables, 
which are summed over.] It must therefore be that the right-hand side of (1.1) is also 
independent of the choice of marker. This invariance is not immediately obvious from 
the structure of the right-hand side of (1.1), nor from the structure of the transition- 
rate matrix A (q), whose elements By,y, as seen above, depend on the choice of marker: 
that choice determines how many and which of the off-diagonal elements are B e iq 
and B - l e  iq. The invariance of the right-hand side of (1.1) for all t requires, in 
particular, that the eigenvalues 2,(q) be independent of the choice of marker even 
though the matrix d(q) of which they are the eigenvalues is not. 

The necessity of that invariance on physical grounds was recognized earlier, and 
was explicitly verified for short chains (small N), but was not derived in general [9]. 
Here we demonstrate the invariance of the 2,(q) to the choice of marker by showing 
that the matrices A (q) and ,4(q) for any two different choices are related by a similarity 
transformation. The structure of the argument for general N will be clear from the 
special case N = 3, which we present in the next section. The argument for general 
N is in Section 3. 
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2. N = 3  

There are 3 N- ~ = 9 possible configurations y of the chain, which we number 
y = 1 . . . .  ,9 and show in Fig. 2 [9]. Two essentially different choices of marker repton 

are possible: either of the two end ones (they are equivalent by symmetry) or the 
middle one. Let A (q) be the transition-rate matrix when the left-end repton is chosen 
as marker and let ,t(q) be that matrix when the middle repton is the marker. From the 
prescription given earlier for constructing these matrices, and with the allowed repton 
moves as indicated by the arrows in Fig. 2, we have 

2 S  

4 y  

Fig. 2. The nine possible configurations, labeled y = 1, . . . ,  9, of a chain of three reptons. Arrows  show 
allowed moves, as in Fig. 1. 
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A(q) = 
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The se  are of  the  form 

I L l  1 

"L11 

A(q) = [£;1 

L 1 2  

L 2 2  

L 3 2  

/~12  

L 2 2  

/-~32 

L 2 3  , 

L 3 3 J  

° 1 /~2 3 

L 3 3 J  

(2.3) 

(2.4) 
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where O and the var ious  Lmn and / "m,  are the 3 x 3 blocks (sub-matrices) outl ined in 
(2.1) and (2.2). The  d iagonal  blocks L~I,  etc. are the same in A and A. The  farthest 

off-diagonal  blocks called O are the same in bo th  and consist entirely of  zeros. The  

blocks/7, ~ 2 and/2z 3 in zi are the scalar mult iples e -  iq of L a 2 and L23, respectively, in A, 
while/521 and/~32 i n / / a r e  the scalar mult iples e ~q of L2x and L32 in A. This  is the 

pa t te rn  we shall later find for general  N. 
F r o m  the foregoing observa t ions  it follows that  A (q) and A(q) in this N = 3 case are 

related by the similari ty t r ans format ion  

S .  A = / i . S ,  (2.5) 

where S(q) is a d iagonal  matr ix  with elements S~,~ . . . . .  $9,9 given by 

e- iq,  e- lq,  e -iq, 1, 1, 1, eiq, eiq, e iq . (2.6) 

Then  because of (2.5) the matr ices  A(q) a n d / i ( q )  have the same eigenvalues 2,(q). 

3. Genera l  N 

Here  it will be shown tha t  if A (q) is the t ransi t ion-ra te  matr ix  with rep ton  l chosen 
as marker ,  for any l = 1,2 . . . . .  N - 1, and if zi(q) is the cor responding  matr ix  with 
rep ton  I + 1 as marker ,  then A and A are related by a similarity t ransformat ion ,  as in 

(2.5). It  then follows that  the cor responding  matr ices  for any two choices of  m a r k e r  are 
so related, and f rom that,  in turn, it follows again that  any two such t ransi t ion-ra te  

matr ices  have the same eigenvalues. 
Let  reptons  I and I + 1 be the two al ternat ive choices of marker .  Hav ing  chosen the 

value of l, m a k e  a list of the 3 N- ~ distinct configurat ions y of  the chain, as is done  for 

N = 3 in Fig. 2. We are free to order  these as we wish since the eigenvalues of  A and 
/ i  do not  depend on this order.  Choose  the first 3 N-2 entries in the list 
(y = 1 . . . . .  3 N-z)  to be those for which the bond  variable Jl has the value + 1, the 

next 3 N-2 entries those for which jt = 0, and the remaining 3 N-2 entries those for 
which j / =  - 1 (as in the N = 3 case with the choice I = 1, as seen in Fig. 2). The  order  

within each set is a rb i t ra ry  but,  once having been chosen, is fixed. 
Next,  const ruct  the matr ices  A and zi according to their definition in Section 1: the 

first of these with repton l as ma rke r  and the second with l + 1 as marker .  Each 
comprises  nine 3 N- 2 )< 3 N- 2 blocks cor responding  to the division of the configura-  
tions y = 1, . . . ,  3 N- ~ into thirds as just  described. These generalize (2.1) and (2.2). 

Within  any one of the three blocks a long the main  d iagonal  of either A or zi the 

bond  variable  j~ has a fixed value: 1,0 or - 1. Therefore  the non-zero  off-diagonal 
elements  Ay,y and Ay, y in those blocks are associated only with transi t ions y ~ y' in 
which neither rep ton  l nor  rep ton  l + 1 moves,  since such a move  by either of  those 
reptons  necessarily causes jr to alter its value. According to the rules of  const ruct ion of 
the A (q), then, none  of those elements carries a factor  e iq or  e iq. But it is only in the 
n u m b e r  and locat ion of the factors e + iq that  A and ,,1 differ, so we again conclude that  
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the three blocks along the main diagonal of.4 are identical to those in A. Similarly, the 

farthest off-diagonal blocks in both A and ,,1 consist entirely of zeros, just as in (2.1) 
and (2.2), because those elements would correspond to transitions y ~ y' in which 
jl changed from + 1 to - 1 or the reverse, and there is no allowed move by any 
repton that can change the value of any bond variable by more than one unit. 
Therefore, as in (2.1) and (2.2), A and ,,1 differ only in their blocks that lie immediately 
above and below the main diagonal of blocks. Thus, A and ,] have the same structures 
as in the special case N = 3 in (2.3) and (2.4), but with O and the various Lmn and 
[mn now 3 ~ 2 x 3 N- 2 sub-matrices. 

Where the move rules allow the transition y ~ y' the corresponding elements in 
A and ,4 are B, B -1, Be  -iq, or B-leiq;  where the move rules do not allow that 

transition the corresponding elements are 0. The elements of L a2 and/21z all corres- 
pond to transitions y ~ y' in which the bond variable jr would change from 0 to + 1. 
That change requires either that repton I move $ or that repton l + 1 move T. I fy  ~ y' 
is an allowed transition in which repton I moves ~ the corresponding element Ay., in 
L12 is B-  1 eiq (because l is the marker repton in A) while in/212 it is just B-  1; whereas if 
y--* y' is an allowed transition in which repton l + 1 moves T the corresponding 
element A cy in L12 is B while in/212 it is B e  -iq (because I + 1 is the marker repton in 
,,1). Thus, each non-zero element of/212 is e-iq times the corresponding element of L i z; 

and since that is also true of the 0 elements, we have 

/212 = e-lqL12, [3.1) 

just as in the N = 3 case. 
In the allowed transitions that correspond to the non-zero elements in L23 and 

/223 the bond variablej~ changes from - 1 to 0, which again means either that repton 
l moves I or that repton l + 1 moves T. Then, just as with L12 and/212 in (3.1), every 
element of/223 is e - iq  times the corresponding element of L23 , 

/223 = e iqL23. (3.2) 

In the allowed transitions corresponding to L 21,/221, L32 and/232 the bond variable jr 
decreases by one unit, thus entailing a move 1" by repton I or + by repton I + 1; so by 
the same argument that led to (3.1) and (3.2) we have also 

/221 = eiqL21 (3.3) 

and 

/232 = eiqL32 • (3.4) 

From (2.3), (2.4), and (3.1)-(3.4), therefore, it follows that A and ,4 for general N are 
still related by the similarity transformation (2.5), where now S(q) is the 3 N- 1 × 3 N -  1 

diagonal matrix the first third of whose elements are e iq, the middle third l, and the 
last third e iq, just as in (2.6). 

Taken together with the remarks at the beginning of this section, this completes the 
demonstration that the transition-rate matrices A and A for any two choices of 
marker repton are related by similarity transformation. 
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4. Summary 

It is required on physical grounds  that  the eigenvalues of  the q-dependent  

Lransition-rate matrix A(q) of  the Rubins te in -Duke  model  be independent  of  the 

zhoice of  marker.  Tha t  is not  immediately obvious  from the structure of  A (q) itself, 

which depends on the choice of  marker;  but  we have shown that  the matrices A (q) and 

A(q) for any two such choices are related by a similarity t ransformat ion and therefore 

flo indeed have the same eigenvalues. 
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