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ABSTRACT Forces generated by microtubule polymerization and depolymerization are important for the biological func-
tioning of cells. The mean growth velocity, V, under an opposing force, F, has been measured by Dogterom and Yurke (1997;
Science 278:856–860) for single microtubules growing in vitro, but their analysis of the data suggested that V decreased more
rapidly with F than equilibrium (or “thermodynamic”) theory predicted and entailed negative values for the dissociation rate
and undefined (or unreasonable) values for the stall force, at which V vanishes. By contrast, considering the mean work done
against the external load and allowing for load-distribution factors for the “on” and “off” rates, we find good agreement with
a simple theory that yields a plausible stalling force. Although specific numerical results are sensitive to choice of fitting
criteria, about 80% of the variation with load is carried by the “off” (or dissociation) rate, but, since that is small (in accordance
with independent observations), the dominant force dependence comes from the “on” rate, which is associated with a
displacement length, d1, significantly longer than d0 � 1/13(8.2 nm), the mean length increase per added tubulin dimer.
Measuring the dispersion in length of the growing microtubules could provide a check. The theory implies that the stationary
stall state (at V � 0) is not one of simple associative thermal equilibrium, as previously supposed; rather, it appears to be
dissipative and kinetically controlled.

INTRODUCTION

Microtubules (MTs) are rigid, hollow cylindrical structures,
each consisting of 10 to 15 parallel protofilaments arranged
circumferentially. Each protofilament is a linear polymer of
�- and �-tubulin heterodimers, each dimer being of length
d � 8.2 nm, when assembled in the MT. Typically, n � 13
protofilaments are associated laterally with an adjacent,
longitudinal offset a � hd/n � 1.5d/13 � 0.95 nm to make
a “B-lattice” sheet that is rolled up and joined helically with
a single seam (and helix factor h� 3/2), to form a complete
MT (Desai and Mitchison, 1997). The process of assembly
of MTs from tubulin is accompanied by guanasine triphos-
phate (GTP) hydrolysis and can generate forces which are
important for mitosis and cellular motility. Ingenious ex-
periments by Dogterom and Yurke (1997) have recently
provided measurements of the velocity of single MTs grow-
ing in vitro as a function of the force F (evaluated parallel
to the MT axis), that was generated when the MTs encoun-
tered a rigid microfabricated barrier. From analysis of the
subsequent buckled shapes, and using independent mea-
surements of the flexural rigidity, yielding � � 34 � 7
pN/�m2, the load, F, and the length of the MTs could be
determined as a function of time .
Dogterom and Yurke (hereafter DY) analyzed their re-

sults using a simple, thermodynamically based theoretical
model (following Hill, 1987) and concluded that the ob-
served mean velocity of growth, V, decayed with F signif-
icantly faster than predicted. Although DY claimed to fit

their data satisfactorily, in all cases their optimal parameters
entailed negative kinetic rates for the “off” or dissociation
process, in which a tubulin dimer leaves a protofilament. As
a consequence, their fits predicted no value for the stalling
force, FS, at which the mean velocity goes to zero and
growth stops. (More correctly, if one allows for the uncer-
tainty range in the fitted off-rates, a minimum stall force,
FS � 21.3 pN can be predicted, but this seems excessively
large.) However, naive examination of their data, as repro-
duced in Fig. 1, would suggest FS � 4.2–4.8 pN and, in
fact, DY observed MTs stalled with stationary ends for
periods �20–30 s at forces F � 4.1 pN.
We show here that a more systematic analysis of the

original, simple DY approach leads to a fully satisfactory
description of the data with rate constants in accord with
independent evidence (Desai and Mitchison, 1997) and a
modest stall force in the anticipated range. The theory
amounts simply to the limiting N � 1 case of our general
treatment of processive molecular motors such as kinesin
(Fisher and Kolomeisky, 1999a,b). The essential issue turns
out to be a consideration of the load-distribution factors for
the “on” and “off” rates and of the associated displacement
of the “tip” of the MT. The data provide fairly firm guidance
and the results are not inconsistent with a general picture in
which an open sheet of n parallel protofilaments (Desai and
Mitchison, 1997) pushes against a barrier with the load, F,
carried, stochastically, by the longest protofilament (Mogil-
ner and Oster, 1997) (hereafter MO). Our treatment also
predicts the dispersion of the mean contour length, say �l(t)�,
of the growing MT at time t: this provides a potential
experimental cross-check. However, the value we find for
the stall force FS (in manifest agreement with the experi-
mental evidence) does not accord with the thermodynamic
arguments of DY and Hill (1987), discussed further by van
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Doorn et al. (2000). This leads us to conclude that the
stationary stalled state (with V� 0) is not necessarily one of
simple, MT-tubulin associative equilibrium. Instead, the
stall state may well be dissipative, possibly entailing GTP
hydrolysis, etc., and controlled overall by more detailed
kinetics.
It should be noted that the failure of the DY theory to

account for their experimental findings has previously led
MO to generalize an earlier Brownian ratchet model. The
resulting, fairly elaborate but mechanically more detailed
theory (postulating n associated but statistically independent
protofilaments), required numerical integration. Using an
approximation to handle the disassembly process in their
model, MO were led to the general stall force prediction
FS � �n and were also able to obtain tolerable agreement
with the DY data. (The stall force predicted by the fit in Fig.
4 of MO is, unfortunately, not clear, and their representation
of the DY data lacks accuracy in the spacings along the
force axis.) Subsequently, however, van Doorn et al. (2000)
(hereafter vD) showed that the MO treatment of the off-
process was inadequate. By simulation of a discrete version
of the MO model with a special symmetry, vD concluded
that FS should, instead, be proportional to n. This was
supported by theoretical arguments which, although ade-
quate for their special case, do not suffice for more realistic
generalizations that we discuss in the Appendix. Van Doorn
et al. also obtained fits to the DY data that we consider
unsatisfactory in that they entail excessive rates for the
disassembly process and large stall forces of magnitude
9–19 pN.
An underlying issue here is the general question of how

elaborate a model is needed to understand or explain a given

set of data (see also Hille (1992), pp. 31, 52, 66, 387, and
502 et seq.). It seems appropriate, in the first instance, to
explore carefully the simplest models that are consistent
with other experimental knowledge and evidence and that
respect basic physico-chemical principles. If a good descrip-
tion is provided by a simple, albeit phenomenological, ap-
proach, more elaborate pictures or models can be convinc-
ingly validated only by more extensive or searching
experiments.

ANALYSIS

In our notation (Fisher and Kolomeisky, 1999a,b; hereafter
FK) the initial DY analysis can be regarded as resting on the
expression

V	F
 � d0�u0e��Fd1/kBT 	 w0e��Fd1/kBT� , (1)

for the mean velocity V as a function of the load F. Here
d0 � d/n represents the mean increase in MT contour length,
l(t), resulting from the addition of one ��-dimer to the
periodic helical structure of a fully assembled MT (Desai
and Mitchison, 1997). DY took n� 13, which we will adopt
for all numerical work, in their notation d0 � 
. (However,
for reasons that are unclear to us, vD appear to set d0 � d
when relating V to the on- and off-rates in their Introduction
and Eq. 4.)
The on-rate for the addition of a GTP-tubulin dimer is

u0 � k0[��]. It is generally accepted that k0 lies in the range
from 2 to 10 �M�1s�1 (see Desai and Mitchison, 1997, p.
89). For the DY experiments with 25 �M tubulin, this
indicates the range

u0 � 1500	 7500 min�1 . (2)

The off-rate for the disassembly of a protofilament under
zero load (F � 0) by the loss of one GTP-tubulin dimer is
small, but must be positive. It seems appropriate to accept

0� w0 � 6 min�1 , (3)

(Drechsel et al., 1992), although there has been some con-
troversy (Desai and Mitchison, 1997, p. 89).
The parameters � and �� � 1� � (FK) represent load

distribution factors determining the degree to which the load
affects the forward or on-rate vs the backwards or off-rate.
(In DY’s notation, � � q.) The recognition and determi-
nation of the load-distribution factors is a crucial feature of
this level of modeling. (For load distribution factors in the
context of ion channels see chapter 14 of Hille (1992), but
note that the implications of � � �� are not considered.)
In general, � and �� need not be positive (FK), but in the
present situation it is reasonable to suppose that neither one
can be negative.
Finally, Fd1 represents the most probable work needed to

add a single tubulin dimer against the load F: the value of d1
is an important parameter requiring careful consideration.

FIGURE 1 Data of Dogterom and Yurke (DY, 1997) relating mean
growth velocity, V, to the load force, F, for MTs encountering a barrier.
The solid line represents the fit developed here on the basis of Eq. 1 with
the rates and load-distribution factors given in Eqs. 6. The dashed curve
represents a fit by DY that entails a negative off rate (and an unbounded
stall force).
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On the basis of near-equilibrium thermodynamic consider-
ations (Hill, 1987) DY assumed, with little discussion, that
d1 � d/n (although they briefly mentioned the possibility of
larger d1; see also vD). We believe this assumption is not
unconditionally warranted and will analyze alternatives.
Taking d1 � d/13 � 0.63 nm and supposing � � 1 (so

that �� � 0), DY fitted their data by minimizing 2(�)
(Press et al., 1986) where � � {�i} denotes the experimen-
tally generated standard errors (displayed in their Fig. 4 and
reproduced here in Fig. 1). Their fit yielded the reduced
value 2(�) � 0.43 (normalized by � � �data � �param �
13 � 3 � 10) and generated

u0, w0 � 1791,	 127 min�1 for � � d1/d� 1
13 . (4)

The value for the on-rate, u0, accords with Eq. 2, but the
negative value of w0 is clearly unphysical. (Although the
positive values of w0 allowed by the uncertainties �w0 �
�190 min�1 encompass the inequalities in Eq. 3, the fitted
magnitude is also excessive.) Finally, DY found the fitted
V-F decay rate to be

C� �d1/kBT� 18� 4 �m2 , (5)

or, equivalently (see Fig. 1), kBT/d1 � 1.9 pN. By contrast,
accepting � � 1/13 (i.e., d1 � d/13), the unambiguous
prediction is kBT/d1 � 6.8 pN or (using the measured value
of �) C � 5 � 1 �m2. The discrepancy of a factor of 3 or
more was the basis for DY’s conclusion that theory failed to
predict the relatively rapid decay of V as F increased.
DY also tried other values of � and ��, but to no avail.

In particular, a fit with � � �� � 0.5 again yielded
2(�) � 0.43 but generated the still larger value C � 34 �
4 �m2. This fit gave the off-rate w0 � �11 � 16 min�1

which, though of more acceptable magnitude, is still of
unphysical sign.
Why might the assumption d1 � d/n be inadequate?

Consider a growing MT that faces a rigid barrier perpen-
dicular to the axis of growth. Because of the lateral offset of
a � 0.95 nm between filaments in the B-lattice structure of
the growing protofilament sheet (see Introduction; Desai
and Mitchison, 1997), one should expect that, in general,
only a single filament will bear the load F. (This is also the
general picture underlying the work of MO and vD.) Now
suppose that the tip of a particular filament, j, is at a distance
zj from the barrier that is less than d � 8.2 nm, the MT
length needed to accommodate a single tubulin dimer. (If
zj � 0, the filament j is bearing the load.) Then the most
probable work needed to assemble a dimer onto the end of
this filament, which will thereafter bear the full load, is
F(d � zj). (Of course, if zj � d, there should be no cost in
work to add a dimer to the filament.) Conversely, we expect
that the rate of depolymerization of the load-bearing proto-
filament (through the loss of one tubulin dimer) should be
enhanced by a Boltzmann factor involving an energy of
magnitude �Fd. These considerations suggest that d1

should be related to the average �d � zj� (for zj � d) and is,
therefore, likely to significantly exceed d/n; indeed, d1 � d
seems not implausible.
Accordingly, we will treat � � d1/d as a parameter,

bounded above by unity, and ask what information the
experiments provide both as to � and the load-distribution
factors � � 1 � ��. For fixed �, there are still just
�param � 3 fitting parameters: � and the two rates, u0 and
w0. To anticipate our analysis, we find that the parameters

u0, w0 � 1887, 0.33 min�1, � � 0.22, and � � 1 ,
(6)

(i.e., d1 � d � 8.2 nm) provide a very satisfactory optimal
fit to the DY data; see Fig. 1.
Furthermore, via the relation (see Eq. 1 and FK)

FS � 	kBT/d1
ln	u0/w0
 , (7)

this fit predicts the stall force FS � 4.3 pN, which, as
mentioned, is in clear accord with the experimentally ob-
served facts. In light of this result, we see few grounds for
placing credence in the large values, FS � 9� 19 pN, found
by vD within their model, where the equilibrium force
yields the stall condition V � 0. It should also be remarked
that Eq. 7 predicts no direct dependence on n in contrast to
the DY assumption d1 � d/n. However, taking cognizance
of lateral interactions between assembling protofilaments,
the subsequent hydrolysis of GTP, and the closure of the
protofilament sheet to form a complete MT, could lead to a
dependence of d1 on n. If MTs of varying n could be
produced in a controlled fashion, this issue could, in prin-
ciple, be addressed experimentally. We return to the ques-
tion in the discussion below.
Now it transpires that recognizing � as a trial parameter

does not immediately resolve the issue of fitting the data
numerically if one follows the procedures of DY. Thus on
minimizing 2(�), weighted as explained, one still finds that
the fitted value of w0 is always negative. However, when �
is increased from 1⁄13 � 0.077 to the limit � � 1, 2(�) drops
to a minimum of 0.424 (from 0.429); the resulting fit yields

u0, w0 � 1911, 	 0.165 min�1, � � 0.24,

for � � 1. (8)

Apart from the negative value of w0, which, however, is
now of small magnitude compared to the inequalities in Eq.
3, the accord with our fit, Eqs. 6, is quite good. Conversely,
when � is decreased w0 increases rapidly, as does �,
whereas 2(�) increases slowly.
But although minimizing 2(�) with weights experimen-

tally determined via the �i is a popular and convenient
procedure, it is not enshrined in gold! To consider alterna-
tives (see the informative discussion in sec. 14.6 of Press et
al., 1986), note first that for the experiments in question,
V(0), the mean velocity under zero load, was determined (as
V(0) � 1.22 �m/min) in distinct fashion by extensive direct
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observations that did not require analysis of buckled shapes.
We conclude that, in any fitting procedure, this datum may
warrant separate consideration and higher weighting.
Second, consider the last data point in Fig. 1 with V13 �

0 but a large standard deviation, �13. Experimentally, this
represents, as already stressed, the observation of MTs that
are in or close to a stalling state. The large deviation results
in part from the natural stochastic fluctuations. These are, in
fact, predicted to increase when F approaches FS as indi-
cated by the variation of the dispersion, D(F), of the MT
length that is plotted in Fig. 2 using the expression

D	F
 � 1
2	d

2/n
�u0e��Fd1/kBT � w0e��Fd1/kBT� , (9)

(see FK) and the parameter values in Eqs. 6. Thus, the
observed �13 does not merely represent error. Furthermore,
our primary concern is with the mean value. Consequently,
weighting this datum as 1/�132 (which amounts to less than
7% of the mean weight 1/�i2) represents de facto neglect of
a particularly important piece of evidence.
In light of these considerations, we examined the equi-

weighted sum of squares, say 2(�0), in which we take �i �
�0 for all i and normalize �0 so that the DY fit (Eq. 4) yields
the same value, 2 � 0.429. The results are shown in Table
1 for � � d1/d spanning the full range from � � 1⁄13 to 1.
Note, first, that 2(�0) is significantly less than the DY
value in all cases. Secondly, although the trends are similar
to those seen when 2(�) is used, the off-rate, w0, is never
negative and the on-rate, u0, always falls within the ac-
cepted range of Eq. 2. The minimum 2(�0) again occurs at
the limit � � 1 and is �11% smaller that at � � 1⁄13. (Over
the same range 2(�) falls only �1.2%.) Furthermore, for
� � 0.6, the off-rate, w0, satisfies the condition 3. Finally,

the load distribution factor � (�0.21) is close to the value
found from 2(�); see Eqs. 8.
We could well adopt the � � 1 values from Table 1 as

acceptable. However, as discussed above, we believe it is
appropriate to enhance the weight of the observations made
under zero load. Accordingly, we supplemented the 2(�0)
criterion by using �1 � 2�0 for the F � 0 datum. The
corresponding set of fits closely parallels those displayed in
Table 1 with little change in 2 (as renormalized) but, as
anticipated, a better fit to the central value of V(0). The
values of u0, v0, and � found this way are those recorded
in Eqs. 6 and displayed graphically in Fig. 1. The fit is
clearly very satisfactory and, in particular, by comparison
with DY and MO, the marked downward curvature of V(F)
seen in the data for F � 3 pN is well represented.

DISCUSSION

We have successfully fitted the velocity-force data obtained
by DY for MT growth under load, with a simple theory,
embodied in Eq. 1, that yields a stall force of FS � 4.3 pN
in manifest agreement with the observations: see Fig. 1.
Furthermore, our fitted on- and off-rates, u0 and w0, are
fully consistent with the constraints arising from indepen-
dent experiments; see Eqs. 6 and 2 and the inequalities in
Eq. 3. Crucial features of the theory are consideration of the
load-distribution factors, � and �� � 1��, for the on-
and off-rates, and allowance for a force displacement
length, d1, that may be as long as a single tubulin dimer,
namely, d� 8.2 nm. In fact, the optimal fits (see, e.g., Table
1) yield � � d1/d � 1.
For the load-distribution factors, however, the fits indi-

cate � � 0.22; this value may be converted to a mean
on-displacement of a protofilament tip of d � �d � 1.8
nm. In heuristic terms, this might measure the typical dis-
tance by which one of the n � 13 protofilament tips has to
withdraw further from the barrier surface (under a thermal
fluctuation) in order to make room for a tubulin dimer, in
accord with the picture of MO and vD. In light of the
longitudinal offset, a � 0.96 nm, between adjacent proto-
filament tips at the edge of an otherwise complete B-lattice
sheet, one might then guess naively that d would be given
roughly by d � �z� � d � 1/2(n � 1)a � 2.4 nm. The

FIGURE 2 Dispersion D� �[l(t)� �l(t)�]2�/2t of the contour length, l(t),
of MTs growing with time t under a load force F according to Eq. 9 plotted
with the parameters used in Fig. 1; see Eqs. 6.

TABLE 1 Results of the equiweighted least-squares fitting
for different values of � � d1/d with �2 normalized to 0.429 for
the favored fit of DY (see Eq. 4)

� u0, min�1 w0, min�1 � 2

1 1830 0.34 0.21 0.322
3⁄4 1828 2.40 0.28 0.332
1⁄2 1838 17.7 0.40 0.346
1⁄4 1978 162 0.69 0.353
1⁄13 3282 1468 1.67 0.356
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agreement is tolerable, but, at best, these considerations
should be regarded as speculative suggestions.
On the other hand, it must be pointed out that our fits

violate the conclusions of the thermodynamic consider-
ations of DY, vD, and Hill (1987) for the stall force. If the
stationary, stalled state observed when F � FS and V � 0
can be regarded as being in full thermochemical equilibrium
(in a process of GTP-tubulin dimer association and disso-
ciation) these arguments yield the previous expression for
FS, namely Eq. 7, but with d1 replaced by d0 � d/n, the
mean increase in MT contour length on addition of a single
dimer. Since we find d1 � d there is, formally, a 13-fold
discrepancy! Indeed, it was on the basis of this thermody-
namic view that DY took d1 � d0 or, equivalently, � �
d1/d � 1/13. That, in turn, as we have seen, was the root
cause of the difficulty they encountered fitting their data to
theory, leading to unphysical, negative off-rates and unde-
fined or excessively large stall force values. Furthermore,
the constraints on the on- and off-rates (u0 and w0 in Eqs. 2
and 3) yield a lower boundary on the thermodynamic pre-
diction for FS of 35.9 pN. This value exceeds by a factor of
8 the observations of MTs stalled for 1 min or so at forces
F � 4.4 pN (see Fig. 1).
It seems necessary to conclude that, unless there are

serious deficiencies in some of the experimental observa-
tions, the fluctuating stalling state, albeit stochastically sta-
tionary and in apparent equilibrium, does not actually rep-
resent full thermochemical equilibrium. Rather, the state
would seem to be dissipative and under kinetic control.
Perhaps GTP hydrolysis is playing some active role, even
though this does not seem to be directly in accord with the
picture of a catastrophe-avoiding “cap” of GTP-tubulin on
the end of the MT (Desai and Mitchison, 1997) as it at-
tempts to grow against the barrier. Possibly the situation is
modified when the MT is buckled and strained as in the DY
experiments.
Finally, we make some comments on the treatment of van

Doorn et. al. (2000) who, by simulating a discretized ver-
sion of the MO model of n independently growing parallel
protofilaments associated in a sheet, verified the thermody-
namic prediction for FS. Furthermore, they presented an
analytical argument yielding this result for general n, but, as
we indicate in the Appendix, their probabilistic reasoning is
not generally valid. Indeed, one may reasonably object that
their discrete model is atypically simple in that it imposes a
special lateral offset, namely, a � d/n (�0.63 nm for n �
13) in place of the more appropriate value a � 1.5 d/n �
0.96 nm. This results in a special symmetry. Nevertheless,
we have explicitly verified the thermodynamic result for FS
in the vD model for the case n � 2 extended to allow a
general offset a (�d) and arbitrary load-distribution factors.
(In the notation of vD, one has a � �, and all protofilament
tips must then reside at sites that are an integral multiple of
a from the barrier; for a� d/n that is no longer the case (see
Appendix). However, vD state that they simulated various

extensions of their model, which may have included other
values of a, always finding the same result for FS.) Our
analysis yields, in addition, explicit expressions for V as a
function of F (which vD do not obtain; see Appendix). Thus
we have no reason to doubt the claim of vD regarding the
n-dependence of FS in their model. Indeed, the result is
probably valid also when a general lateral offset and load-
distribution factors, �  �� � 1, are allowed for. Note,
however, a paradoxical defect of the MO-vD models that
appears when F30: specifically, as pointed out in the
Appendix, Eq. 1 is not matched in this limit, as the defini-
tions of u0 and w0 would seem to demand.
In applying the simulations of their model vD also gen-

erated apparently plausible fits to the original DY data.
However, these fits entail what, as explained, we regard as
unphysically large values of FS, namely, in the examples vD
present, 9.2 and 18.5 pN. Moreover, even these values are
obtained at the cost of violating the constraints both for the
on-rates (by accepting values that are too small by a factor
of 7 or more; see Eq. 2) and for the off-rates (by employing
values exceeding the limit imposed by the inequality 3).
Indeed, their values of FS violate the lower bound, 35.9 pN,
obtained above for a consistent prediction using the ther-
modynamic expression. We might also remark that the fits
of vD, like those of DY, are concave (i.e., d2V/dF2 is
positive) for F � 1 pN and so fail to represent the definite
convexity (or downward curvature) suggested by the data
for F � 3 pN (see Fig. 1).
In conclusion, although a simple theory, consistent with

distinct information regarding the on- and off-rates, fits the
force-velocity data of Dogterom and Yurke for MTs grow-
ing against a load, the concept that the stalled condition is
one of thermal equilibrium is called into question on various
counts.
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APPENDIX

Velocity versus Force for the Generalized n � 2
MT Model of van Doorn et al.

Consider the MT growth model of vD with just n� 2 protofilaments in the
sheet but with a general lateral offset a � d when the tip of protofilament
i � 1 pushes on the barrier, and a complementary offset, b � d �a, when
tip-2 bears the load. In addition, we suppose that the load is distributed so
that the on-rate for a tubulin dimer to fasten to a tip at a distance z from the
barrier is u0��max{d�z,0} while the off-rate from a tip which can then move
to a distance z from the barrier is w0����max{d�z,0}, where �x � exp(�Fx/
kBT) and �  �� � 1. The first step is to construct the master equations
governing the probabilities for the full set of distinct protofilament con-
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figurations, namely, those with tip-1 and those with tip-2 on the barrier. By
solving the master equations we find that the mean velocity for steady state
growth of the longest protofilament of an indefinitely long MT can be
expressed as

V	F
 � d	u0��d 	 w0Q����d
 � aS	u0R��a 	 w0����a


� bS	u0��b 	 w0R����b
 , (A1)

where Q � (u0��d  w0)/(u0  w0����d), R � (u0��b  w0����a)/
(u0��a  w0����b), and S � (1 � Q)/(1  R). It is also feasible to
compute the asymptotic dispersion in length.
One can now check that each of the three terms in Eq. A1 vanishes

identically when �d � (w0/u0)2. This serves to confirm the stall-force
expression, Eq. 7, with the “thermodynamic” value d1 � d/2. On the other
hand, when F30, so that � � Q� R� 1 and S� 0, one finds V� d(u0 �
w0) instead of the expected n� 2 result V� 1/2d(u0 � w0): see Eq. 1. This
appears to be a general defect of the MO-vD models (for all n) associated,
it would seem, with neglect of binding between adjacent protofilaments.
In the special case considered by vD where a� d/n (so that a� b when

n� 2) the only allowed distances of a protofilament tip from the barrier are
zj � ja where j � 0, 1, 2, . . . . Then, at most one tip can occupy each
position zj and, because of the associated tip relabeling symmetry (a figure
is helpful to see this) all the occupation probabilities for the positions are
independent of which protofilament tip, i � 1, 2, . . . , n, is in contact with
the barrier. Although not explained by vD, this independence is essential to
the probabilistic argument they use to derive the overall off rate. By
contrast, when a � b in the case n � 2 discussed above, there are two
distinct sets of positions, zj(1) � jd  a when tip 1 is on the barrier, and
zj(2) � jd  b when tip 2 is in contact. Furthermore, the total probabilities

for these two sets are, in general, different so the line of reasoning used by
vD fails.
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