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Abstract

It is required on physical grounds that the eigenvalues of the transition-rate matrix of the
Rubinstein-Duke repton model for all values of the spatial wave number g be invariant to
the choice of marker repton. This is not immediately obvious from the structure of the
transition-rate matrix itself, but we show that these matrices for different choices of marker are
related by similarity transformation and therefore have the same eigenvalues.

1. Introduction

Rubinstein introduced a lattice model with which to describe the dynamics of
a polymer chain in a medium with a high density of obstructions [1]. The model
incorporates and is an expression of de Gennes’ reptation mechanism, according to
which the motion of the chain results from the diffusion of stored length along the
chain’s own contour [2]. Rubinstein’s picture was then adapted by Duke as a model of
the electrophoresis of charged polymers (DNA) in a gel [3]. The model is the object of
much current interest [4-8].

In its projected version [1], the model is as pictured in Fig. 1 [3]. It is a chain of
N elements {“reptons”) connected by N — 1 bonds. Each element of the chain is
permanently confined to its own track running in the x direction, where x is
a coordinate that takes only the discrete values ..., —2, —1,0,1,2,.... The
x coordinates of adjacent reptons may differ by only 0 or + 1, and this is assured by
the move rules. Arrows attached to the reptons show the moves they are allowed to
make, each such move increasing (1) or decreasing (]) the x coordinate of that repton
by 1. The rule is that an interior repton (repton [, 2 <! < N — 1) is not allowed to
move (so carries no arrow) unless it is the end one of a sequence (“cluster”) of two or
more consecutive reptons all at the same x; and then it may move only in the direction
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Fig. 1. Typical configuration of a chain of N = 11 reptons. Arrows on the reptons indicate allowed moves.
The chain drifts and diffuses in the x direction.

of that one of its two neighbors which does not belong to the cluster; i.e., which lies
one unit ahead of or behind it in the x direction. An end repton (I = 1 or N) that is the
end member of a cluster (repton 11 in the example in the figure) is allowed to move
either up (1) or down (|) by one unit, while an end repton that is not the end member
of a cluster (repton 1 in the figure) may move, but only in the direction to which its
neighbor lies (1, in the example in the figure).

With each arrow there is associated a transition rate (transition probability per unit
time) proportional to a parameter B if the arrow is T and B~ ! if it is |. Here In B is
proportional to an external field E that acts on each repton as a force in the
x-direction: B = exp (E/2), say, so B = B™! = 1 when there is no field. (For simplicity
we take B and E dimensionless but the dimensions are easily restored [9].)

A chain of N reptons has 3" ! possible internal configurations, these being the

3%~1 distinct sequences of bond variables ji, ... ,jn—1 where j=x,,, —x,=0 or
+ 1. Let y =1, ...,3" ! index these chain configurations; i.e., these 3¥ ! different
sequences of bond variables. Choose any repton of the chain to be the “marker”; i.e.,
the one whose x coordinate locates the chain as a whole in the x direction. By
specifying simultaneously the coordinate x of the marker repton and the internal
configuration y of the chain we fix the coordinate x; of every repton [ and so the exact
location of the chain and each of its elements.

The probability p, ,(t) that at time ¢ the chain is at the position and in the internal
configuration represented by x, y is given by [9]

Pey() =Y f eal@) £ ()€ 0 dg (1.1)

with
cn(@) = 2m)~ 1) Y e g (q) px.,(0), (1.2)
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where f1"(g), g\"(q), and 1,(q) are, respectively, the y components of the nth right and
left eigenvectors £ () and g™(g), and the nth eigenvalue, of a 3¥ ™! x 3¥ ! transition-
rate matrix A(q) to be defined presently; and where the eigenvectors are normalized by

g f(g=1. (1.3)

The rows and columns of 4(g) are labeled by the configuration index y. If the chain
is in configuration y and one of the reptons then moves in the direction of an arrow
that is attached to it in that configuration, the chain then finds itself in a new
configuration, y'. The off-diagonal element A, (q) of A(g) is 0 if the two configurations
y and y’ are not connected by an allowed transition (an allowed move by any repton);
B if the transition y — )’ results from an allowed move 1 by a repton other than the
marker repton and Be ™" if from a move 1 by the marker; and B~ ! if the transition
y — y' results from an allowed move | by a repton other than the marker and B ! e'?if
from a move | by the marker. The diagonal element A,, is independent of g (and of the
choice of marker) and is given by

Ay ==Y A,,0). (1.4)

y(#£y)

The evolution in time of the locations and configurations of the chains in an
ensemble of such chains is determined by the eigenvalues and eigenvectors of A(q) via
Egs. (1.1}+1.3). One of the eigenvalues — call it A4(q) —is 0 at g = 0. Then in particular
the drift velocity (terminal velocity) and diffusion coefficient of the chains are express-
ible in terms of the values at ¢ = 0 of the first and second derivatives, d/,/dg and
d?4e/dg?, of Ao(q) [9].

The left-hand side of (1.1) is independent of the choice of marker repton because, as
remarked above, specifying x and y stmultaneously is equivalent to specifying the
location x; of every repton ! in the chain. [The x and y in (1.2) are dummy variables,
which are summed over.] It must therefore be that the right-hand side of (1.1) is also
independent of the choice of marker. This invariance is not immediately obvious from
the structure of the right-hand side of (1.1), nor from the structure of the transition-
rate matrix 4(g), whose elements A, , as seen above, depend on the choice of marker:
that choice determines how many and which of the off-diagonal elements are Be
and B™'e". The invariance of the right-hand side of (1.1) for all ¢ requires, in
particular, that the eigenvalues 4,(¢g) be independent of the choice of marker even
though the matrix A(q) of which they are the eigenvalues is not.

The necessity of that invariance on physical grounds was recognized earlier, and
was explicitly verified for short chains (small N), but was not derived in general [9].
Here we demonstrate the invariance of the 4,(g) to the choice of marker by showing
that the matrices A(q) and A(q) for any two different choices are related by a similarity
transformation. The structure of the argument for general N will be clear from the
special case N = 3, which we present in the next section. The argument for general
N is in Section 3.
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2. N=3

There are 3¥ ! =9 possible configurations y of the chain, which we number
y =1, ...,9 and show in Fig. 2 [9]. Two essentially different choices of marker repton
are possible: either of the two end ones (they are equivalent by symmetry) or the
middle one. Let A(q) be the transition-rate matrix when the left-end repton is chosen
as marker and let A(g) be that matrix when the middle repton is the marker. From the
prescription given earlier for constructing these matrices, and with the allowed repton
moves as indicated by the arrows in Fig. 2, we have

E-Y

ZITTESSS

Fig. 2. The nine possible configurations, labeled y = 1, ... ,9, of a chain of three reptons. Arrows show
allowed moves, as in Fig. 1.



A.B. Kolomeisky, B. Widom | Physica A 229 (1996) 53-60 57
Alg) =
y= 1 2 3 4 5 6 7 8 9
1 —(B+BY) B 0 Bl 0 0 0 0 0
2 B ~2B+BY) B B B¢l 0 0 0 0
3 0 B! — 2B 0 0 B le 0 0 Q
4 BeH B! 0 — 2B+ B B 0 B tel 0 0
S 0 Be ™ 0 B! —2B+ B B 0 B 'e4 0
6 0 0 Be ™ 0 B! -2AB+B7Y 0 B B leH
7 0 0 0 Be ¥ 0 0 —2B7! B 0
8 0 0 0 0 Be e B! B! —2AB+B") B
9 0 0 0 0 0 Be 0 B! —(B+B™Y)
(2.1)
and
Alg) =
V= 1 2 3 4 5 6 7 8 9
1 —(B+B™Y) B 0 B! 0 0 0 0 0
2 B! ~2AB+B™Y B Be B! 0 0 0 0
3 0 B! —2B 0 0 B! 0 0
4 B B e 0 —2AB+B™H B 0 B! 0 0
5 B B! —2B+B") B 0 B! 0
6 0 0 B 0 B! — 2B+ B 0 Be B!
7 0 0 0 B 0 —2B! B 0
8 0 0 0 B B~ lel B! —2B+B") B
9 0 0 0 0 B 0 B! -(B+B")
(2.2)
These are of the form
L, L, O
A(@) =Ly Ly Ly (2.3)
|0 Ly Ly
- i 1
L, L, O
A(g) =Ly Ly Ly (2.4)
| O Ly, Ljs |
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where O and the various L., and L, are the 3 x 3 blocks (sub-matrices) outlined in
(2.1) and (2.2). The diagonal blocks L, etc. are the same in A and A. The farthest
off-diagonal blocks called O are the same in both and consist entirely of zeros. The
blocks L, , and L,5 in A are the scalar multiples e "7 of L,, and L, 3, respectively, in A,
while L,, and L, in A are the scalar multiples ' of L,; and Lj, in A. This is the
pattern we shall later find for general N.

From the foregoing observations it follows that A(g) and A(g) in this N = 3 case are
related by the similarity transformation

S-A4=4-8, (2.5)
where S(q) is a diagonal matrix with elements Sy, ... ,So o given by
e e e, 11,61 e e, (2.6)

Then because of (2.5) the matrices A(g) and A(q) have the same eigenvalues 4,(g).

3. General ¥V

Here it will be shown that if A(g) is the transition-rate matrix with repton [ chosen
as marker, for any [ = 1,2, ... ,N — 1, and if A(q) is the corresponding matrix with
repton | + 1 as marker, then 4 and A are related by a similarity transformation, as in
(2.5). It then follows that the corresponding matrices for any two choices of marker are
so related, and from that, in turn, it follows again that any two such transition-rate
matrices have the same eigenvalues.

Let reptons [ and [ + 1 be the two alternative choices of marker. Having chosen the
value of I, make a list of the 3V~ ! distinct configurations y of the chain, as is done for
N =3 in Fig. 2. We are free to order these as we wish since the eigenvalues of A and
A do not depend on this order. Choose the first 3%~ 2 entries in the list
(y =1, ...,3% %) to be those for which the bond variable j, has the value + 1, the
next 3V~ 2 entries those for which j, = 0, and the remaining 3V~ 2 entries those for
which j, = — 1(asin the N = 3 case with the choice | = 1, as seen in Fig. 2). The order
within each set is arbitrary but, once having been chosen, is fixed.

Next, construct the matrices A and A according to their definition in Section 1: the
first of these with repton [ as marker and the second with / + 1 as marker. Each
comprises nine 3V 2 x 3¥~2 blocks corresponding to the division of the configura-
tions y = 1, ... ,3¥~! into thirds as just described. These generalize (2.1) and (2.2).

Within any one of the three blocks along the main diagonal of either A or A the
bond variable j, has a fixed value: 1,0 or — 1. Therefore the non-zero off-diagonal
elements A, and A, in those blocks are associated only with transitions y - y" in
which neither repton [ nor repton [ + 1 moves, since such a move by either of those
reptons necessarily causes j, to alter its value. According to the rules of construction of
the A(q), then, none of those elements carries a factor €4 or ¢ 4. But it is only in the
number and location of the factors e *'¢ that A and A differ, so we again conclude that



A.B. Kolomeisky, B. Widom [ Physica A 229 (1996) 5360 59

the three blocks along the main diagonal of A are identical to those in A. Similarly, the
farthest off-diagonal blocks in both A and A consist entirely of zeros, just as in (2.1)
and (2.2), because those elements would correspond to transitions y — y' in which
ji changed from + 1 to — 1 or the reverse, and there is no allowed move by any
repton that can change the value of any bond variable by more than one unit.
Therefore, as in (2.1) and (2.2), 4 and A differ only in their blocks that lie immediately
above and below the main diagonal of blocks. Thus, A4 and A have the same structures
as in the special case N = 3 in (2.3) and (2.4), but with O and the various L,,, and
L., now 372 x3¥2 syb-matrices.

Where the move rules allow the transition y — y’ the corresponding elements in
A and A are B, B™!, Be ™, or B™'e"; where the move rules do not allow that
transition the corresponding elements are 0. The elements of L, and L, all corres-
pond to transitions y — y" in which the bond variable j, would change from 0 to + 1.
That change requires either that repton / move | or that repton ! + 1 move 1. If y — '
is an allowed transition in which repton I moves | the corresponding element A, in
L,,is B™'¢"(because ! is the marker repton in A) while in L, it is just B~ '; whereas if
y— )" is an allowed transition in which repton / + 1 moves 1 the corresponding
element A, in L,, is Bwhile in L, it is Be ™ (because [ + 1 is the marker repton in
A). Thus, each non-zero element of L, is e~ times the corresponding element of L ,;
and since that is also true of the 0 elements, we have

Li;=¢YLy,, (3.1)

just as in the N = 3 case.

In the allowed transitions that correspond to the non-zero elements in L,; and
L, the bond variable j; changes from — 1 to 0, which again means either that repton
I moves | or that repton [ + 1 moves 1. Then, just as with L, and L, in (3.1), every
element of L,5 is e " times the corresponding element of L, 5,

1:23 Zeiiqu:;. (32)

In the allowed transitions corresponding to L,, L,1, L+, and L5, the bond variable j,
decreases by one unit, thus entailing a move 1 by repton ! or | by repton [ + 1; so by
the same argument that led to (3.1) and (3.2) we have also

Ly =¢“Ly, (3.3)
and
E32 = CiqL32 . (34)
From (2.3), (2.4), and (3.1)—(3.4), therefore, it follows that A and A for general N are
still related by the similarity transformation (2.5), where now S(q) is the 3V 1 x 38!
diagonal matrix the first third of whose elements are e "4, the middle third 1, and tine
last third €', just as in (2.6).
Taken together with the remarks at the beginning of this section, this completes the

demonstration that the transition-rate matrices A and A for any two choices of
marker repton are related by similarity transformation.
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4. Summary

It is required on physical grounds that the eigenvalues of the g-dependent
transition-rate matrix A(g) of the Rubinstein-Duke model be independent of the
choice of marker. That is not immediately obvious from the structure of A(q) itself,
which depends on the choice of marker; but we have shown that the matrices A(q) and
A(q) for any two such choices are related by a similarity transformation and therefore

do indeed have the same eigenvalues.
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