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This Letter investigates coupled asymmetric exclusion processes with two types of particles on multiple
parallel channels of a hollow cylinder. The model is inspired by the structure of microtubules, along
which motor proteins such as kinesins and dyneins move in opposite directions. Interactions between
two-species particles are assumed to take place only on the left and right boundaries where a rule of
narrow entrances is applied. Narrow entrances mean that a particle cannot enter the system if either of
two nearest-neighbor sites on the neighboring channels is occupied by a particle of the other species.
This rule is similar to, but different from, that in [E. Pronina, A.B. Kolomeisky, J. Phys. A 40 (2007) 2275]
since the narrow entrance rule in our model involves two neighbors. The phase diagram of our model
is studied theoretically and via Monte Carlo simulations. The spontaneous symmetry breaking (SSB) is
observed in the system. There are four possible phases in the system and with SSB occurring in two
of them: high/low density and asymmetric low/low density. Bulk density and particle currents are also
computed. Theoretical calculations deviate from Monte Carlo simulation results due to the neglecting of
correlations in particles dynamics in mean-field analysis.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The investigations of interacting particles out of equilibrium
have revealed a rich variety of critical phenomena such as bound-
ary-induced phase transitions, phase separations, and spontaneous
symmetry breaking (SSB). Currently, a number of research papers
have been devoted to observing SSB in both single- and multiple-
channel systems [1–9]. As an exactly solvable paradigmatic model,
totally asymmetric simple exclusion process (TASEP) [10] has been
used as a modelling tool for the study of SSB in driven diffusive
systems.

SSB was firstly observed in a one-dimensional two-species
TASEP with open boundary conditions [1]. In this so-called bridge
model, it has shown that an asymmetric low-density/low-density
(LD/LD) phase and an HD/LD phase can exist in a mean-field
approximation, although the symmetric rules are applied to the
two species. The analytical results were supported by Monte Carlo
simulations. The bridge model has also been investigated with
sublattice-parallel update [4]. The SSB phenomenon can probably
be explained as a result of an amplification mechanism of fluctua-
tions as indicated in [4]. However, the existence of SSB may still be
in controversy as Erickson et al. [2] believe the asymmetric LD/LD
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phase might be just a finite-size effect. [2] investigated the bridge
model via high-precision Monte Carlo data. The simulation results
show that the LD/LD phase disappears if the system size is suffi-
ciently large.

In the bridge model, bulk behavior is deterministic but the
conditions at the open boundaries are stochastic. Levine and Will-
mann considered a stochastic bulk by particles attaching to and
detaching from the lattice [3]. When two species of particles are
assumed to have the same attachment rate and detachment rate,
SSB can also be found under some conditions. Popkov et al. [5]
extended the bridge model by introducing two junctions to the
ordinal bridge model. They found a co-existence region where an
HD/LD phase co-exists with a low-density symmetric phase. Note
that the dynamics of two-species (e.g., kinesins and dyneins) mov-
ing in opposite directions and unbinding (or rebinding) to a one-
dimensional lattice (e.g., filament) has also shown SSB [6].

SSB has also been found in a two-channel TASEP system by ap-
plying a rule of narrow entrances [7]. In this rule, particles cannot
enter a channel (e.g., channel 1) if the exit site in the other chan-
nel (e.g., channel 2) is occupied. Particles on the two channels can
be seen as two species of particles: one species go to one direc-
tion along channel 1; the other go to the opposite direction along
channel 2. One can see that interactions between two-species par-
ticles can only take place on the left and right boundaries. It was
found that the HD/LD phase and asymmetric LD/LD phase can
exist in the system, which reveal the existence of SSB. The above-
mentioned investigations of SSB are based on the random update.
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SSB is also observed in a two-species two-channel system in par-
allel update [8]. When the narrow entrance rule [7] is applied, two
symmetry-breaking phases (HD/LD and LD/LD) can be found. The
investigations [7–9] show that different update procedures (e.g.,
random and parallel) for the same system can all result in SSB.

In this Letter, a novel multiple-channel TASEP model on a hol-
low cylinder with narrow entrances is presented. The model is
inspired by the structure of microtubules, along which motor pro-
teins such as kinesins and dyneins move in opposite directions.
Interactions between two-species particles are assumed to take
place only on the left and right boundaries where a rule of narrow
entrances is applied. A microtubule can be seen as a hollow cylin-
der, which consists of many filaments, while each filament can be
viewed as a channel. In our model, each channel has two nearest
neighbors. The states of the exit sites of both left and right neigh-
bor channels are considered when a particle (kinesins or dyneins)
enters into a filament with narrow entrances. Note that the chan-
nel has only one neighbor in the original narrow entrance mod-
els in [7–9]. It is necessary to investigate the traffic dynamics of
TASEPs with two-neighbor interactions at the boundaries and to
check if SSB exists in such a system. In this Letter, we study the
random update only, although extending this work to other updat-
ing procedures is possible.

The Letter is organized as follows. Section 2 gives a brief de-
scription of our model and theoretical analysis. In Section 3, the
results of Monte Carlo simulations are discussed. Our conclusions
are given in Section 4.

2. Model and theoretical analysis

The system consists of M parallel one-dimensional channels
with two types of species (e.g., positive and negative) particles
moving in different channels in opposite directions and each chan-
nel has L sites (see Fig. 1(a)). Hopping between channels is not
allowed. In the bulk, particles can hop to the next sites with rate
1 provided the next sites are empty. At the exit sites, particles are
removed with rate β . At the entrance sites, particles are injected
with rate α provided these sites and the nearest sites on both
left and right neighbor channels are empty. We label a channel
as Ci (the i-th channel) where i = 1,2, . . . , M . Ci has two neighbor
channels:

• When i = 1, the neighbors of C1 are C2 and CM .
• When 1 < i < M , the neighbors of Ci are Ci−1 and Ci+1.
• When i = M , the neighbors of CM are C1 and CM−1.

The positive particles are assumed to move from the left end
to the right end of the cylinder on the odd channels (e.g., i =
1,3,5, . . .), while the negative particles are assumed to move from
the right to the left on the even channels (e.g., i = 2,4,6, . . .). Also,
see Fig. 2. Obviously, there are two different types of systems.
When M is an even number, particles move on two adjacent chan-
nels in opposite directions (see Fig. 1(a)). In this case, the channels
of the cylinder are symmetric. When M is an odd number, C1 and
CM can be seen as the boundaries and particles move on C1 and
CM in the same direction. Thus, the cylinder is not symmetric and
it can be tiled into a rectangle with M channels (see Fig. 1(b)).
Therefore, in this Letter, we only consider the symmetric case with
even number of channels.

We firstly recall the results of a usual TASEP on a single channel
with open boundary conditions with random update [11,12]. When
entrance rate α � 1/2 and exit rate β � 1/2, the system is in a
maximal-current (MC) phase with particle current JMC = 1/4 and
bulk density ρbulk,MC = 1/2; When α > β and β < 1/2, the system
is in a high density (HD) phase with JHD = β(1−β) and ρbulk,HD =
Fig. 1. Sketch of TASEPs on a cylinder with narrow entrances. (a) The number of
channels is even; (b) The number of channels is odd, e.g., M = 5. The filled rectan-
gles correspond to narrow entrances.

Fig. 2. Illustration of multiple-channel TASEPs on a cylinder with narrow entrances.
Positive particles move from the left to the right, while negative particles move
from the right to the right. Black-line arrows at boundaries represent allowed en-
trances with rate α. Dash–dot-line arrows mean prohibited entrances.

1 − β; When α < β and α < 1/2, the system is in a low density
(LD) phase with J LD = α(1 − α) and ρbulk,LD = α.

We assume that the effective entrance rates are given by α1
and α2, respectively, for the all odd and all even number chan-
nels. n1 and mL are average densities at the first sites and the last
sites of the even and odd number channels, respectively. Therefore,
assuming that there are no correlations in occupancies of neigh-
boring channels,

α1 = α(1 − n1)
2, α2 = α(1 − mL)

2. (1)

The physical meaning for these expressions is that a particle can
enter a channel only when the corresponding sites at the neigh-
boring channels are empty. We then define the exit current from
the odd and even number channels, respectively, as:

J1 = βmL, J2 = βn1. (2)

When the system is in the symmetric phase, there are three
possible stationary phases: LD, HD, and MC. Also, all properties in
these channels are identical. They are:

J1 = J2, α1 = α2. (3)

In the MC phase, the current is equal to J1 = J2 = 1/4. Accord-
ing to Eq. (2), one obtains n1 = 1/(4β). Then, the effective entrance
rate can be rewritten as

α1 = α

(
1 − 1

4β

)2

. (4)

When the MC phase exists, the boundary conditions are: α1 � 1/2
and β � 1/2. Correspondingly, α should satisfy

α � 8β2

16β2 − 8β + 1
. (5)

In the HD phase, the following conditions should be satisfied

α1 > β, β <
1

2
. (6)

The stationary current in this phase is determined by exit rate β .
That is, J1 = J2 = β(1 − β). Compared with Eq. (2), we have n1 =
1 − β . Eq. (1) can be rewritten as α1 = αβ2. According to Eq. (6),
we obtain αβ > 1, and this is impossible for α ∈ [0,1] and β ∈
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[0,1]. We thus confirm that the HD phase does not exist in the
symmetric system.

In the LD phase, the current is J1 = α1(1 − α1). According to
Eqs. (1)–(3), we have the following equation:

αα4
1 − 2αα3

1 + (2αβ + α)α2
1 − (

2αβ + β2)α1 + αβ2 = 0. (7)

The exact solution for the above equation can be obtained. How-
ever, the results are extremely bulky (more than one page). The
result can be found in [13].

Note that if α1 = 1/2 in Eq. (7), one can obtain α = 8β2/

(16β2 − 8β + 1). This is exactly the same as that we can obtained
from Eq. (5). Also, in Eq. (5), if α1 > 1/2, α > 8β2/(16β2 − 8β + 1).
Therefore, one can get a hypothesis that the condition for α1 < 1/2
for Eq. (7) could be:

α <
8β2

16β2 − 8β + 1
. (8)

The hypothesis has been tested numerically. We found that the
above equation is only the necessary condition for α1 < 1/2. It is
not the sufficient condition. This is different from the relationship
in Ref. [7] (refer to Eqs. (10) and (13) of the reference).

For the asymmetric phases, the currents and density profiles in
odd and even number channels are not equal, namely

J1 �= J2, α1 �= α2. (9)

There are six possible phases: asymmetric LD/LD, asymmetric
HD/HD, asymmetric MC/MC, LD/HD, LD/MC, and HD/MC phases.
The LD/HD phase means that the odd (even) number channels are
in the LD phase, while the even (odd) number channels are in the
HD phase. For the asymmetric LD/LD phase, it can exist if

α1 < β, α2 < β, α1 <
1

2
, α2 <

1

2
. (10)

Since both channels are in LD, we have

J1 = α1(1 − α1), J2 = α2(1 − α2). (11)

J1 and J2 can also be calculated by

J1 = mLβ, J2 = n1β. (12)

Therefore, we have

mL = α1(1 − α1)

β
, n1 = α2(1 − α2)

β
. (13)

Therefore, α1 and α2 are determined by

α1 = α(1 − n1)
2 = α

[
1 − α2(1 − α2)

β

]2

< β, (14)

α2 = α(1 − mL)
2 = α

[
1 − α1(1 − α1)

β

]2

< β. (15)

The exact solutions (involving only the arithmetical operations
and radicals) for the above equations are impossible to obtain
when the equations are transformed into an univariate polynomi-
als with power � 5 according to Abel–Ruffini theorem (also known
as Abel’s impossibility theorem). Thus, we have to apply Newton’s
method to Eqs. (7)–(8), which allows us to calculate approximately
the asymmetric LD/LD phase region.

In the LD/HD phase, the corresponding conditions are

α1 < β, α2 > β, α1 <
1

2
, β <

1

2
. (16)

The currents in this phase are given by
J1 = α1(1 − α1) = mLβ and J2 = β(1 − β) = βn1. (17)

α1 and α2 are solved as

α1 = αβ2, α2 = α
[
1 − αβ

(
1 − αβ2)]2

. (18)

The conditions α1 < β , α1 < 1/2, and β < 1/2 in Eq. (14) can
be modified to αβ < 1 and αβ2 < 1/2, respectively, which could
be satisfied for α ∈ [0,1] and β ∈ [0,1]. For the conditions α2 =
α[1 − αβ(1 − αβ2)]2 > β and β < 1/2, again, we have to apply
Newton’s method to this equation. Our numerical result confirms
the existence of this phase.

The LD/MC phase is specified by

α1 < β, α1 <
1

2
, α2 >

1

2
, β >

1

2
. (19)

The corresponding currents in the system can be written as

J1 = α1(1 − α1) = mLβ, J2 = βn1 = 1

4
, (20)

which leads to the following expressions

α1 = α

(
1 − 1

4β

)2

,

α2 = α

{
1 − α

β

(
1 − 1

4β

)2[
1 − α

(
1 − 1

4β

)2]}2

. (21)

Again, the exact solution cannot not been solved. Newton’s
method has to be applied to examine if the LD/MC phase exists
or not. The numerical result shows the LD/MC phase does not ex-
ist.

The conditions for the existence of the HD/MC phase are

α1 > β, β <
1

2
, α2 >

1

2
, β >

1

2
. (22)

It is found that these conditions conflict each other. This suggests
that the HD/MC phase does not exist.

In the asymmetric HD/HD phase, the currents are determined
by β , that is,

J1 = β(1 − β) = mLβ, J2 = β(1 − β) = βn1, (23)

which leads to n1 = mL = 1 − β , and α1 = α2 = αβ2. This is incon-
sistent with Eq. (7). Thus, the asymmetric HD/HD phase does not
exist in the system.

Clearly, the asymmetric MC/MC phase does not exist in the sys-
tem since the current is constant and independent of α and β

in the MC phase. Thus, there is no asymmetric MC/MC. Therefore,
the resulting possible phases are: the asymmetric LD/LD, LD/HD,
symmetric LD, and symmetric MC phases. Fig. 3 shows the phase
diagrams obtained via theoretical analysis and simulations. The
theoretical mean-field analysis results for asymmetric phases are
obtained mainly through Newton’s method.

It can be seen that the phase structure from Monte Carlo sim-
ulation slightly deviates from the mean-field results, in particular,
for large values of α. This implies that correlations between parti-
cles in the left and right boundaries are important in the dynamics
of such a system. Similar observations have been found in [7,8].

There are several differences which can be observed from phase
diagrams in our model and that in Fig. 2 in [7]. Firstly, the asym-
metric LD/HD region in our model is larger than that in [7] (see
Fig. 3(b)). Correspondingly, the symmetric LD region in our model
is smaller then that in [7]. Secondly, the MC region in our model
is smaller than that in [7]. Finally, the region for existence of the
asymmetric LD/LD phase in our model is larger than that in [7].
This could be due to the fact that two neighboring channels have
stronger overall effect on the dynamics in the given channel.
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Fig. 3. (a) Phase diagram of the system for M = 8 and L = 1000. Solid lines are the theoretical results, while symbols correspond to simulation results. Filled triangles represent
the boundary between the LD phase and the asymmetric LD/LD phase, while filled circles correspond to the boundary between the LD/HD phase and the asymmetric LD/LD
phase. (b) Comparison of theoretical predictions in the asymmetric LD/LD phase between our model and the model in [7] where each channel has only one neighboring
channel.

Fig. 4. Histograms of particle densities at different phases. (a) The HD/LD phase with α = 0.6 and β = 0.3; (b) the asymmetric LD/LD phase with α = 0.6 and β = 0.4; (c) the
symmetric LD phase with α = 0.6 and β = 0.5; and (d) the MC phase with α = 1.0 and β = 0.95.
3. Simulations and discussions

The histograms P L(ρ+,ρ−) of particle densities are firstly sim-
ulated, where ρ+ and ρ− are instantaneous densities of particles
in odd and even number channels, respectively. The system size
L = 1000 and the number of channels M = 8 are used unless oth-
erwise mentioned. In simulations, stationary density profiles and
currents are obtained by averaging 8 × 108 time steps. The first
108 time steps are discarded as transients.

Three typical particle density histograms in the HD/LD phase,
asymmetric LD/LD phase, and symmetric LD phase are shown in
Fig. 4. It can be seen that a double peak with two off-diagonal
maxima appears in the HD/LD phase, while a single peak exists on
the diagonal in the symmetric LD and asymmetric LD/LD phases.
The transition between the two asymmetric phases is marked by
histograms with two long ridges, one running close to the ρ+-axis,
and the other close to ρ−-axis, which has been indicated in [2].

The flipping processes are then simulated in order to investi-
gate the asymmetric phases obtained from the mean-field approx-
imation. The density difference ρ+ − ρ− has been measured as
functions of time (see Fig. 5). The system flips between positive
net values and negative net values. The positive (negative) net val-
ues imply that the bulk density and current of positive (negative)
particles in odd (even) number channels are larger than that of
negative (positive) particles in even (odd) number channels. The
flipping processes are observed clearly. It is found that the flipping
processes are qualitatively identical for the same phase but with
different number of channels (see Figs. 5(a)–(b) and 5(c)–(d)). This
suggests the existence of SSB in the system.

We also compare average currents obtained from simulation re-
sults in our model and in [7] (see Fig. 6). The average current is
represented as the system current divided by the number of chan-
nels. For simplicity, we assume arbitrary that the value of α is
fixed, while the value of β changes from 0 to 1. For a fixed α, the
current in our model is less than that in [7]. This is the result that
particles enter our system more difficult than that in [7].

In order to study the finite-size effect in our model we per-
formed computer simulations with different system length (up to
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Fig. 5. (Color online.) (a) and (b) The flipping process in the HD/LD phase with parameters: N = 40,α = 0.5, and β = 0.2; (c) and (d) The flipping process in the asymmetric
LD/LD phase with parameters: N = 100,α = 0.9, and β = 0.4. (a) and (c) M = 4; (b) and (d) M = 8.
Fig. 6. (Color online.) Currents obtained from simulations in our model (thick solid
lines with symbols) and in [7] (dotted lines with symbols) at α = 0.3, 0.6, and 0.9.

L = 10 000). Phase boundaries have been confirmed and shown in
Fig. 7. It is found that the phase boundary between the asymmet-
ric LD/LD and symmetric LD phases does not depend on the system
size, while the region of the asymmetric LD/LD phase seems to ex-
pand and keeps unchanged with the further increase of the system
size. This suggests that the asymmetric LD/LD phase probably ex-
ists in the thermodynamic limit (L → ∞).

Note that the status of the LD/LD symmetry broken phases is
still controversial for the bridge model. Erickson et al. [2] sug-
gested that for some parameters the phase would disappear. How-
ever, Clincy et al. [14] indicated that the LD/LD symmetry broken
phase does exist in the thermodynamic limit. Our results appear
to support this. Also, note that Fig. 7 in this Letter seems qual-
itatively different from Fig. 3 in [7]. This may be caused by the
fact that all entrances have two neighbor entrances in the cur-
rent model. Obviously, further investigations of this phase are re-
Fig. 7. The finite-size effect in our model: the phase boundary between the asym-
metric LD/LD and symmetric LD phases seems independent of the system size.

quired in order to better understand symmetry breaking phenom-
ena.

4. Conclusions

The totally asymmetric simple exclusion processes (TASEPs) on
a hollow cylinder with narrow entrances is investigated under ran-
dom update. The model is motivated by the structure of micro-
tubules as well as the dynamics of protein motors (i.e., kinesins
and dyneins) moving along microtubules in opposite directions.
The system is investigated by using a mean-field theory and veri-
fied by Monte Carlo simulations. There are two possible symmetry
breaking phases, i.e., HD/LD and asymmetric LD/LD, in the system.
The phase structure obtained from Monte Carlo simulations devi-
ates from the mean-field results. This is probably due to neglecting
correlations in particle dynamics of this system.
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In order to illustrate the density profiles of the system, particle
density histograms P L(ρ+,ρ−) are investigated. The flipping pro-
cesses are observed and exhibit qualitatively identical for the same
phase but with different number of channels. The finite-size effects
in this model are studied, which also suggests the existence of the
spontaneous symmetry breaking in the proposed model. We also
compare the results with that obtained from two-channel TASEPs
with narrow entrances in random update [7]. The current is lower
due to the narrower entrances in our model.
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