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A Simple Kinetic Model Describes the Processivity of Myosin-V
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ABSTRACT Myosin-V is a motor protein responsible for organelle and vesicle transport in cells. Recent single-molecule
experiments have shown that it is an efficient processive motor that walks along actin filaments taking steps of mean size close
to 36 nm. A theoretical study of myosin-V motility is presented following an approach used successfully to analyze the dynamics
of conventional kinesin but also taking some account of step-size variations. Much of the present experimental data for myosin-
V can be well described by a two-state chemical kinetic model with three load-dependent rates. In addition, the analysis predicts
the variation of the mean velocity and of the randomness—a quantitative measure of the stochastic deviations from uniform,
constant-speed motion—with ATP concentration under both resisting and assisting loads, and indicates a substep of size d0 ’
13 –14 nm (from the ATP-binding state) that appears to accord with independent observations.

INTRODUCTION

Various classes of enzymes, usually termed motor proteins,

play important roles in biological processes such as cellu-

lar transport, cell division, muscle function, and genetic

transcription (see Lodish et al., 1995). What we may term

translocatory motor proteins (in contrast to rotary motor

proteins) are epitomized by kinesins, dyneins, myosins, and

DNA and RNA polymerases that move under loads along

polar linear tracks such as microtubules, actin filaments, and

double-stranded DNA, the motion being fueled by the hy-

drolysis of ATP or related reactions.

Motor proteins may work collectively in large groups, like

myosin in muscles, or they may operate individually as do

most microtubule-based kinesin and dynein molecules

(Leibler and Huse, 1993; Howard, 2001). Those motor pro-

teins that function collectively are typically nonprocessive,
i.e., they make at most one mechanical step along their tracks

during a catalytic cycle before detaching from the track.

On the other hand, individual motors that move vesicles

over long distances (up to several microns) need to stay

bound to their tracks over many catalytic cycles: such motors

are processive. For example, conventional kinesin motors
can walk along microtubules taking a 100 or more 8.2-nm

steps before dissociating (Howard et al., 1989; Block et al.,

1990; Vale et al., 1996; Kojima et al., 1997).

Recently, single-molecule experiments by Mehta et al.

(1999; Mehta, 2001), Rief et al. (2000), Sakamoto et al.

(2000), Rock et al. (2001), Veigel et al. (2002), and

Nishikawa et al. (2002) have demonstrated that myosin-V

and myosin-VI, in contrast to the behavior of other members

of the myosin superfamily (Howard, 2001), are also efficient

processive molecular motors. Here we will focus on the

dynamics of myosin-V.

Myosin-V is a dimeric, two-headed molecule that in the

presence of actin readily hydrolyzes ATP to produce ADP

and Pi (Mehta, 2001). Kinetic experiments in bulk solution

(De La Cruz et al., 1999, 2000; Mehta, 2001) have dem-

onstrated that release of ADP is the rate-limiting step in

the actin-activated ATPase cycle. Under conditions of limit-

ing ATP the kinetically prevalent state appears to have both

head domains bound to the actin filament as captured in elec-

tron micrographs by Walker et al. (2000); but, more gener-

ally, see the discussions in Mehta (2001) and De La Cruz

et al. (2001).

Optical traps equipped with electronic feedback mecha-

nisms have provided valuable information regarding the

dynamics of individual myosin-V molecules under low load

(see Mehta, 2001). The experiments allow one to monitor

the displacement, x(t), of a single molecule as a function of
the time t under different concentrations of ATP, etc., while
maintaining a steady external load, F, which opposes the
directed motion of the motor.

The principle experimental findings can be summarized as

follows: first, myosin-V moves along actin filaments toward

the plus or barbed end, taking large steps of size averaging

35 –38 nm (Mehta et al., 1999) approximating the 37-nm

pseudo-repeat of the actin filament (Bray, 2001); second, the

stepping dynamics depends strongly on the ATP concentra-

tion: thus, the mean dwell time t(F, [ATP]) observed
between successive steps (preceding a forward step) at low

[ATP] (¼1 mM) hardly varies with the external load, while
under saturating conditions ([ATP]$ 2 mM) the mean dwell
time grows rapidly as F approaches the stall force, FS ¼ 3.0
6 0.3 pN (at which, on average, the motor just fails to

progress); third, the overall stepping rate or mean velocity,

VðF; ½ATP�Þ � dhxðtÞi=dt; (1)

follows a Michaelis-Menten form in that it is proportional

to [ATP] at low concentrations but becomes independent

of [ATP] under saturating conditions; fourth, tight coupling
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between chemical and mechanical cycles is valid, with one

ATP molecule hydrolyzed per individual myosin-V for-

ward step along an actin filament; but, fifth, in contrast to the

dynamics of conventional kinesin (Coppin et al., 1997;

Visscher et al., 1999), myosin-V under load not infrequently

exhibits sequences of two or three reverse or backward steps;

and, finally, the addition of ADP to the in vitro solution

significantly reduces the turnover rate of ATP (as is to be

expected); moreover, the inhibitory effect of ADP scales

with the concentration of ATP (Rief et al., 2000) (and even

when the mean stepping rate is reduced twofold, the dis-

tribution of dwell periods is unaltered).

The growing quantity of information concerning myosin-

V has naturally stimulated theoretical discussions of the

dynamics. Several models have been proposed and are

reviewed by Mehta (2001). In particular, to provide an ex-

planation of the observed load-dependence of the proces-

sivity, the mean dwell time at temperature T has been

modeled phenomenologically (following a proposal of

Wang et al., 1998) as a sum of two terms, namely

tðFÞ ¼ t11 t2 expðFd9=kBTÞ; (2)

corresponding, respectively, to putative force-independent

and force-dependent transitions. It is natural to expect here

that d9 corresponds to the observed step size d ’ 36 nm
(Fisher and Kolomeisky, 1999, 2001; Hille, 2001). However,

fitting the experimental data of Mehta et al. (1999), which is

displayed in Fig. 2 below, necessitates an (effective) step size

d9 of 10 – 15 nm, which is only 30 – 40% of the actual step

size. This discrepancy is rationalized by asserting that d9
is some ‘‘characteristic distance over which load affects

the catalysis rate.’’ Furthermore, this approach fails to ac-

count clearly for the observed stalling of the motors at

FS ’ 3:0 pN: Clearly, a more soundly based quantitative
theory for processivity of myosin-V seems called for to

satisfactorily describe the currently available data and to

provide testable predictions. The present article aims to meet

these requirements.

We present a theoretical analysis of the dynamics of

myosin-V using simple, discrete-state stochastic models

which have recently been developed and analyzed in detail

by Kolomeisky and Widom (1998), Fisher and Kolomeisky

(1999a,b, 2001, 2002) and Kolomeisky and Fisher

(2000a,b). This approach has been used successfully in

Fisher and Kolomeisky (2001) to analyze the extensive

experimental data on the dynamics of single conventional

kinesin molecules moving in vitro along microtubules

obtained by Visscher et al. (1999) and Schnitzer et al.

(2000). We will demonstrate that most of the currently

available experimental data on the processivity of myosin-V

can be well accounted for by the simplest (N ¼ 2)-state

model embodying a theoretical picture in satisfactory accord

with other kinetic and structural experiments. Our treatment

also provides specific predictions for as yet unexplored

features of myosin-V dynamics that can be tested experi-

mentally and should uncover further details of the stepping

mechanism.

THEORETICAL APPROACH

For completeness we first outline briefly the class of

stochastic models used in our analysis and the explicit

analytical results available for them. In the simplest periodic

sequential kinetic model, illustrated schematically in Fig. 1,

the protein motor is viewed as moving along a linear periodic

track and binding at specific sites located at x ¼ ld (l ¼ 0,

61, 62, � � �) where d is a fixed step distance. In a first
treatment of myosin-V on actin filaments we may adopt the

observed mean value, �dd ’ 36 nm; corresponding to the helix
repeat distance (Bray, 2001). However, as discussed further

below, the analysis can be extended to take account of the

variations in the individual step sizes seen in the data for

myosin-V (Mehta et al., 1999; Rief et al., 2000; Walker et al.,

2000; Veigel et al., 2002): the variation seems primarily to

result from binding on actin monomers (at spacing 5.5 nm)

adjacent to the main 6.5-monomer helix repeat distance

(Steffen et al., 2001).

The basic model then supposes that in a catalytic cycle

which translocates a motor from binding site l to l 1 1 the

protein undergoes N intermediate biochemical transitions

from states jl¼ 0l to 1l to 2l � � � to (N�1)l toNl[ 0l11. Kinetic
rates uj and wj are associated with the transitions from state jl
forward to state ( j 1 1)l and backward to state ( j � 1)l,

respectively. The state 0l represents themotor tightly bound at

site l in the absence of fuel molecules—ATP in the case of
myosin-V. Binding of a fuel molecule is represented by the

transition 0l ! 1l, unbinding by 1l ! 0l. Subsequent

hydrolysis and release of products occur in the forward

transitions 1l ! 2l ! � � � But it is important to note that
backward intermediate transitions and whole steps (possibly

associated with reverse hydrolysis) are allowed and observed

experimentally.

For this model, the mean velocity V(fuj,wjg) (see Eq. 1)
may be expressed exactly in a closed analytic form in terms

of the rate constants fuj,wjg for any value of N (Fisher and

Kolomeisky, 1999). Furthermore, similar explicit formulae

FIGURE 1 Specification of the simplest N-state periodic stochastic

model. A motor in state jl can undertake a forward transition at rate uj or

it can make a backward transition at rate wj. The bound state Nl is identified

with 0l11.
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are available for the dispersion (or effective diffusion

constant) of the motion, defined by

D ¼ Dðfuj;wjgÞ ¼ 1
2
lim
x!‘

d

dt
hx2ðtÞi � hxðtÞi2� �

: (3)

This measures the statistical deviation of the motor

trajectories from uniform motion at constant velocity. The

knowledge of both the velocity V and the dispersion D,
conveniently combined in terms of randomness (Svoboda
et al., 1994),

r ¼ 2D=Vd; (4)

serves to set bounds on N via a determination of the number

of rate-limiting kinetic biochemical transitions and thus

yields valuable information regarding the mechanism of

processivity (Visscher et al., 1999; Kolomeisky and Fisher,

2000a; Fisher and Kolomeisky, 2001, 2002; Koza, 2002).

To account properly for the externally imposed force, F, it
is essential (Fisher and Kolomeisky 1999, 2001) to introduce

load distribution factors, u1j and u
�
j (for j¼ 0, 1, . . . ,N�1).

Then the transition rates may be taken to vary as

uj ) ujðFÞ ¼ u0j expð�u1j Fd=kBTÞ;
wj ) wjðFÞ ¼ w0j expðu�j Fd=kBTÞ; (5)

where the most reasonable requirement (Fisher and Kolo-

meisky, 1999, 2001; Hille, 2001) is

+
N�1

j¼0
ðu1j 1 u�j Þ ¼ 1; (6)

which implies that the condition of stall reflects stochastic

quasiequilibrium among the (on-pathway) intermediate

mechanochemical states. Indeed, these expressions embody

a picture of load-dependent activation barriers for forward

and reverse rates between intermediate states j that lie on
a multidimensional reaction pathway. The load distribution

factors u6j provide significant mechanochemical information
since they embody a projection of the valleys and cols (or

passes) of the reaction pathway onto the force axis, which we

suppose is parallel to the motor track. Thus, one may identify

substeps of magnitude,

dj ¼ ðu1j 1 u�j11Þd; (7)

between motor states jl and ( j1 1)l. If the spatial fluctuations
of the center of force of the motor in the intermediate states jl
and ( j1 1)l are sufficiently small relative to dj one may hope
to identify this substep in suitably averaged traces x(t) of
individual motor motions (Fisher and Kolomeisky, 2002).

For the present purpose we note that the explicit

expressions for the mean velocity, V, for general N lead to

a simple relation for the stalling force as defined by

VðF ! FSÞ ! 0; namely,

FS ¼ kBT

d
ln

YN�1
j¼0
ðu0j =w0j Þ

" #
; (8)

see Fisher and Kolomeisky (1999).

The N-state periodic kinetic model presented in Fig. 1 is,
mathematically, an example of the general one-dimensional

nearest-neighbor random hopping model for which first-

passage questions have been much studied (see van Kampen,

1997). Of particular interest here are the so-called splitting

probabilities and mean first-passage times. Specifically, to

analyze observations of motor-protein dwell times, we need

the ‘‘single-step forward splitting probability,’’ p1(fuj,wjg),
defined as the probability that a motor starting at site l will
arrive at site l 1 1 without having undergone sufficiently

many intermediate reverse transitions to complete a full

backward step from l to site l � 1. The corresponding

conditional mean single-step first-passage time, t1(fuj,wjg),
then represents the average time amotor spends at site l before
leaving andmaking a forward step to site l1 1. Because of the
periodic structure of the N-state model of Fig. 1 the (rather
elaborate) expressions developed by van Kampen (1997) can

be simplified considerably even for general N (Kolomeisky

and Fisher, unpublished). Here we quote the simplest N ¼ 2
resultswhichwill suffice for our present purposes, namely, for

the mean forward-step dwell time,

t1 ¼ ðu01 u11w01w1Þ=ðu0u11w0w1Þ; (9)

whereas the fraction of backward (or reverse) steps is

p� ¼ 1� p1 ¼ w0w1=ðu0u11w0w1Þ: (10)

Finally, wemention that the basic model exhibited in Fig. 1

can be extended in various ways while still retaining explicit

expressions for V, D, etc. In particular, one may allow for
detachments or ‘‘death’’ rates, dj, from the various motor

states and for branching (Kolomeisky and Fisher, 2000a), for

parallel site-to-site ‘‘jumping’’ (Kolomeisky and Fisher,

2000a), for parallel biochemical processes (Kolomeisky,

2001), and for waiting time distributions and the associated

degrees of mechanicity, M6
j ; of the various intermediate

processes (Fisher and Kolomeisky, 1999, 2001; Kolomeisky

and Fisher, 2000b). However, the range of observational data

so far obtained for myosin-V (unlike that known for kinesin)

does not yet warrant consideration of these extensions.

ANALYSIS OF MYOSIN-V DATA

The bulk-solution kinetic data on myosin-V ATPase activity

indicate that at least two processes, namely, ATP binding and

ADP release, should be taken into account in analyzing the

motility (De La Cruz et al., 1999; Mehta, 2001). While

recognizing that a more complete description may require

further intermediate states, it is appropriate, therefore to

consider first the simplest (N ¼ 2)-state model. Then, as

indicated above, the states j ¼ 0 correspond to a myosin-V
molecule bound to the actin filament in the absence of

ATP—presumably with both heads attached, one behind the

other (Walker et al., 2000)—whereas j ¼ 1 labels myosin-

actin complexes with bound ADP. Thus, in the scheme

advanced in Fig. 6 of Mehta (2001), the first and last

1644 Kolomeisky and Fisher

Biophysical Journal 84(3) 1642–1650



configurations correspond to j ¼ 0, whereas the four in-

termediate states are gathered into j¼ 1; in Fig. 4 of Rief et al.
(2000) the j¼ 0 state corresponds to that labeledV; in Fig. 9 of
De LaCruz et al. (2001) the second configuration corresponds

to j ¼ 0; and the remaining three to j ¼ 1.
It now follows that the forward ATP-binding rate should

take the form u00 ¼ k00½ATP�; where the superscripts 0 denote
the limit of zero load: see Eq. 5. On the other hand, the

reverse unbinding rate, w1, and the forward, ADP release

rate, u1, should be independent of [ATP], but, of course, may
depend on F.
According to standard chemical kinetic arguments, the

backward rate w0 should, in principle, be proportional to
[ADP]; and, indeed, the concentration of Pi should also play

a role. Note, particularly, in this connection the high affinity

of ADP for actomyosin which, as discussed by Mehta (2001)

and De La Cruz et al. (2000), had led to significant dis-

crepancies in estimates of steady-state cycling rates. The

detailed measurements (Mehta et al., 1999; Rief et al., 2000)

have, therefore, been performed with the aid of an ATP

regeneration system (as previously adopted in the kinesin

experiments of Visscher et al., 1999). In such a setup neither

the concentration of ADP, nor that of Pi, is monitored. While

experiments that do control [ADP] and [Pi] separately are

much to be desired, in their absence we are forced (as in

Kolomeisky and Fisher, 2001) to model the ATP regenera-

tion scheme more or less phenomenologically. Thus if, first,

we suppose w00 ¼ k90½ATP�a (which amounts to [ADP] }
[ATP]a), second, recall that the stall force, FS, is given by
Eq. 8, and, lastly, note that the current experimental observa-

tions reveal no significant dependence of FS on [ATP]
(Mehta, 2001), we are led to adopt a ¼ 1. Indeed, in light of
the use of ATP-regeneration in the experiments, the propor-

tionality of [ADP], and hence of w0, to [ATP] at low con-
centrations is to be expected: see also Fisher and Kolomeisky

(2001). It should be remarked, however, that the details of

our description of the ATP regeneration scheme play only

a minor role in fitting the myosin-V processivity data.

Now in many previous experimental studies of processive

motor proteins the mean velocities, V([ATP], F ), have been
measured and reported. Such observations must, at least in

principle, include some fraction of backward or reverse

steps, especially at large loads approaching stall. However,

in their experiments on myosin-V (Mehta et al., 1999; Rief

et al., 2000) the authors opted to measure only dwell times,

separating adjacent steps of mean size d ’ 36 nm (Mehta,

2001), preceding forward steps. Thus their reported dwell
times, t([ATP], F), as plotted in Fig. 2 A, do not precisely
correspond to an ‘‘overall mean step time,’’ say �tt; related to

the mean velocity simply via �tt ¼ d=V—although at low
loads, where the fraction of reverse steps is small, �tt should
provide a good approximation; but under near stall

conditions, when V! 0, the overall mean step time, �tt;
diverges to infinity whereas the dwell times t(F! FS)

remain bounded. Rather, we identify the observed dwell

times with the conditional single-step mean first-passage

times, t1, introduced above: see Eq. 9. Accordingly, our
analysis of the myosin-V data is based upon the expression

following from Eqs. 5, 6, and 9, with d ¼ �dd ¼ 36 nm:

tðF; ½ATP�Þ ¼ k00 ½ATP�e�u10 Fd=kBT1 u01e
�u11 Fd=kBT1 k90½ATP�eu�0 Fd=kBT1w01e

u�1 Fd=kBT

k00 ½ATP�e�u10 Fd=kBTu01e
�u11 Fd=kBT1 k90½ATP�eu�1 Fd=kBTw01e

u�1 Fd=kBT
; (11)

FIGURE 2 Fits to the data of Mehta et al. (1999) for the mean dwell times

of myosin-V: (A) as a function of external load, F, at different ATP

concentrations; (B) as a function of [ATP] under an external load F¼ 0.4 pN
and a prediction for F ¼ 2.3 pN. The solid curves represent Eq. 11 with the
central parameter values in Eqs. 12 and 13; the dashed curves represent the

mean dwell times predicted for a 50:50 mixture of short, d(�)¼ 30.5 nm, and
long, d(1) ¼ 41.5 nm steps using the same values for the other parameters:
see Variability of Step Sizes. (Note that in B the dashed curve for F¼ 0.4 pN
cannot be distinguished from the solid curve.)
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Then, by systematically exploring the full seven-di-

mensional parameter space specified by ðk00; � � � ; u�0 Þ we
find that the observed stall force, FS, and the dynamics of
myosin-V as a function of [ATP] and of the load, F, up to FS,
are well described by the rates

k00 ¼ 0:706 0:10mM�1s�1; u01 ¼ 12:06 1:0 s�1
k90 ¼ ð5:06 0:5Þ3 10�6 mM�1 s�1;

w01 ¼ ð6:060:5Þ3 10�6 s�1; (12)

and the load-distribution factors

u10 ¼ �0:0106 0:010; u11 ¼ 0:0456 0:010;
u�0 ¼ 0:5806 0:010; u�1 ¼ 0:3856 0:010: (13)

It should be noted that consideration of the limits of low

and high [ATP] and low and high loads confirm a fair degree

of independence of the various fitting parameters. The un-

certainties indicated in Eqs. 12 and 13 correspond to the

ranges of acceptable fits to the processivity data while

constraining the other parameters appropriately. The central

values yield the fits presented in Fig. 2 as solid curves.

In respect to our fits for k00 and u01 note that the bulk
solution kinetic experiments yield an ATP binding rate

constant (corresponding to k00) between 0.7 and 1.6

mM�1 s�1, whereas the ADP-release rate (corresponding to
u01) is ;12– 16 s

�1 (Mehta, 2001; De La Cruz et al., 1999).
The agreement is clearly most satisfactory.

DISCUSSION

Mean velocity and load dependence

The quality of the fits in Fig. 2 ensures that the observed

(approximate) Michaelis-Menten behavior is respected. In-

deed, using the rate and load-distribution parameters in Eqs.

12 and 13 and previous theory (e.g., Fisher and Kolomeisky,

2001) enables us to predict the variation of the mean velocity,

V, with F and [ATP]: see the solid curves Fig. 3. Evidently,
the stall force of ;3 pN seen in the experiments is

reproduced. Note also, from the dwell-time data imposed on

the predictions in Fig. 3 using V ’ d=t; that, as anticipated
in the discussion before Eq. 11, the approximation

t ’ �tt[ d=V is valid for small loads (up to F ’ 2:5 pN).
Indeed, from Eq. 10 (with Eqs. 5, 6, 12, and 13) one finds that

the fraction of reverse steps is negligible until FJ 2:5 pN:

Load dependence of rates

It is notable from Eq. 13 that within the fitting uncertainties

there is essentially no load-dependence to the binding of

ATP to the myosin-V-actin complex, i.e., u10 ’ 0; see also
Mehta (2001). This contrasts strongly with the properties of

conventional kinesin moving on a microtubule where

u10 ’ 0:13 was found in Fisher and Kolomeisky (2001) for
both N ¼ 2 and N ¼ 4 fits. This lack of load-dependence on

binding ATP to actin-myosin accounts for the fact that the

dwell time remains constant at saturating ATP conditions up

to F ’ 2:3 pN : see Fig. 2 A.
Nevertheless the other transitions are load-dependent with

ADP release bearing a modest (;5%) fraction of the de-
pendence. In parallel to kinesin, however—see Fisher and

Kolomeisky (2001), the reverse transitions carry most of the

load-dependence. Indeed, the load distribution pattern

(Fisher and Kolomeisky, 2001) for myosin-V is close to

a featureless descending ramp. Note that this result is in

striking contrast to the implications of the phenomenological

expression Eq. 1 which suggests that only forward (i.e.,

binding and/or hydrolysis) processes need be considered

and could exhibit significant load-dependence. Indeed, our

analysis indicates that at least three biochemical transitions

in the actin-myosin-V ATPase cycle are load-dependent

whereas Eq. 1 entails only a single load-dependent process.

It seems that this difference is the main reason why fits for

the ‘‘characteristic distance’’ d9 in Eq. 1 differ so markedly
from the true mean step size �dd ’ 36 nm: Since our analysis
recognizes reverse transitions, which, by the fits, occur at

a nonvanishing rate that is enhanced under load (see, again,

Eq. 10), an explanation is provided for the observation of

more frequent backward steps in myosin-V at high loads

(Rief et al., 2000). Our treatment also provides a basis for

a quantitative discussion of the ADP inhibition effect which

it would be instructive to explore further experimentally.

Substeps

A striking feature of the data of Rief et al. (2000) is the

observation of ‘‘half steps’’ under high loads ðJ2 pNÞ:

FIGURE 3 The force-velocity or (F, V) dependence of myosin-V at var-

ious concentrations of ATP as predicted using the parameter values in Eqs. 12

and 13: solid curves. The corresponding dashed curves follow from a model

with alternating long and short steps (d(1)¼ 41.5 nm and d(�)¼ 30.5 nm) but
otherwise the same zero-load rate constants and load distribution factors, u6j :

The superimposed data bars (for [ATP]¼ 1 mM and 2 mM) derive from the

observed dwell times by using the approximate relationV’ d/t (with d¼ 36
nm); they track the predictions for V(F) fairly well because of the paucity of

reverse or backward steps under loads FK 2:5 pN:

1646 Kolomeisky and Fisher
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From the published traces the steps appear to correspond to

an intermediate state with a mean center of force lying

a distance, say d1/2 forward from the bound-state ( j ¼ 0)

center with d1=2=d ’ 0:486 0:04: On the other hand, Eq. 7
and the load distribution factors in Eq. 13 indicate a sub-

step with d0=d ’ 0:386 0:03 (corresponding to d0 ’ 13�
14 nm). Rief et al. (2000) suggest that these half-steps

(always followed by a complementary forward or backward

step to complete a movement with hDxi ¼ d or 0) reflect
an ‘‘off-pathway state,’’ because they remain rare even under

the high loads that uncover their presence. Although this

suggestion seems most reasonable on the available evidence,

our analysis suggests that the half-steps might possibly

represent genuine substeps (lying on or close to the main

reaction pathway), which appear stochastically under high

loads when the forward rates, u1(F ), have been slowed down
whereas the reverse rates w1(F ) are significantly enhanced.
In other experiments Veigel et al. (2002) observed

attachments of single myosin-V molecules to an actin

filament (stretched between two optically trapped beads) at

[ATP] ¼ 100 mM. After some of the attachment events,
‘‘staircases’’ of from two or three to a dozen forward steps

were seen of mean size 36 nm; the staircases typically

terminated in an effective stall (signaled by interspersed

forward and backward steps) before detachment from the

filament (see Fig. 3 of Veigel et al., 2002). However, the

authors concluded that the first step in each staircase had
a mean size of only d1 ¼ 26.2 6 2.3 nm (similar to the

amplitude of isolated attachment events lacking any sub-

sequent steps). A similar initial unitary step of ;20 nm was
seen in experiments by Moore et al. (2001) on heavy

meromyosin-like fragments of myosin-V. These displace-

ments were identified (in both articles) as a ‘‘working

stroke,’’ and Veigel et al. (2002) saw a comparable step of

;21 nm in attachment events of a single-headed recombi-

nant myosin-V. Furthermore, Veigel et al. (2002) in their

Fig. 5 A, report stiffness measurements (using a sinusoidal
driving force) which revealed low-stiffness intervals of

variable durations (longer at higher loads): the midpositions

of these intervals was ;20 nm further along the actin fil-

ament than the preceding higher-stiffness intervals, a dis-

placement similar to the initial ‘‘working stroke.’’

In our formulation and fits using a single intermediate

mechanochemical state before completion of a full (d ¼ 36
nm) step, such a d1 should, as the notation chosen suggests,
correspond to a d � d0 ’ 22 nm substep. The agreement of

these various findings (within the combined experimental

and fitting uncertainties) appears to lend support to our

values for the load-distribution factors u6j : However,

corresponding substeps have not been identified at low

loads by Mehta, Rief, and co-workers. Nevertheless, a de-

tailed examination of the sample stepping records for [ATP]

¼ 2 mM and F ¼ 1 pN presented in Fig. 2 A of Rief et al.

(2000) reveals plausible indications of substeps in 13 to 16 of

a total of ;32 full steps of 36 nm, some of the substeps

appearing to have dwell times as long as 0.1 – 0.2 s. More

favorable conditions for detecting the predicted substeps and

checking their dwell times should be realized at low loads

and [ATP] 10 mM (which corresponds roughly to the

effective Michaelis-Menten concentration, KM; see Rief
et al., 2000, and Fig. 3). Such data not consistent with the

present predictions might require the introduction of waiting-

time distributions (Kolomeisky and Fisher, 2000b): see also

the remarks below concerning randomness.

Variability of step sizes

The fits to the data so far described have utilized a fixed step

size, d, taken equal to the observed mean step size �dd ’ 36 nm
that corresponds closely, as mentioned above, to the known

(half) repeat distance of the actin filament double helix (Bray,

2001). But separate single-molecule experiments by Steffen

et al. (2001) using myosin-S1 motor domains indicate ‘‘target

zones’’ for binding to the filament consisting of three adjacent

accessible actin monomers at spacings Dd ’ 5:5 nm; the
active zones repeating along the filament helices at ;36-nm
intervals. Furthermore, the processivity data for myosin-V

reveal significant variations in individual step sizes about the

mean, �dd: The observations (see Mehta et al., 1999, Table 1;
Rief et al., 2000, Fig. 2 B; Walker et al., 2000, Fig. 2; Veigel
et al., 2002, Fig. 3 b) are consistent with ;60% of the steps

being of size d(0) ¼ 36 nm whereas 20% each are of sizes

dð6Þ ¼ dð0Þ6Dd ¼ 41:5 and 30.5 nm; only a few percent

of longer or shorter steps appear. The fact that 40 – 45% of

the observed steps deviate from d(0) ¼ 36 nm raises the

possibility that our fits using a unitary step size might be

misleading or especially sensitive to the spread in sizes.

To address this issue note, first, that steps of distinct sizes,

say d(k), should be expected to have different mean dwell
times: an ideal set of experimental observations would, then,

report the corresponding t(k)(F,[ATP]) and their probabili-
ties, say pk. An analysis using Eq. 11 with d replaced by d(k),
etc., could subsequently be performed for each set and might

possibly prove revealing. To a leading approximation one

may suppose the various dwell times will be independent: in

that case, the overall mean dwell time should be given by

t ¼ +
k

pktðkÞ: (14)

More realistically, however, if the target-zone picture is

valid, there will be correlations between successive steps:

thus on average a short step, say of size d(�), must be
followed immediately by a longer step, of size d(0) or d(1),
and vice-versa. In principle, such correlations are open to

observation and one might, indeed, expect the dwell times to

depend on the size of the previous step, say d9ðkÞ; as well as
on the step to be made. Theoretically the situation could

clearly be modeled by a Markov process (see Steffen et al.,

2001).
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In the absence of such more detailed observations,

however, we may test the sensitivity of our fits by further

exploratory calculations. As an extreme case, suppose 50%

of the steps are of magnitude d(1)¼ 41.5 nm and 50% of size
d(�) ¼ 30.5 nm. How would the fits change from those

assuming a unitary step d(0) ¼ 36 nm? An answer is

displayed by the dashed curves plotted in Fig. 2. These have

been obtained by using Eq. 14 with p1 ¼ p� ¼ 1/2 and

computing t(1) and t(�) from Eq. 11 using d(1) and d(�)
together with the same zero-load rates and load distribution

factors given in Eqs. 12 and 13. As evident from Fig. 2, there

is no significant change in the quality of the fits—even

though it would not be unreasonable to suppose that the rates

and load factors might have some dependence on the 615%
changes in step-size. One might say that ‘‘the averages win

out’’—a not unexpected conclusion.

In fact we may go further and study the effects of

correlated step sizes by utilizing the expressions for N-state
periodic models (Kolomeisky and Fisher, 2000) with N an

integral multiple of N0, the number of intermediate states in
the basic catalytic cycle. In our analysis we have N0 ¼ 2 and
so can utilize an N ¼ 2 1 2 ¼ 4 periodic system to describe
alternating long and short steps of sizes d(1) and d(�) (with,
of course, the same previous average step size d(0). If we
again use the zero-load rates and distribution factors in Eqs.

12 and 13, and compute the mean velocity as a function of

load, we obtain the dashed curves presented in Fig. 3. Once

more the deviations from the d ¼ �dd results are negligible at
loads F\ 2 pN, whereas at higher loads sufficiently precise

data might reveal discrepancies.

We conclude, therefore, that the consequences of replac-

ing a distribution of step sizes by the mean �dd are not

significant at current levels of experimental precision.

Conversely, unless fairly precise experimental data can be

obtained that are categorized by step length, there may be

little more that can be reliably determined by fitting such

observations.

Randomness

As mentioned previously, the fluctuation statistics of motor

motion are effectively captured in the randomness parameter,

r, as defined in Eq. 4. The fits presented in Eqs. 12 and 13
suffice to predict the variation of r with [ATP] under various
loads (or vice versa) assuming that all the rate processes may

be adequately represented as standard kinetic transitions: see

Fisher and Kolomeisky (1999) and Kolomeisky and Fisher

(2000). The corresponding predictions for r([ATP]) are
presented in Fig. 4 for loads F ¼ 0.4 and 2.5 pN. At low

[ATP] the randomness is close to unity, indicating that only

one rate-limiting process is effective in this concentration

range. However, under a low load a marked dip to r ’ 0:5
occurs around [ATP] ¼ 10– 20 mM: this, in turn, is

indicative of two competing rate processes that both play

a role in this ‘‘crossover’’ regime. On the other hand, at high

loads that approach stall, r rises rapidly above unity;

however, this is primarily a consequence of the vanishing

of the velocity V when F ! FS inasmuch as r must then
diverge: see also Fig. 5 B, below.
It must be noted, however, that the analogous predictions,

on the basis of an (N ¼ 2)-state kinetic model, for the

randomness of kinesin are not supported by the data of

Visscher et al. (1999). Rather, for low loads and [ATP] & 30
mM, the randomness falls rapidly and remains below 0.5 up
to saturation concentrations: because of the bound r$ 1/N
(Fisher and Kolomeisky, 1999; Koza, 2002), this is in-

consistent with a kinetic description. Thus the data for

conventional kinesin demand N ¼ 4 (or more) states, in

accord with the usual biochemical picture of ATP hydrolysis.

Alternatively, and, in light of certain experiments (Nishiyama
et al., 2001), possibly more realistically, one may invoke

a waiting-time distribution to describe the process of hydro-

lysis and ADP release with a mechanicity M1 ’ 0:6
(Kolomeisky and Fisher, 2000; Fisher and Kolomeisky,

2001). Thus measurements of r(F, [ATP]) for myosin-V
might well prove equally revealing of the mechanism by

failing to verify the behavior predicted by Fig. 4.

Reverse or assisting loads

Another interesting and potentially instructive set of pre-

dictions can be advanced for the behavior under negative or

assisting loads, F \ 0. Such experiments have been

performed for kinesin by Coppin et al. (1997). Although

their data posed certain problems (in particular, a signifi-

cantly lower overall processivity under low loads) the same

load distribution factors (and similar rates) provided a not

unreasonable (N ¼ 2) fit (Fisher and Kolomeisky, 2001)

simply by extending the analog of Eq. 11 to negative values

of F. The corresponding predictions for myosin-V, for the
dwell time and for the randomness as a function of F,
extending down to �3 pN, are displayed in Fig. 5.

FIGURE 4 Predictions for the variation of the randomness, r, of myosin-

V as a function of [ATP] at low (F ¼ 0.4 pN) and high external load (F ¼
2.3 pN).
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A caveat must, however, again be raised in light of

subsequent experiments on kinesin by Block (2001) and co-

workers (Block et al., 2003; Lang et al., 2002). The validity

of the extension of Eq. 11 to negative F clearly rests on

a mechanistic/geometric assumption, namely, that changing

abruptly the direction at which the coiled-coil myosin tail

leaves the junction with two heads (or motor domains), i.e.,

from trailing upwards and backward (F [ 0) to pulling

upwards and forward (F \ 0) does not result in

a corresponding abrupt change in the mechanics of ATP

binding, unbinding, or hydrolysis. If the junction were

a perfect universal swivel joint, then as F (which is just the
component of the total load force, say ~FF; parallel to the
track), passes through zero, the stresses and strains within

motor should, indeed, vary smoothly. However, the junction

cannot be totally torsion free and if, for example, the tail

were to rest against part of the head in one configuration but

become dissociated in the other, then the smoothness

assumption embodied in Eq. 5 would fail. Indeed, a fairly

abrupt change of behavior has since been found by Block

et al. (2003) for kinesin. Clearly, comparable experiments on

myosin-V are desirable and should prove informative.

CONCLUSIONS

In summary, we have presented a simple two-state stochastic

model, with allowance for fluctuating step sizes, which

describes well essentially all the available experimental data

on single-molecule myosin-V processivity. It reveals that

ATP binding is load-independent, whereas ADP release

is weakly load-dependent, but (as for kinesin) the load-

ing forces strongly affect the reverse transition rates. Our

analysis is consistent with the observation of tight coupling

between catalytic cycles and mechanical steps, i.e., one ATP

molecule is consumed per individual step, and with ATP

binding and ADP release rates measured in bulk solution.

It also indicates that an intermediate myosin-ADP-actin

complex has its center of force advanced by 13–14 nm

forward from the position before ATP binding, in reasonable

agreement with various observations indicating a subsequent

‘‘working stroke’’ of ;22 nm. We have discussed specific
predictions for the dwell times, mean velocity, and random-

ness of myosin-V motors in various experimental regimes

including the imposition of assisting loads. Further experi-

ments are needed to investigate the validity of our theoretical

description and to uncover other mechanochemical features

of myosin-V.
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