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Abstract 

We present a partially asymmetric exclusion model with two species. It consists of a one- 
dimensional lattice with two types of particles hopping with different rates in both directions. 
Exact solutions are given for some values of the parameters. A phase diagram is constructed. 
The model is found to show two phases, one of them a phase with a maximal current of the 
particles. 
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1. Introduction 

Recently, much attention has been focused on asymmetric simple exclusion processes 
(ASEPs) as simple models in non-equilibrium statistical mechanics. A one-dimensional 
ASEP is a model of particles hopping stochastically and interacting through hard-core 
exclusion. It is connected to a series of physical phenomena such as gel electrophoresis 
[1], interface growth [2], and the dynamics of shocks [3]. Although the models are quite 
simple to formulate there are only a few exact results available [4,5]. 

The most successful method in solving ASEP models exactly is the so-called matrix 
product ansatz [4-7] .  In this approach probabilities of different states of the system are 
represented by a product of non-commuting matrices. Within this approach the particle 
currents, densities of particles and correlation functions can be obtained exactly. 

Evans, Foster, Godreche and Mukamel (EFGM) introduced a totally asymmetric 
one-dimensional exclusion model with two species [8]. In this model particles can hop 
only in one direction ("+"  particles to the right, " - "  particles to the left). Using the 
matrix product method they found exact solutions for some sets of parameters. They 
also calculated the phase diagram of the model in the mean-field approximation and 
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by Monte Carlo simulations. EFGM reported a phenomenon of  spontaneous symmetry 
breaking corresponding to the existence of  phases where the currents o f  the two species 

of  particles are not equal. 
The present paper introduces and treats a partially asymmetric one-dimensional ex- 

clusion model with two species of  particles hopping along the open chain. In this model 

particles can move in both directions but with different hopping rates. For convenience 

we call the particles coming from the left end "left" or " + "  particles, and particles 

coming from the right end "right" or " - "  particles. Each site of  a one-dimensional lat- 

tice of  length N may be occupied by a left particle or by a right particle or be empty. 

Stochastic dynamical rules govern the evolution of  the system. During the infinitesimal 
time step dt, any nearest-neighbor pair o f  sites i, i +  1(1 ~<i ~ < N -  1) evolves as follows: 

(-t-)i(0)i+l ~ (0)i(÷)i+1 with rate p, 

(0)i(÷)i+1 ~ (÷)i(0)i+1 with rate s, 

(0)i(--)i+1 ~ (--)i(0)i+I with rate p, 

(--)i(0)i+1 ~ (0)i(--)i+1 with rate s, 

(÷)i(--)i+1 --+ ( - - ) i (÷) i+l  with rate q. 

Here we always assume that the positive (negative) particles move preferably to the 

right (left), i.e. p>~s. 

The left particles (or " + " )  are injected at the left end and removed from the right 
end. The right particles (or " - " )  enter the system at the right end and leave it from 

the left end. Thus in each infinitesimal time step dt the following events may occur at 

the boundaries : 
At the left end (i = 1 ) 

(0)1 ~ (+ ) l  with rate ~, 

( - ) l  ~ (0)1 with rate/~. 

At the right end (i = N)  

(0)N ----4 (--)N with rate ~, 

(÷)N ---+ (0)N with rate ft. 

For the special case p = 1 and s = 0 the model reduces to the totally asymmetric 
exclusion model with two species studied by EFGM [8]. 

We use the matrix product method to solve this model exactly for certain sets of  
parameters. It enables us to construct a phase diagram and to compare it with that for 

the earlier EFGM model in which p = 1 and s = 0. 
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2. Matrix product method 

Following EFGM [8] we introduce two occupation numbers, li and ri, for each site 
i, where I i = 1 if site i is occupied by a left ( " + " )  particle and 0 otherwise. Similarly, 
ri = 1 if site i is occupied by a right ( " - " )  particle and 0 otherwise. Any configuration 
of  the system is uniquely determined by the set of  occupation numbers {li, ri}. We 
are looking for a long-time limit solutions when the system reaches a steady state. 
It implies that all the probabilities PN({ l l , r~) , . . . ,  {IN,rN}) of  finding the system in 
configurations ({ll ,  rl } , . . . ,  {IN, rN}) are stationary, i.e. satisfy 

d pN({ l , , r ,  } . . . . .  {IN,rN}) = (1) O. 

It is more convenient to use unnormalized weights fN({ l i ,  ri}) defined as 

f N ( { l i ,  r i})  
PN({l i ,  r i})  -- ZN , (2) 

where 

ZN = Z f N ( { l i ,  ri}). (3) 
{ l~,ri } 

Then the matrix product method suggests that f g ( { l i ,  ri}) may be constructed as 

N 

f N({li, ri}) = (W I H [ l i  L + riR + (1 - li - ri)E] ] V) (4) 
i - I  

Eq. (4) means that the weight f g ( { l i ,  ri}) is given by a product of  N matrices (L, 
R, or E)  with matrix L at position i if site i is occupied by a left particle (li = 1), a 
matrix R at position i if this site is occupied by a right particle (ri = 1 ) and a matrix 
E if this site is empty (li = O, ri = 0). The multiplication by the vectors I V) and (W t 
on the matrix product produces a scalar value for fN .  

The dynamics of  the system is governed by a Master equation 

d pN(rI ,  T2,. . . ,  TN ) = Z ( h l  )r,;a,PN(al, T2 . . . .  , TN ) 
ffl 

N--I 

i-I ai,ai+t 

q- ~_~(hN )r, ;a, PN(rl , . . ,  TN--I, aN ) .  (5) 
0"\ 

Here ri (or ai) indexes the state of  site i, with ri (or ai) = +1,  - 1 ,  or 0 when there 
is a left particle at site i, when there is a right particle at site i, or when site i is empty, 
respectively. The matrices hi, h, and hN represent the transition rates, i.e. (h)~,,~,+,;o~,~, 
is the non-diagonal element of  the matrix corresponding to the transition rate from 
the configuration (zl .... ai, ai + 1 . . . . .  TN) to the configuration (zl .... Zi, Ti+l, . . . ,TU),  
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and -(h)~,,~,+,:~,,~,+, is the transition rate out of  the configuration (rl .... ri, ~i+1 . . . . .  "ON). 

Using the stochastic rules we can construct these matrices. Then, the only non-zero 

elements o f  the transition rate matrices are 

(hl)o~ l = - ( h l ) - i ~ - i  =/~ ,  

(hi)+l:o = - ( h i  )o;o = ~, 

(h)_ 1,0;0.-1 = -(h)0,_ I:o.-1 = P, 

(h)o,+l:+l,O = -(h)+l,O;+l,O = p, 

(h)o, 1~-1,o = - (h ) - l ,o ; -1 ,o  = s, 

(h)+~,o~o,+l = --(h)o,+l:o,+l = s, 

(h)-l,+l;+~,-I = - (h)+l , - l ;+ l ,  I = q, 

(kN)-I;O = - ( h i  )0;o = ~x, 

(hN)o;+I = - ( h i  )+ l :+ l  = fl- ( 6 )  

Let us assume that there exist three coefficients x-l,Xo, and x+l such that the 

following conditions are satisfied for each choice of  z-i: 

E ( h l  )~,;~,PN(Ol,'r2 . . . . .  rN) = x~,PN l ( r2 , . . . , rN) ,  (7) 
O- I 

E (h)~"~'+';'~i'~i+'PN(rl . . . .  0"i' O'i+1 . . . . .  r N )  
~i,(Ti+l 

= --Xri PN-I(TI  . . . .  "t ' i - l ,  T/+I, .., TN ) At- Xri+l PN I(TI .. . .  ~'i, Z'i+2 .. . .  r N ), ( 8 )  

y ( h N ) , . \ ; a , P N ( *  .... ~ -  , aN)  = - -xrvPN-I(TI ,  .. .,"ON I). ( 9 )  
6 r V  

If  such coefficients x_l,xo, and X+l exist, then the probabilities PN (or fN) a r e  

steady state quantities (dPu/dt = 0), as can be checked by adding Eqs. (7 ) - (9 )  and 

comparing the result with Eq. (5). When we replace PN (or fN) by their Eqs. (2 ) - (4 )  

and substitute into Eqs. (7)- (9) ,  we obtain the following conditions on matrices L, R 

and E: 

x - i  +x0  + x + l  = O, 

fl(//V I R = X - l ( k V  l, 

~ ( W I E  = x + , ( W  l, 

~ E I V )  = - x _ ,  IV), 

- - ~ L i V )  = - x + ,  l V), 

p E R  - sRE = - x _ t E  +x0R,  

p L E  - sEL = X+lE - x0L, 

qLR = - x _ l R  + X+lL. (10) 

The choice o f  the coefficients X-l,XO,X+l is almost free (subject only to the first o f  
Eq. (10)) [4]; we take x0 = 0, x - i  = - q ,  and x+l = q. Then the matrix algebra 
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(Eq. (10)) simplifies to the following equations: 

( W I R = ~ ( W I ,  

q 
( W I E = ~ ( W I ,  

pER - sRE = qE, 

pLE - sEL = qE, 

L R = L + R ,  

E I V) = q [ V ) ,  
~X 

q 
t I V) = - z l  V). 

P 

527 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Rescaling of the hopping rates and time with p and redefinitions of q/p, s/p, ct/p, 
fl/p in the above equations as q, s, c~,/3, respectively, give Eqs. (11)-(17) with p = 1. 
Thus, without loss of generality, we assume p = 1 in the following discussions. 

If we can find such matrices L, R and E and vectors I V) and (W I, then the 
densities of positive (left) and negative (right) particles can be calculated exactly [4,8] 
as follows: 

(li) = (W I Gi-ILGN-i ] V) (18) 
(W l GN I V) ' 

(re) = (W I G i - ' R G N - '  I V) 
(W [ GN I V) ' (19) 

where 

G = L + R + E .  (20) 

Also the currents of positive and negative particles can be calculated explicitly. 
Taking the positive direction of the current for the left particles to be from left to 
right, and for the right particles to be from right to left, the matrix Eqs. (12) and (16) 
imply for the currents: 

J +  = ~<w I EGN-1 I V) 

(Wl cN I V) 

J -  = fl ( W  [ R G N - I  I V) 
(W l GN I V) 

<w I GN-~ I V> 
= q  ( W I G N I V )  ' 

(W I C, N-' I v) 
= q  < W l G U  l V> • 

(21) 

Thus, formally the solution of the problem reduces to finding a set of matrices and 
vectors satisfying the matrix Eqs. (11)-(17). By using the matrix product ansatz the 
exact solutions are found in the following cases: 
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2.1. Solut ion f o r  ~t = 

The solution in this case is the same as that for the totally asymmetric exclusion 

model with two species treated by EFGM [8]. The matrix E can then be thought of  

as consisting only of  zeros. It implies that the probability to find a hole at any site in 

any configuration is zero. The problem effectively reduces to an ASEP with only one 

type of  particle. For this case all the results can be found from [4]. 

In the limit N ~ ~ there are two phases. In one, q<.~2/3 and the current is 
given by 

J+ = J -  = q / 4 .  (22) 

This is the maximal-current phase, i.e. the current in this phase is greater than that 

in the second phase, and depends on only one parameter q. 

In the second, q > 2/3 and the current is given by I 

J +  = J -  =/3(1 - f l /q).  (23) 

2.2. Solut ion f o r  s = 1 - / 3  and q = 2/3 

For this set o f  parameters and for all others we will choose the vectors (W [ and 

] V) as follows: 

<w I = (1 ,0 ,0 , . . . ) ,  I v) = (24) 

There is a simple one-dimensional matrix representation which satisfies 

Eqs. (11 ) - (17)  for the given set of  parameters. We may take E = 2/3/ot, and R = L = 2. 

Then the densities of  left and right particles and the currents are independent both 

of  the site position i and the lattice size N 

0~ 
(li) = (ri) -- 2~ + / 3 '  

~/3 (25) J +  = J - 2c~ + ~ "  

We have here only one phase with the current given by Eq. (25). It is not the 

maximal-current phase. When s = 0 (/3 = 1 ) we recover the results obtained by EFGM 
[8]. 

1 There is apparently a typographical error in the formula for the current in this phase reported by EFGM 
[8, p. 74]. 
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2.3. Solution f o r  s = 1 -  fl and  q =  fl 

In this case the following infinite-dimensional matrices satisfy the Eqs. (11)- (17) :  lll00  ) /1000 / 
/OllO /llOO 

L =  l 0  0 1 1 , R =  l 0  1 1 0 , (26)  000, 

E = ~/~ 

1 0 0  0 . . .  

0 s 0  0 
0 0 S 2 0  

0 0 0  S 3 
(27) 

Then the densities o f  particles and the currents for finite N can be found using 

Eqs. (18)-(21) .  To find the currents in the large N limit we have to calculate the 

asymptotic behavior of  ( W I G  u I V). Recall that from the Eqs. (26) - (27)  the matrix 

G can be chosen as 

1 2 + (fl/c~)s 1 0 
G = 0 1 2 + (fl/~)s 2 1 . (28) 

0 0 ~ , 2 + (fl/~)s 3 

We could not calculate the asymptotic value of  ( W  G N [ V) as N --~ oo for all 

possible values o f  the parameter s (0 ~<s ~< 1), only for the two limiting cases s = 0 

(fl = 1) and s ~ l(fl ~ 0). For the case s = 0 (fl = 1) we can use the results o f  

EFGM [8]. One can find that in the limit N ~ ~ ,  the matrix element (W [ G N [ V) 

has the following asymptotic forms: 

(1) For ~ > 1, 

4 N + 1 
( W I G  N ] V) -- x/~N3/2( 1 _ 1/~) 2. (29) 

(2) For ~ =  1, 

4 N 
<W l GN I V>_ v~Nl/2 • (30) 

(3)  F o r ~  < 1, 

(31) 
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Using these results we calculate the asymptotic currents and identify two phases: 
(a) For ~ >~ 1, 

J+  = J -  = -] (32) 4" 

This is the maximal-current phase. 
(b) For ~ < 1, 

J+  = J -  (~ + 1)-------- ~ • (33) 

For the case s ~ 1 (/3 ---+ 0) we can use the method described in Appendix B of  
Ref. [4]. In this case the matrix G looks as follows: 

2 + (~3~or) 1 0 0 . . . )  
1 2 + (/3/c¢) 1 0 

G = 0 1 2 + (/3/~t) 1 . (34) 
0 0 1 2 + (/3/00 

A simple way to compute (W I G N ] V) is to represent ] V) as a linear combination 
of  eigenvectors of  G in order to evaluate G N I V). It can be checked that G I 0) = 
(2 +/3/~ + 2cos0) I 0) where 10) is given by 

10) = 

sin0 "~ 
sin20 | sin30)" (35) 

Then the vector ] V) can be written as a linear combination of  these eigenvectors, 

] V) = f d~OsinO ] O). (36) 

Using the fact that ] 0) is an eigenvector of  G with eigenvalue 2 + fl/~ + 2cos0, it 
follows from the Eq. (36) that 

(WIGNIV)  = i -~sin20 (2 +/3/~ + 2cos0) N. (37) 

- - ; 7  

The calculations predict the existence of  only one phase with asymptotic forms 

(W I GN [ V) ----- (4 + fl/ot)N(2n2/3), (38) 

~/3 J - - -  ~/3/4.  (39) 
(4c~ + fl) 
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Consequently, there is an upper value of the parameter s, i.e. some sc < 1 such that 
the two-phase region exists only for 0 ~<s < so. 

2.4. Solution f o r  q =  1 and s = O  

To solve this problem we define two matrices L and R as follows: 

L = L ,  ~ = R + E .  (40) 

This is a convenient choice because 

G = L + R + E = L + R .  (41) 

Then the matrix Eqs. (11)-(17) can be expressed as 

( W I R =  ( f l + l )  (WI, (42) 

LR = L + R, (43) 

1 
L I v) -- I v). (44)  

But these equations describe the one-species dynamics of an ASEP with feeding 
rate ~/3/(~ +/3)  and removal rate /3 [4]. A complete solution of this problem is 
given in Ref. [4]. Using these results we find two possible phases in the limit 
N --+ oc : 

( l )  For (c~ + /3)-..<2c~/3. This is the maximal-current phase with the current 

equal to 

1 (45)  J--=~. 

(2) For (c~ +/3) > 2e/3. Here the asymptotic current is given by 

~/3 ( c~/3 ) (46) J - -  (~+/3-----~ 1 (~+/3)  . 

One can check that if we make another choice for the matrices L and R, 

= R, L = L + E (47) 

the results do not change. 
It is interesting to note that in this case the model was studied by EFGM using 

mean-field analysis and Monte-Carlo simulations. They observed spontaneous symmetry 
breaking, i.e., the existence of phases where the currents of positive and negative 
particles are not equal. Our exact solution confirms the mean-field solutions, but only 
for symmetric phases; we do not have an asymmetric phase where the currents of 
the positive and negative particles would be different. The phase diagram for this set 
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Fig. 1. Phase d i a g r a m  for the case  q = 1 and s = 0. 

of parameters is presented in Fig. 1. It consists only of  the symmetric phases of  the 
mean-field phase diagram of EFGM [8]. 

3. Discussion 

In the present paper we investigated the one-dimensional asymmetric exclusion pro- 
cess with two types of  particles hopping with different rates in different directions. The 
steady-state properties of the system were studied using the matrix product method. 

We found exact solutions for some sets of parameters. Our solutions were also ana- 
lyzed in the limit N ---, vc. In most cases two phases were observed, one of them a 

maximal-current phase in which the current is equal to q/4. The transitions between 
the phases are continuous. We compared our solutions with the results obtained by 
EFGM for a totally asymmetric exclusion model with two species which is a special 
case of our more general problem. Using the matrix product exact solution we were 
not able to find a spontaneous symmetry breaking as reported by EFGM. A possible 
explanation is that the matrix product method could give us only symmetric solutions 

(J+ = J - ) ,  as can be concluded from Eq. (21). It would be interesting to study the 
stability of  the symmetric solution that we obtained in an attempt to find a spontaneous 
symmetry breaking. 

It has recently come to my attention that some of the results and methods in 
Ref. [4] were obtained independently by Schfitz and Domany [9]. 
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