
Physica A 274 (1999) 241–266
www.elsevier.com/locate/physa

Molecular motors and the forces they exert(

Michael E. Fisher, Anatoly B. Kolomeisky
Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA

Abstract

The stochastic driving force that is exerted by a single molecular motor (e.g., a kinesin,
or myosin protein molecule) moving on a periodic molecular track (such as a microtubule,
actin �lament, etc.) is discussed from a general theoretical viewpoint open to experimental
test. An elementary but fundamental “barometric” relation for the driving force is introduced
that (i) applies to a range of kinetic and stochastic models of catalytic motor proteins,
(ii) is consistent with more elaborate expressions that entail further, explicit assumptions for
the representation of externally applied loads and, (iii) su�ciently close to thermal equilibrium,
satis�es an Einstein-type relation in terms of the observable velocity and dispersion, or di�usion
coe�cient, of the (load-free) motor protein on its track. Even in the simplest two-state kinetic
models, the predicted velocity-vs.-load plots (that are observationally accessible) exhibit a variety
of contrasting shapes that can include nonmonotonic behavior. Previously suggested bounds on
the driving force are shown to be inapplicable in general by considering discrete jump models
which feature waiting-time distributions. Some comparisons with experiment are sketched.
c©1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Molecular motors are individual protein molecules that are ultimately responsible for
essentially all “active” biological motion including internal material transport. Important
examples are myosin, kinesin, dynein, and RNA polymerase [2–6]. These molecules
will move along appropriate, periodically structured, linearly polarized molecular tracks,
such as actin �laments, microtubules, and DNA strands. They perform tasks vital to the
life of the organism — muscle contraction, bacterial motion, cell division, intracellular
transport, and genomic transcription [2–6]. Understanding how the various molecular
motors operate represents a signi�cant scienti�c challenge.

( This article represents an expanded and signi�cantly extended version of a more concise paper by the
same authors — Ref. [1: PNAS 96 (1999) 6597–6602] — that, however, is closely followed in places.
Some notational simpli�cations are also introduced here.
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The hydrolysis of adenosine triphosphate (ATP), with the release of adenosine
diphosphate (ADP) and inorganic phosphate (Pi), is known to be the power source
for many motor proteins. In the simplest picture — which, nonetheless, seems rather
accurate in many cases — a single molecule of ATP di�uses in solution, encounters a
motor protein attached to a molecular track, and lodges in an active site on the motor.
The motor protein then catalyzes the decomposition of the bound ATP molecule into
ADP + Pi, releasing, in the process, a signi�cant quantity of energy: that engenders a
major conformational change in the motor protein resulting, after �nal discharge of the
reaction products, in the net movement of the motor along the molecular track in a
“forward” direction by one discrete step, say of size d. Under a su�ciently high ambi-
ent concentration of ATP in the solution the catalytic process then repeats with another
ATP molecule, and the motor protein takes a further step forward. Of course, thermal
uctuations must introduce statistical features. Clearly, then, an activated motor may
well be in a dynamical or, better, a stochastic steady state but it cannot be in full
thermal equilibrium.
In recent years striking in vitro experiments have actually observed individual motor

protein molecules moving along �xed tracks under controlled external loads [7–13] 1

in accordance with this scenario. Such motility studies, employing optical traps, force
clamps, etc., have stimulated enhanced theoretical work aimed at understanding the
mechanisms by which a biological motor functions.
Now, from a broad theoretical perspective one may regard a molecular motor simply

as a microscopic object that moves (predominantly in one direction) along a directed or
“polar” one-dimensional periodic lattice, i.e., the molecular track [1–13] in accordance
with some “laws of motion” — presumably of basically stochastic character. Further-
more, the motor may be subject to an external force F , which might vary spatially
(or, even with time, t). The questions of interest are, then: “What driving force, say
f, can the motor exert? What mean velocity, V , will it display? How will the velocity
achieved depend on the load, F?” And: “Since the displacement, say x, along the track
is stochastic, what dispersion,

D ≈ [〈x2(t)〉 − 〈x(t)〉2]=2t (1)

(or e�ective di�usion constant), will the motor display with respect to its mean position,
〈x(t)〉 ≈ Vt, at time t (under steady-state conditions)?”
To provide a more concrete conception, let us mention that for the much studied

motor protein kinesin, which moves on microtubules [3–11,13], the single-step size is
d ' 8:2 nm, while velocities up to V . 800 nm=s, and forces as large as, roughly,
f ' 6 piconewtons (pN) are observed. The detailed data display dispersions of mag-
nitude D ' 1500 nm2=s [8,13]. Concentrations of ATP in the range 1�M . [ATP]
. 10 mM have been studied [13]. But note, by contrast, that RNA polymerase (which

1 The recent article by Visscher et al. [13], appearing after [1], provides extensive data, especially regarding
the dependence on ATP concentration, which, however, is not reected in our discussion in Section 7 here.
We plan to present an analysis in the future [28].
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Table 1
Forces related to a molecular motor

Force Notation and relations Eq.

Maximum driving force fmax = �G0=d¿f (13)
Einstein scale fE = kBTV=D¡f (15)
Gravitational force fG = mg (20)
Barometric force fB = kBT� ∼= f (17, 21)

Stalling force fS = kBT�=�d
?
=f (31)

Load and stalling load F; FS ; � = F=FS (32)

is powered by nucleoside triphosphates that release pyrophosphate, PPi) displays ve-
locities of 30–40 nucleotides=s and can generate forces up to f ' 25 pN [12].
The aim of the work reported here [1] is not to treat detailed (or realistic) models

of various motor proteins that embody the quantitative features just sketched. Rather,
it is to construct a general theoretical framework 2 in which to address, in particular,
how the driving force, f, should be calculated for a broad class of molecular motor
models; to relate the driving force to the velocity and to the dispersion, inasfar as that
is, in fact, appropriate; and to discuss the way in which the external load force, F ,
should be incorporated in a model. A sense of where the reader will be taken may
be gained by perusing Table 1: this lists the various forces (and force scales) we will
be led to consider and, for reference, includes the corresponding de�ning equations
presented below.
To prepare the ground, we outline, in the following section, a general class of

discrete-state stochastic=kinetic models which embody basic features of a multitude of
more speci�c treatments found in the literature. Following a previous lead [15], we
show how a striking analysis by Derrida [16] for arbitrary periodic one-dimensional
random walks (an extension of which we plan to publish), provides an exact and
explicit analytical tool for the task in hand. (see also the appendix here and, for
a more restricted scheme, the appendix of Ref. [8].) In the subsequent section we
consider the maximum driving force and an “Einstein force scale”, that is related to
the dispersion D (see Table 1). Our main result, presented in Section 4, is the proposal
of a general “barometric” expression for the force, f, which, we believe, is the most
appropriate candidate for predicting the driving force from a speci�c model. Then,
in Section 5, we consider the introduction of external loads, demonstrating how it is
essential to allow for load distribution factors which determine the response of the
internal transitions in the motor protein to imposed stresses. With this formulation in
hand, we investigate the velocity vs. load plots that may be derived: the allowed shapes,
even for the simplest (N=2)-state models, present a surprising diversity: see Figs. 3–4
below. To check the general theory against reality, a brief discussion of experiments on
kinesin is presented on the basis of the (N = 2)-state models in Section 7: signi�cant
features of the theory are con�rmed, although further detailed experimental tests are

2 Aspects of our treatment appear, although in a considerably less general setting, in work by Hong Qian [14].
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Fig. 1. Schematic representation of the sequential kinetic scheme (2) for describing a motor protein in the
case N=3. The squares denote resting states free of any power supplying molecule, the circles correspond to
“active” internal states. The initial forward rate, u0, may be expected to be proportional to the concentration
of ATP or other power source. The dotted lines represent the possibility of “spontaneous” forward and
backward processes not dependent on an explicit molecular power source (such as ATP): see text.

most certainly desirable and simulations could be useful. Finally, Section 8 exposes
an arti�cial limitation of the simplest kinetic descriptions by introducing discrete jump
models which have waiting-time distributions [17]. (It is for such models, in particular,
that we have extended Derrida’s analysis [16].) Our main conclusions are summarized
briey in Section 9.

2. Molecular motor models

Traditionally, and in simplest terms one studies catalytic reactions, as exempli�ed
by motor proteins, via kinetic chemical descriptions: see, for example [14,18] and
references therein. Recently, in addition to various more detailed schemes [12,13,19–
21], so-called “isothermal ratchet” models (that postulate pairs of periodic ‘saw-tooth’
potentials) have been proposed to account for the mechanics: see the reviews [22,23]
and, e.g. [14,24,25].
Now, a common feature of most approaches is that a motor protein molecule is

associated with a labeled site l (=0;±1;±2; : : :) on the track (or linear lattice) and can
be pictured as residing in one of N essentially discrete states j, which may be free of
or bound to a power-source molecule, say, ATP and its various hydrolysis products.
We will take j = 0 to label the free state and j = 1; 2; : : : ; N − 1 to label the various
bound states. Consider, as an illustration, a kinesin molecule, K, on a microtubule,
M: the (N = 4) states identi�ed might be: M · K; M · K · ATP; M · K · ADP · Pi, and
M · K · ADP [9,18]. Transition rates between these states can be introduced via the
sequential kinetic scheme (see Fig. 1).

u0 u1 uN−2 uN−1
0l 
 1l 
 · · · 
 (N − 1)l 
 0l+1 ;

w1 w2 wN−1 w0

(2)

where the subscripts indicate that the states j are associated with successive sites, l
and l+ 1, on the track spaced at distances �x = xl+1 − xl = d : this de�nes the step
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size d, as introduced above. Of course, states jl; jl+1; : : : ; jl+n di�er physically only in
their spatial displacements d; 2d; : : : ; nd, along the track. By the same token, the rates
uj and wj are independent of l (or x= ld); 3 however, in the subsequent developments
it will prove useful to allow for spatially varying rates uj(l) and wj(l). The “laws of
motion” are now given by the standard rate equations

@
@t

Pj(l; t) = uj−1(l)Pj−1(l; t) + wj+1(l)Pj+1(l; t)− [uj(l) + wj(l)]Pj(l; t) ; (3)

for j = 0; 1; : : : ; N − 1, where Pj(l; t) is the probability of �nding the motor in state j
at site l at time t, and, in order to maintain the underlying periodicity we make the
identi�cations

P−1(l; t) ≡ PN−1(l− 1; t); PN (l; t) ≡ P0(l+ 1; t) ;

u−1(l) = uN−1(l− 1) and wN (l) = w0(l) : (4)

One may, conveniently for many purposes, suppose that the motor starts from the origin
l= x = 0 in a free state so that Pj(l; 0) = �j0�l0.
To properly represent physicochemical reality (that is, microscopic reversibility) none

of the forward rates, uj, or backward rates wj may strictly vanish even though in reality
some, such as the last reverse rate, wN ≡ w0 might be extremely small [12,15,18].
On the other hand, if, as indeed observed in the presence of free ATP (or other
power source), the motor moves under no external load to the right (increasing x), the
transition rates cannot (all) satisfy the usual conditions of detailed balance that would
characterize thermal equilibrium if the scheme (2) were regarded as a set of chemical
reactions (near equilibrium) between e�ective species jl [22].
It is of practical signi�cance to notice that the �rst forward transition in (2), in

which, say, a free ATP molecule initially binds to the motor protein, may be envisaged
chemically as a second-order rate process, e.g., M · K + ATP 
 M · K · ATP. Then,
for su�ciently low concentrations of ATP one can conclude that u0 = k0[ATP], where
k0(T ) is a concentration-independent rate constant. This, in turn, can lead to Michaelis–
Menten-type rate-vs.-concentration relations [7,13] of the overall form

R ' Rmax[ATP]=([ATP] + KM ) ; (5)

where R is some rate of interest (that might be the motor velocity, V ). The Michaelis–
Menten constant, KM , in fact sets the concentration at which R= 1

2Rmax.
However, as illustrated in Fig. 1 for an (N=3)-state system, one might also contem-

plate a small “spontaneous” or �rst-order background rate, u00¿ 0, that exists even in
the absence of ATP. A corresponding backward rate w00, should then also be included.
Except in the trivial N=1 case (where u00 can simply be included in u0 and w00 in w0)
this changes the linear nature of the kinetic scheme (2): however, while many of our
explicit algebraic expressions (for V (F); D, etc.) will then hold only if u00 = w00 = 0

3 Note that in [1] the forward rates denoted here by u0; : : : ; uN−1, were called u1; : : : ; uN , respectively, while
the backward rate w0 here (“out of the state j = 0”) was called wN . Beyond these changes which, in
particular, simplify Eq. (3) and other expressions, we follow the notations of [1].
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(as we shall assume henceforth), all the general conceptual principles of our discussion
will still apply.
Now, within statistical physics, the kinetic scheme in Eqs. (2)–(4) represents a

one-dimensional hopping process of a particle on a periodic but, in general, asymmetric
lattice. After initial transients, the particle will move with steady (mean) velocity V ,
and di�use [with respect to the mean position, 〈x〉 = Vt, at time t: see (1)] with a
di�usion constant D [16,17,26,27]. Complicated, but exact and explicit equations for V
and D in terms of the rate constants uj and wj have been obtained for all N by Derrida
[16]: for reference, these are exhibited in our notation in the appendix. To describe the
transient behavior more labor is required: however, for the case N =2 explicit integral
expressions can be found for the probabilities Pj(l; t) introduced in (3): see [15] and,
more generally, the appendix of [1].
One immediately observes from Eq. (A.1) that a dimensionless, overall rate factor,

that appears rather naturally, is given by the product

� =
N−1∏
j=0

(
uj

wj

)
≡ e� : (6)

This will play a central role in our discussion. Note, indeed, that viewing (2) as a
standard set of chemical reactions and requiring detailed balance would impose � ≡ 1
(or � = 0) whereas �¿ 1 (or �¿ 0) is evidently needed for a positive velocity V .
(One might recall, however, [15] that as regards the full chemistry, the complex of
motor protein plus track may be regarded simply as catalyzing the hydrolysis of ATP
(or other power source): the reaction rates for the corresponding overall isothermal
process may then be expected to satisfy detailed balance.)
The simplest or “minimal” physical models for a motor protein must clearly have

N = 2. As mentioned, one can then calculate analytically not only the steady-state
behavior but also the full transient responses. In Ref. [15] only the special (limiting)
case with w0 = 0 was treated; but as will be seen below, this limit can be misleading
and so the general N = 2 results were presented in [1]. Here we will use only the
velocity and di�usion constant for N = 2: these can conveniently be written in the
forms

V =
(u0u1 − w0w1)d

u0 + u1 + w0 + w1
≡ (� − 1)!d ; (7)

D = 1
2 [� + 1− 2(� − 1)2!=�]!d2 ; (8)

where � = u0u1=w0w1, as in (6), and we have introduced the associated overall rates

� = u0 + u1 + w0 + w1; != w0w1=�: (9)

As already illustrated in Fig. 1, one can, of course, envisage more complicated
schemes than (2) that include various branches, internal loops, parallel pathways, de-
tachment, etc. Thus, for example, a backwards reaction directly from, say, state j†l
to the original unbound or free state 0l could account for “futile” ATP hydrolysis,
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i.e., “consumption” of an ATP molecule but without any forward motion of the mo-
tor [19]. Note, however, that within the N = 2 models (which enforce j† = 1) this
phenomenon may be described simply by including the futile-hydrolysis parallel reac-
tion rate in the backward rate w1. In all cases, however, there will be a well-de�ned
(zero-load) steady-state velocity V and a di�usion constant D (both independent of the
particular states, j); and these are susceptible to estimation by simulation even should
their explicit mathematical expressions be intractable (although for general u00; w00
(see Fig. 1) and for branches and detachments, etc., closed-form results can also be
obtained [28]). Furthermore, in real systems both V , as often demonstrated [7,9–13],
and D [8,13] are susceptible to experimental measurement as explained.
Now there arises an obvious but crucial question, namely: “What (mean) driving

force, f, will such a general motor protein model exert as it moves along its track?”
That is the principal issue we have to address.

3. Maximum and Einstein force scales

For concreteness, let us suppose the molecular motor is kinesin and, thus, is powered
by ATP. If the hydrolysis

ATP + (M · K)l → ADP + Pi + (M · K)l+1 (10)

was, hypothetically, performed in vacuo at low temperatures, so that all reactants and
products were in their (quantum mechanical) ground states, a de�nite energy �E0
would be released by the reaction. This would then be available as mechanical energy
and, so, could move the motor through the step size �x = d from state 0l to 0l+1
exerting an e�ective force f0 = �E0=d. In practise, however, the catalytic hydrolysis
process, in vitro or in vivo, takes place in solution and essentially isobarically and
isothermally, at ambient pressures and temperatures, say (p0; T0). It is then more rea-
sonable to regard the reaction as releasing a free energy, say �Gf , which, physically,
accounts for the presence of solvent, of thermal uctuations, etc.
If one were considering an overall bulk chemical reaction

A+ B
 C + D + E (11)

with (relatively low) concentrations [A]; [B]; : : :, one would compute the free energy
released via

�G =�G0 + RT ln([C][D][E]=[A][B]) ; (12)

where �G0 is referred to standard conditions, which, to su�cient accuracy, we may
take as (p0; T0): see, e.g. [29,30]. Then, comparing (10) and (11), it is tempting to
make identi�cations A = ATP; B = (M · K)l, etc.: accepting those and the value �G0
of about 0:50 × 10−19 J, corresponding to 7.3 kcal=M or 12 kBT at typical in vitro
temperatures, T [4], one obtains �G ' 20 kBT by using reasonable estimates for
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typical cellular concentrations [ATP]; : : :, etc. 4 However, that is not, we believe, the
appropriate way to identify �Gf . Rather, in understanding the operation of a molecular
motor, one should be concerned with the microscopically local release of free energy
by ATP adsorbed on the motor-protein–track complex. The appropriate concentrations
to use in (12) are then to be determined essentially only by the stoichiometry of the
reaction. Thus, in addition to the obvious concentration ratio [E]=[B] = [(M · K)l+1]=
[(M·K)l]=1, we should, in (12), also take [C][D]=[A]=[ADP][Pi]=[ATP]=1. This leads
directly to �G=�G0; consequently, we accept �G0 as a most reasonable estimate of
�Gf , the locally released free energy.
If all the free energy �Gf = �G0 could be converted into mechanical energy and

move the motor protein through the step size, d, the force exerted would be

fmax = �G0=d : (13)

Accepting that one molecule of ATP (or other power source) is su�cient to trans-
locate the motor protein by one step [8], this expression clearly represents the maximal
driving force that can be exerted. For a kinesin moving on a microtubule [7–13] with
d ' 8:2 nm [10,13] it yields fmax ' 6:2 pN. Then, if f is the driving force actu-
ally realized, the e�ciency of a molecular motor protein may sensibly be de�ned by
E= f=fmax.
To gain further insight, consider a small (“mesoscopic”) particle with “instantaneous”

position x(t) and velocity v(t) that undergoes one-dimensional Brownian motion in
a �xed, slowly varying external potential, �(x). Under a constant external force,
F=−(d�=dx), the particle will di�use with a di�usion constant which, for long times,
t, satis�es the relation (1) in which, now 〈·〉 denotes an equilibrium, statistical mechan-
ical average [26,27,31,32]. In addition, the particle experiences an (e�ective) frictional
force, fE = �v(t), where � is a friction coe�cient determined by the environment
[26,27,31,32]. In a steady state, the friction balances the external force, F , leading to
a drift motion, 〈x(t)〉 ≈ Vt, with mean velocity given by V =F=�=fE=�. Now, by def-
inition, Brownian motion takes place within full thermal equilibrium: that fact dictates
[26,27,31,32] the Einstein relation

�= kBT=D (14)

which, in turn, implies the result

fE = kBTV=D (15)

for what we will call the Einstein force scale — the second entry in Table 1. 5

In the present context this is an appealing formula since it determines a force in
terms only of the velocity, V , and the dispersion, D. As discussed, these are directly
predictable by a motor-protein model — see, e.g. (7)–(9) above; likewise, V and

4 We acknowledge stimulating remarks conveyed in correspondence with Hong Qian.
5 Note that Svoboda et al. [8] choose to characterize uctuations in the movement of the motor in terms of
a “randomness parameter” r which, in our notation, is given simply by r = 2D=Vd. Thus the Einstein scale
can also be expressed as fE = 2kBT=dr.
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D are observable in an experiment or a simulation. However, because an activated
molecular motor is not a Brownian particle and cannot, as explained, be described by
thermal equilibrium alone, there are really no grounds for expecting fE to be related
to the proper driving force, f. Nevertheless, we will show that in a certain limit such
a Brownian motion “mimic” of an activated motor protein does provide an adequate
prediction for f. Indeed, Ref. [15] accepted the identi�cation f=fE without discussion
and used relation (15) to estimate driving forces for the restricted (w1=0) N=2 models.
The values of f so obtained were not unreasonable in comparison with experimental
data [15]: see further discussion below.
It is also worth pointing out that Ref. [33] (see also [19]) invokes an Einstein

relation in an analysis of observations of “protein friction”. However, this is a rather
di�erent context in which many “blocked” motor proteins (that cannot hydrolyze ATP)
are attached to a substrate and a rigid microtubule di�uses, apparently freely, close-by
in the medium above. Quantitative arguments [19,33] explain the large frictional slow-
down seen — relative to an appropriate Einstein-relation estimate using the solvent
viscosity — as due to weak protein binding on to and unbinding o� the microtubule.

4. Barometric formulation for the driving force

Although the identi�cation of the motor driving force f with the Einstein scale, fE ,
is unjusti�ed, it is certainly desirable to have a soundly based, general expression for
f which, like fE , does not entail any intrinsic modi�cations or extensions of the motor
model or of the associated physicochemical picture beyond the speci�ed rate constants.
To that end, let us consider the placement of an “impassable block” or barrier on the
molecular track, say, between sites L and L+1 (/1) or at distance x=X=Ld from the
origin x=0 (�xed, as we have already supposed, by where the motor starts): see Fig. 2.
Such a barrier may be realized theoretically by decreeing that all states jl for l¿L+1

are inaccessible. This may be achieved simply by setting one of the local forward rate
constants, say, uJ (l= L), equal to zero so the motor can never pass beyond the state
Jl. No other rate constants need be modi�ed: thus essentially no change of the basic
molecular model is entailed. Nevertheless, if further nearby rate constants are changed,
it will have no consequences for our main conclusions. One might actually want to do
this to take cognizance of some aspects of a real barrier that might be attached to a
molecular track in an experimental set-up.
It is intuitively clear that running a (real or model) molecular motor up to such a

barrier will lead — provided it does not detach from the track or “freeze” irreversibly,
as might happen in practice [7,11] — to some stationary probability distribution, as
sketched in Fig. 2. It is convenient to write this distribution as

Pj(l; t → ∞) = P∞
j (L− l) (16)

with z = (L − l)d = X − x so that z measures the distance back from the barrier:
see Fig. 2. On very general theoretical grounds one should expect this distribution to
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Fig. 2. Depiction of a barrier placed on a molecular motor track between sites L and L + 1, and of the
exponentially decaying stationary probability distribution that builds up when a motor is run up against the
barrier: see relation (17) and the accompanying text.

decay exponentially with increasing z except for possible deviations close to the barrier.
Consequently, we can write

P∞
j (z=d) ≈ Aje−� z; (z/d) ; (17)

where the (positive) decay constant � should, in principle, be experimentally measur-
able (although this may be di�cult if �d is large). The amplitude ratios Aj=A0 (j =
0; 1; : : : ; N − 1) must depend on the various rate ratios, ui=wi, while A0 may be deter-
mined simply by normalization of the overall probability distribution.
To justify this surmise for the kinetic equations (3) (although it is of much more

general validity), note that the mean ow between adjacent states (N − 1)l−1 and 0l
and between (j − 1)l and jl [for j = 1; 2; : : : ; (N − 1)] must vanish for a stationary
distribution (with no net current ow). Balancing local forward and backward rates
thus yields

uN−1(l− 1)P∞
N−1(L− l+ 1) =w0(l)P∞

0 (L− l) ;

uj−1(l)P∞
j−1(L− l) =wj(l)P∞

j (L− l) ; (18)

for j=1; 2; : : : ; (N −1). Starting from an initial nonzero value P∞
J (0), one can then re-

cursively determine P∞
J−1(0); P∞

J−2(0); : : : ; P
∞
0 (0); P∞

N−1(1);
∞
N−2 (1); : : : . By induction,

this leads directly to the exponential decay (17) [since the uj(l), and wj(l) become
independent of l for, say, l¡L− l0 where l0 is some small �xed integer representing
the extent of inuence of the barrier on the transition rates]. Most crucially one �nds,
recalling the de�nition (6), that the decay constant is simply given by

� = (ln�)=d= �=d : (19)

Now, to interpret these results in terms of some e�ective driving force, consider a
dilute gas of molecules of mass m moving in a gravitational �eld that acts “downwards”
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along the vertical or z-axis. Each molecule then has a weight fG=mg; in addition, the
equilibrium density distribution is given by [34]

�(z) = �(0)e−mgz=kBT = �(0)exp[− (fG=kBT )z] ; (20)

where �(0) is the density at the level z=0. (Any deviations arising close to the “lower”
wall (at z ' 0) due to molecular size, structure, etc., have, of course, been neglected.)
Comparing this well-known barometric formula with the analogous barrier distribution
(17) leads us to identify the driving force f of the molecular motor with fG and,
thence, with

fB = kBT (ln�)=d= kBT�=d : (21)

This is one of our principal results: the subscript B serves merely to indicate the baro-
metric analogy underlying our identi�cation. It is signi�cant to note that, by comparison
with (13) for fmax, we may expect

�. �G0=kBT (22)

for any real molecular motor.

4.1. Barometric vs. Einstein scale

Before studying this result in relation to extensions of the simple kinetic scheme (2)
that are needed to describe a motor functioning under external loads, let us compare
fB with fE . To start, let us suppose the molecular motor operates close to equilibrium
in the sense that �= ln� is small. (Recall that detailed balance, in equilibrium, would
require �=1 and �=0.) Then, on expanding in �=0 at �xed !=�, Eqs. (6)–(9) and
(21) yield

fB=fE = 1 + [ 112 − (!=�)]�2 − 1
2 (!=�)�3 + · · · (23)

for N = 2. Evidently, the coe�cient of � vanishes identically! Furthermore, one �nds
0¡!=�6 1

16 so that the coe�cient of �2 is small, lying between 1
48 and

1
12 . Conse-

quently, and as might well have been anticipated, the Einstein scale approximates the
barometric result very well when the motor operates su�ciently close to equilibrium.
Indeed, for �¡ 10, calculations show that fB can exceed fE by no more than 44%.
Furthermore, the series in (23) truncated at O(�2) proves reasonably accurate up to
� ' 5 (� ' 150) where one has 1:473¡fB=fE ¡ 2:535; beyond that one can establish
the e�ective bounds,

1
4 �¡fB=fE . 1

2 � : (24)

These speci�c results are limited to N = 2; however, the vanishing of the O(�)
term in (23) is independent of N . Indeed, the basic symmetry of the kinetic scheme
(2) under the forward–backward transition rate interchanges: w0 ⇔ uN−1 and wj ⇔
uj−1 (j = 1; : : : ; N − 1), and � ⇔ −�, leads to � ⇔ 1=�; V ⇔ −V , while D remains
invariant: consequently, 6 the ratio fB=fE is essentially an even function of �. (It is

6 We are indebted to B.Widom for a remark on this point.
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only because we chose, in (23), to expand at �xed !, which is not an invariant under
the rate exchange, that an O(�3) term appears).
By the same token, we expect fB always to rise steadily above fE when � increases.

Indeed, on recalling (16) for �, one observes from (21) that fB is unbounded above
and so, with an injudicious assignment of rate constants, it may even exceed fmax, as
given in (13)! Conversely, one may show from (7), (8) and (15), that fE , the Einstein
force scale, is bounded above by 4kBT=d for N=2 [15]. However, we will demonstrate
in Section 8 that this bound on fE is rather arti�cial and does not apply for models
that account in a more direct fashion for the discreteness of the hydrolysis of ATP (or
other power source molecules).

5. The e�ects of a load

In a typical experiment on motor proteins [7–11], optical tweezers are used to carry
a silica bead coated with a few molecules of the motor protein up to a molecular-track
�lament secured on a glass surface. Then a single motor binds to the track and, in
the presence of a power source, spontaneously starts to move, exerting a force against
the opposing load, F , as it pulls the bead away from the center of the optical trap. In
leading approximation, the external force F is a linear function of the displacement of
the motor from the trap center, and the constant of proportionality can be measured.
Thus the trap and bead work like a calibrated spring acting on the molecular motor.
(Alternatively [13], with the aid of appropriate feedback controls, a constant force can
be applied.) To represent such experiments, the load-free scheme embodied in (2)
must, clearly, be extended.
To this end, suppose the motor moves on the track in a slowly varying external

potential, �(x), so that in translocating from site l to l + 1 (say, in the free state
j = 0), additional mechanical work

Wl ≡ ��(x = ld) = �(x + d)− �(x) ; (25)

must be done (relative to the load-free situation). Of course, this corresponds to im-
position of a local external force, F(x)=��(x)=d (or Fl=Wl=d), directed negatively.
For an (ideal) optical trap of spring constant K we may take

�(x) = 1
2K x2; F(x) = K(x + 1

2d) : (26)

Our analysis will not, however, depend on any speci�c form for �(x) although, for
conceptual simplicity, we will suppose F(x) increases with x.
In such a situation the motor should, in e�ect, compress the spring and, as t increases,

attain a stationary distribution, say PS
0 (l), where, for simplicity, we focus only on the

(free) states 0l. This distribution should peak at some lS , corresponding to a mean
(or most probable) compression of the spring by a displacement xS = lSd. Then the
measured “stalling force” [in the harmonic situation (26)] would be fS = KxS .
Now it is evident physically that under any local load, F(x), the transition rates,

uj(l) and wj(l), must change. If, as traditional, one views the chemical transitions
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between successive states, j and j + 1, as proceeding in quasiequilibrium over var-
ious free energy barriers [19], one expects (in leading approximation) the rates to
change exponentially with F(x)d=kBT . But a crucial question now arises, namely,
“How should the exponential loading factors be distributed among the various reac-
tion processes, j 
 (j + 1), occurring “inside” the motor protein ?” This is far from
obvious: indeed, the way in which the load is shared should, clearly, be of consid-
erable interest in understanding the motor mechanism at a more detailed microscopic
level.
To avoid prejudice, therefore, we advance the quasiequilibrium hypothesis that

under a local load, F , acting “at” site l, the individual transition rates change in
accord with

uj ⇒ u(F)j = u(0)j e
−�+j Fd=kBT ; wj ⇒ w(F)j = w(0)j e

+�−j Fd=kBT : (27)

The load distribution factors, �+j and �−j , introduced here need not be of uniform
sign: but we certainly expect the overall factor

�=
N−1∑
j=0

(�+j + �−j ) ; (28)

to be positive, since that simply implies that the load force acts to oppose motion.
Indeed, should the motor undergo di�usion in thermal equilibrium when not activated
by ATP [as suggested in Fig. 1 and in the discussion following (5)], detailed-balance
considerations would dictate �=1. As a supplement to our quasiequilibrium hypothesis
this value of � is also plausible for an activated motor that operates not too far from
equilibrium.
Notice, however, that an individual negative �+J or �

−
J simply means that the corre-

sponding forward rate, uJ , is enhanced, or the reverse rate, wJ , is diminished by the
internal molecular strain induced in the motor by the load. There are no good reasons
for excluding such possibilities. Indeed, it is not di�cult to imagine concrete mecha-
nisms that would lead to such e�ects: for example, suppose an adsorption site on the
protein were covered by a “lid” that was pulled open by imposing a load against a
spring that otherwise held it closed.
If we accept the hypothesis (27), we can �nd the stationary “spring-compression”

distribution PS
0 (l) with the aid of the rate-balance the relations (18), simply by replacing

P∞
j (L − l) by PS

j (l), and the rates uj and wj in accord with (27). By iterating on j
the relations (18) lead to

PS
0 (l+ 1) =

uN−1(l)
w0(l)

PS
N−1(l) =

uN−1(l)
w0(l)

uN−2(l)
wN−1(l)

PS
N−2(l) = · · · : (29)

The most probable motor location, lS , then follows by equating PS
0 (l) and PS

0 (l+ 1),
which yields the condition

�(F)(l) ≡
N−1∏
j=0

[u(F)j (l)=w(F)j (l)] = �(0)e−�F(x)d=kBT = 1 : (30)
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Solving this determines xS=lSd and hence, by identifying F(xS) with fS , the measured
spring or stalling force, yields our second principal result, namely,

fS = kBT (ln�)=�d= kBT�=�d ; (31)

see Table 1. Here, of course, we have identi�ed the zero-load rate factor, �(0), with
the original rate factor � de�ned in (6) in terms of the unmodi�ed transition rates uj

and wj (j = 0; 1; : : : ; N − 1).
It is striking that this expression for the stalling force — which rests on the quasiequi-

librium hypothesis (27) that is needed to extend the original kinetic model — agrees
precisely with the barometric expression (21) for fB, provided one accepts the natural,
near-equilibrium evaluation �= 1. We regard this overall consistency as strengthening
both approaches.

6. Velocity versus load

The extended rate constants u(F)j and w(F)j introduced in hypothesis (27) also serve
to provide a relation for V (F), the motor velocity, as a function of a steady load
force, F , and, equally, for the load-dependent di�usion constant D(F): see [13] for
recent experimental results. For arbitrary N one may appeal to (A1) which shows, as
expected, that the stalling load, FS , which brings V (F) to zero, agrees with (31), i.e.,
FS = fS . To write an explicit result for N = 2 in an illuminating form, we introduce
the reduced force and modi�ed load distribution factors

�= F=FS and �±
j =

1
2 − (�±j =�) : (32)

Then by combining (7), (27) and (31) we can construct the expression

V (F)
V (0)

=
� sinh[ 12 �(1− �)]=sinh( 12 �)

u0e−�+1 �� + u1e−�+0 �� + w0e�
−
1 �� + w1e�

−
0 ��

; (33)

where, naturally, V (0) is simply the no-load result stated in (7), so that the right-hand
side must reduce to unity when �=0 (while it vanishes when � → 1). For convenience,
we recall that �= ln(u0u1=w0w1).
Now for � small (say, . 2), so that the motor is operating not too far from equi-

librium, one has

V (F) ≈ V (0)(1− �)=(1 + c��) : (34)

This represents a hyperbolic force law which will be concave or convex depending
on the sign, + or −, of c: see the illustrative examples in Fig. 3. 7 Concave plots,
like (b) in Fig. 3, are characteristic of experiments on animal muscles: see, e.g. [2,
Fig. 2:19].

7 Note, that in the caption for Fig. 1 of [1] the data for the plot (c) — the same plot as reproduced here —
contains a misprint: the value of � should read 9.2 (as speci�ed in the caption here).
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Fig. 3. Examples of nearly linear and of hyperbolic velocity–load plots for N = 2 models with rate ex-
ponent �, and reduced transition rate ratios �wj ≡ wj=u0, and load distribution factors ��

±
j ≡ �±j =�, given

by the parameter sets {�; �w0 = �w1; ��
+
1 ; ��

−
0 = ��

−
1 } : (a) {0:01; 0:99; 1

2 ; 0}, (b) {9:2; 0:01; 1
2 ; 0}, and

(c) {9:2; 0:01; 0; 1
2}. Note that V (0) is the velocity at zero load [see (7)] while FS denotes the stalling

load.

For small c the law is close to linear [see (a) in Fig. 3] and, in fact, c vanishes
whenever

u0�+1 + u1�+0 = w0�−
1 + w1�−

0 : (35)

This condition has many solutions; for example, if the backward rates are small, so that
� ≡ (w0+w1)=(u0+u1). 0:1, say, the load-distribution scheme �+0 ' �+1 ≈ 1

2�=(1+�)
yields a near-vanishing c. Velocity–load plots that are fairly linear have frequently
been observed in experiments, particularly on kinesin over quite wide ranges of ATP
concentration: see, e.g. [7]. Indeed, if u0 greatly exceeds u1; w0, and w1, the reduced
(V; F) plots become insensitive to u0. Then if, as discussed above in Section 2, one
has u0 ' k0[ATP], the plots will become independent of the ATP concentration [7].
Furthermore, if � is large but (�+1 =�)� ' 1, the (V; F) plots again become close to linear.
On the other hand, recent experiments on kinesin [13] have found convex velocity–load
plots — resembling (c) in Fig. 3 — at high concentrations: [ATP] = 2 mM.
Although straight, convex, and concave velocity–load plots are readily generated

within the N = 2 models, other reasonable values of the six parameters:

�; �w0 ≡ w0=u0; �w1 ≡ w1=u0;

��
+
1 ≡ �+1 =�; ��

−
0 ≡ �−0 =�; ��

−
1 ≡ �−1 =� ; (36)
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Fig. 4. Velocity–load plots for N =2 models displaying points of inection of opposite sense: the parameter
sets are {�; �w0; �w1; ��+1 ; ��−0 = ��

−
1 } : (d) {11:1; 0:15; 10−4; 0; 1

2}; (e) {23:0; 10−5; 10−5; 0:07; 0:43}.

yield plots exhibiting points of inection of either sense, as illustrated in Fig. 4. Plots
with a positive inection point, such as (d), have been observed in experiments on
RNA-polymerase [12]. However, plots with negative inection points, such as (e),
appear to be realized in relatively small regions of the (N = 2) parameter space. If
negative �+1 or �+0 are admitted — as discussed after Eq. (28) — plots with two
inection points are also allowed as example (f) in Fig. 5 demonstrates. Furthermore,
in such cases the velocity may even rise when a load is initially imposed! See plot (g)
in Fig. 5. Thus if one could determine plausible values for the no-load transition-rate
ratios, experimental (V; F) plots might, at least within the scope of N = 2 models,
throw some light on the load distribution parameters, �±j ; these, we repeat, must be of
signi�cance in understanding a motor protein’s operation at a molecular level.

7. Relation to Kinesin data

Let us recapitulate briey: in order to understand the driving force, f, exerted by a
molecular motor that takes steps of size d on a molecular track, we have analyzed
a broad class of stochastic models: in particular, expressions (2) and (6), embody a
general, “linear” motor reaction sequence. In the presence of a constant free-energy
source, the motor will achieve a steady velocity V (¿ 0) but with uctuations about the
mean position, Vt, described by a dispersion or di�usion constant, D, as introduced



M.E. Fisher, A.B. Kolomeisky / Physica A 274 (1999) 241–266 257

Fig. 5. Further velocity–load plots for N = 2 models illustrating a plot, (f ), with two (opposite) points
of inection, and one, (g), which is nonmonotonic as well as having a point of inection: both ex-
amples entail one negative load distribution factor, namely, �+1 ¡ 0. The speci�c parameter values are:

{�; �w0; �w1; ��+1 ; ��−0 ; ��
−
1 }={23:0; 10−5; 10−5;−0:07; 0:48; 0:48}; {10; 3:4×10−4; 2:5×10−3;−0:1; 0:1; 0:2};

respectively.

in (1). Table 1 lists various force scales that have arisen in our analysis and summarizes
their relation to the driving force, f. It is useful at this point to attempt to check,
at least semiquantitatively, the degree to which our theory for the driving force, the
velocity, the dispersion, and their interrelations, satisfactorily corresponds with available
experimental data. Because kinesin moving on a microtubule is well studied [1–5,
7–11,13,18], it can provide some concrete numerical evidence. 8

Recall, �rst, that the microtubule-kinesin step-size, d, is close to 8.2 (or 8.3) nm
[10,13]. In 1994 Svoboda et al. [8] observed a zero-load velocity V ' 670 nm=s for a
concentration [ATP] = 2 mM; in addition, they measured the variance of
the motor’s position, x(t), from which we have derived the estimated dispersion D '
1400 nm2/s (see also [13]). At T = 300 K these results yield the Einstein scale
fE ' 2:0 pN. On the other hand, the observed stalling force was fS ' 5–6 pN [7,8].
This is signi�cantly larger than fE , as we have argued it should be: see Section 4. Note
also, by comparing with the maximal force estimate, fmax ' 6:2 pN [see (13)], that

8 Recall footnote 1 regarding Visscher et al. [13].
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the observed e�ciency E, is in the range 80–95%. (It may be remarked, however, that
this observational estimate of the e�ciency does not allow for the possible “wastage”
of ATP by futile hydrolysis [19] that occurs without translocation of the motor: recall
the discussion following (9) in Section 2.)
The “barometric” force scale, fB, was derived by considering an obstacle that blocks

the motor’s motion on the track as illustrated in Fig. 2. The resulting statistically sta-
tionary distribution should, quite generally, decay with the distance z from the obstacle
like e−�z, as asserted in (17). It would, indeed, be interesting and valuable to measure
� and to compare fB, so derived, with the observed stalling force fS . It seems likely,
however, that such a measurement for kinesin is not currently practicable: indeed, our
analysis would suggest a decay length, � ≡ �−1, of only 0.7 or 0.8 nm.
For the (N = 2)-state models on which we have focused (see Section 2), with

transition rates u0; u1, w0 and w1, one has fB = (kBT=d)ln(u0u1=w0w1). For kinesin
(from Drosophila) Gilbert and Johnson [18] have studied the kinetics using chemical
quench-ow methods. Assuming [ATP] = 2 mM their data show that the values u0 =
3800 s−1, u1 = 15 s−1, and w1 = 200 s−1 represent a sensible map on to an N = 2
model; however, the backwards rate from the free state, w0, proved unobservably small.
Merely for illustration, therefore, let us consider the guess w0 =u1=100=0:15 s−1. Via
(7) and (8), these rates lead to V ' 116 nm=s and D ' 474 nm2=s, which values yield
the Einstein scale fE ' 1:0 pN (at T = 300 K), while the barometric approach gives
fB ' 3:8 pN. The agreement with the estimates based on the results of Svoboda et
al. is not so impressive. Nevertheless, the orders of magnitude, the inequality fB ¿fE ,
and the rough equality fB ' fS , are in full accord with our theoretical predictions.
More recently, Higuchi et al. [10] obtained data (for bovine brain kinesin) from

which we estimate u0 ' 1400 s−1 and u1 ' 45 s−1, in only rough agreement with the
values derived from Gilbert and Johnson [18]. The further ad hoc assumption w1=u0 '
w0=u1 ' 1=100 then yields the values V ' 355 nm=s and D ' 1370 nm2=s which are
rather closer to the observations of Svoboda et al. [7,8]. Likewise, the corresponding
values fE ' 1:1 pN and fB ' 4:7 pN, now accord better with the direct experiments
(although, of course, depending logarithmically, that is, weakly, on our guesses for w0
and w1). We may conclude that, while our general theoretical picture is supported,
further experiments (such as [13]) and the use of standardized kinesin samples will
certainly be valuable and could provide more stringent tests.
As explained in Section 5, to discuss the velocity V (F) of a motor under a load

F , the transition rates in any model must be modi�ed: thus, in our quasiequilibrium
hypothesis, (27), the load-distribution factors, �±j , recognize that the various transitions
in a real motor protein molecule almost certainly accept quite di�erent fractions of the
total stress: see also [13]. Indeed, the acceleration of some forward rates (corresponding
to negative �+j ) could provide a mechanism to conserve, e.g., ATP, under “no-load”
conditions: recall Fig. 5(g) where V (F), and hence the rate of free-energy consumption,
reaches a maximum only under imposition of a load. 9

9 A question conveyed to us from Jonathan Widom stimulated these remarks.
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It is natural, as explained, to take the overall load-distribution factor � in (28) as
unity since this leads to the equality of fS and fB: compare (21) and (31). However,
except for operation close to equilibrium, the hypothesis �=1 can be doubted for real
motors or more realistic models. It might well be tested by experiment or, probably
more feasibly, by simulation.
As seen in (33), the dependence of V (F) on the transition rates and load factors is

quite complex even for the simplest two-state models. Indeed, Figs. 3–5 demonstrate
that the six independent parameters (36) permit velocity–load plots of extremely varied
shapes (including further forms not shown). Although certain types, such as (e), seem
to characterize fairly small regions of the parameter space, it seems that, in general,
the variation of V with F may reveal comparatively little about the motor mechanism
or speci�c parameter values. Currently, therefore, beyond noting the variety of shapes
seen experimentally (as mentioned in Section 6 and note especially [13]), we may say
that the observed motility data provide mild support for the concrete aspects of the
theory.
Nevertheless, it is worth noting that negative, i.e., assisting loads (F ¡ 0) are pre-

dicted to speed up the motor and this has been observed [11]. Conversely, under
super-stalling loads (F ¿FS), backwards velocities are predicted: single reverse steps
of kinesin have then been seen [11] which are, thus, consistent with our concept
of blocked distribution as in (17). However, no steady reverse velocities have been
reported. These facts probably reect the very small terminal reverse rates, w0, of
kinesin [18] already commented upon. Indeed, we may note, complementing the dis-
cussion leading to the Michaelis–Menten relation (5), that these transitions presumably
describe second (or higher)-order chemical reactions controlled by the low concen-
trations of hydrolysis products. The frequently observed process in which a kinesin
molecule detaches itself from or “falls o�” the track [7,11] should also be included
in a fuller account. (Indeed, the exact analysis of Derrida [16] we have used in our
discussions, can be generalized to allow for detachment or “death” processes [28].)
The adequacy of the stochastic models encompassed in the kinetic schemes (2)–

(4), might be challenged by the existence of lower bounds on the dispersion, D, which
yield the upper bounds on the Einstein scale, fE , that were mentioned briey at the
end of Section 4. For kinesin at T =300 K the upper bound on fE is 2.03 pN for any
(N =2)-state model. The data of Svoboda et al. [7,8] essentially satisfy this bound; but
were the bound violated, one might conclude that a kinetic model with N =3 or more
states was needed since the bound increases with N . However, as we demonstrate in the
next section, models in which the transitions are described by discrete jumps occurring
after certain waiting times, are not susceptible to these constraints. Such models might
well prove more realistic — especially in more complicated molecular motors like
RNA polymerase [12] — although, at present, the simpler kinetic representations may
su�ce. Nevertheless, in assessing our (essentially tentative) comparisons with experi-
ment, it should be borne strongly in mind that the main principles we have enunciated
are not restricted to the N = 2 sequential kinetic models speci�cally analyzed. Con-
sequently, the observation of signi�cant violations would indicate serious de�ciencies
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in the general understanding of molecular motor mechanisms embodied in the analysis
presented.

8. Jump-and-wait models

As mentioned above, the Einstein force scale, fE , obtained from the kinetic scheme
(2) is subject to a fairly stringent bound. From a more fundamental point of view
this can be regarded as arising from a lower bound on the dispersion D for a given
velocity V . Since, by (15), fE ˙ V=D this yields an upper bound on the Einstein
scale. Speci�cally, analysis of the explicit expressions (7)–(9) with (6), enables us to
establish the bound

D¿Vd=2N (all uj; wj ¿ 0) (37)

for N =2 kinetic models. The bound is achieved (when N =2) by uniform rates, that
is uj = u0/wj =w0 (all j). This observation can be understood heuristically since in a
uniform situation there are no distinguished “rate-limiting steps” in the reaction cycle.
For general N , the same uniformity condition yields (37) as an equality. Examining
numerical examples for small N¿3, convinces one that, in accord with the heuristic
argument, any departure from uniform rates increases D. Thus we believe that inequality
(37) is valid for all N . 10 (In passing, we may mention that the particular N =2 model
studied in [15] also respects an upper bound on D and, hence, obeys the lower bound
fE=kBT ¿ 2=d. However, this is directly attributable to the special limiting situation,
w0=0, studied there which, as mentioned initially, cannot be literally true in reality. 11 )
Now any general lower bound on the dispersion of a molecular motor is open to

suspicion since, if the motor were “purely mechanical”, it would move forward, under
any �xed load (including F = 0), at a strictly constant rate exhibiting no variance at
all. For such an ideal or ‘clockwork motor’ one would, thus, have D ≡ 0. Since highly
accurate clocks exist in the animal world — albeit made by humans — one should
prefer models that allow the dispersionless, purely mechanical limit to be attained.
How closely real molecular motors can or do approach the limit is certainly a matter
of interest.
In light of these remarks, our purpose in this section is to demonstrate that

the bounds on D and fE are directly related to the continuous-time picture of the
rate process that is embodied in the kinetic master equations (3) and (4). In essence,
these enforce a minimum value of the dispersion D given a value of V . To see this
most directly, consider an (N = 1)-state model with master equation

@P0
@t
(l; t) = uP0(l− 1; t) + wP0(l+ 1; t)− (u+ w)P0(l; t) ; (38)

10 In terms of the randomness parameter of Svoboda et al. [8] this amounts to the lower bound r (≡
2D=Vd) ¿1=N .
11 A similar comment applies to the scheme discussed by Svoboda et al. [8] in their appendix where ran-
domness r is subject to the upper bound r61, which again implies fE=kBT¿2=d.
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where, for brevity, we have put u0 = u¿w0 = w¿ 0. Then one �nds (say, from the
expressions in the appendix) the simple results

V = (u− w)d; D = 1
2(u+ w)d2 : (39)

Note, now, the lower bound D¿ 1
2ud

2, which is approached when w=u → 0; in this
limit V approaches ud so that (37) is recaptured (for the case N = 1). Likewise, the
upper bound fE=kBT ¡ 2=d (for N = 1) follows.
By contrast, consider instead a discrete event sequence in which a forward or back-

ward jump is attempted at (mean) time intervals �t = � (triggered, one might picture
for a molecular motor, by the arrival of individual ATP molecules). If �P0(l; n) is the
probability that the (motor) particle is at site l after n jump attempts, one now has
[19,21,31]

�P0(l; n+ 1) = p+ �P0(l− 1; n) + p0 �P0(l; n) + p− �P0(l+ 1; n) ; (40)

where p+ and p− are the probabilities of completing a positive or negative step while
p0 = 1−p+−p− is the probability of remaining at the same site. If one sets p+ = u�
and p− = w�, and identi�es the time as t ≈ n�, this discrete master equation, reduces
to the continuous form (38) in the limit � → 0 [17].
Now the mean displacement 〈x〉1 after just one attempt is clearly (p+ − p−)d.

Since, by the assumptions of the model, successive jumps are uncorrelated, one has
〈x〉n = n〈x〉1 so that the mean velocity is

V = (p+ − p−)d=�= (u− w)d : (41)

Note that the identi�cations appropriate for reaching the continuous-time limit yield
agreement with the corresponding result (39) for V . Because successive jump attempts
are uncorrelated, we can compute D using de�nition (1) with only a short time interval:
speci�cally, we may take t = �. Thus, from 〈x2〉1 = (p+ + p−)d2 we obtain

D= 1
2(d

2=�)[p+ + p− − (p+ − p−)2]

= 1
2 [u+ w − (u− w)2�]d2 : (42)

To see that D now has no positive lower bound for �xed V , we may either specialize
to the case p0 = 0 or consider the limit p− (=w�).p+: then one �nds

D˙ (d2=�)p+(1− p+) ≈ Vd(1− p+) ; (43)

which becomes inde�nitely small when p+ approaches unity (while V → d=�). Hence
there is no lower bound on D or upper bound on fE in such a discrete jump model.
Indeed, it is intuitively clear that in the limit p+=1 (so that p0 =p−=0) the particle
moves in clockwork manner at speed d=� with no dispersion.
It is important notice, however, that the barometric formulation can be applied di-

rectly to the jump model by introducing a barrier, as before, such that site L+1 (¿ 0)
cannot be reached. Clearly, this can be accomplished by changing only the master equa-
tion (40) for �P0(L; n+1) by setting p−=0 so that p0=1−p+. With the initial condition
�P0(l; 0) = �l0, this leads precisely to the previous form, (21), but with � = p+=p−.
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Furthermore, this jump model result agrees exactly with the continuous-time (N = 1)
expression � = u=w when, as above, one puts p+ = u� and p− = w�. Beyond that,
the ratio R(�) = fB=fE still obeys (23) but with, in leading order, (!=�) replaced by
1
2p− = (1 − p0)=2(� + 1). For �¿ 2 one must have 1

2p− ¡ 0:06 and one �nds that
when � increases the ratio R(�) varies much as discussed above for the continuous
case.
The master equation (40) can be readily extended to periodic N -state jump models,

in analogy to the kinetic equations (3) and (4), by introducing forward and backward
jump probabilities, p+j and p−

j with p0j = 1− p+j − p−
j (for j = 0; 1; : : : ; N − 1). The

absence of a lower bound on D follows merely by considering the uniform situation,
p+j =p+; p−

j =p− (all j), which obviously reduces the model to the N =1 case just
discussed. The barometric formulation can, equally, be implemented and, again, leads
to (21) but now with

� =
N−1∏
j=0

(p+j =p
−
j ) : (44)

Likewise, in order to account for the e�ects of a load on the motor particle, the
quasiequilibrium hypothesis (27) can be adopted for the spatially dependent jump prob-
abilities p+j (l) and p−

j (l).

8.1. Waiting-time distributions

At a deeper level, however, it is reasonable to object that our arguments for the
one-state jump models have more or less tacitly assumed that the jump attempts oc-
cur with clockwork regularity at times n� whereas, more realistically, there should be
some distribution, say  (t), of waiting times between one event and the next. More
speci�cally, after arriving at a site one may suppose that the probability of attempting
a jump between subsequent times t and t + dt is  (t) dt. In that case � should be
identi�ed with the mean time between attempts, de�ned via

�= �t with tn =
∫ ∞

0
tn (t) dt and t0 = 1 : (45)

Such a waiting-time model may be studied along the lines of Montroll and Scher
[17]. 12 Provided  (t) decreases su�ciently fast when t → ∞ that the second moment
t2 remains �nite, the analysis for V and D can be carried through: it shows again
that D is, in general, unbounded below while fE ˙ V=D is unbounded above. Indeed,
expression (41) for V remains valid. On the other hand, expression (42) for D is no
longer accurate: it must be replaced by the, albeit, similar form

D= 1
2(d

2=�)[p+ + p− − (1−�)(p+ − p−)2]

= 1
2 [u+ w − (1−�)(u− w)2�]d2 ; (46)

12 A restricted N -state version, with no reverse-reaction transitions (which simpli�es the analysis appreciably),
was discussed in the appendix of Ref. [8].
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the new parameter here, namely,

�= (t2 − �t2)= �t2¿0 ; (47)

is the reduced variance of the waiting time and so measures the relative width or
“spread” of the distribution  (t). As a conveniently general example, suppose  (t)˙
t�−1e−t with �; ¿ 0. Then one readily �nds 13 �=�= and �=1=�. The sharp distribu-
tion originally assumed evidently corresponds to the limit � → ∞ and then result (46)
reproduces (42). Conversely, for � = 1, when  (t) reduces to the simple exponential
or Poisson process form e−t=�, one has � = 1 and the (N = 1) kinetic model result
(39) is recaptured. Indeed, the full kinetic description becomes valid for exponential
waiting distributions.
Finally, once one introduces a waiting-time distribution one would clearly prefer to

have distinct distributions, say  +j (t) and  −
j (t), for forward and backward jumps out

of states j in a multi-state model (in place of p+ (t) and p− (t) for the (N =1)-state
model described). By extending Derrida’s analysis with the aid of the theorem on
generalized master equations due to Landman et al. [35], one can, in fact, handle
such a general jump-and-wait model precisely. Thereby we obtain [28] closed-form
expressions for V and D that depend only on the low-order moments of  +j (t) and
 −
j (t). Indeed the explicit calculations can be carried further by allowing for �nite

branching processes, say with waiting-time distributions  �
j (t), that lead o� the main

linear reaction sequence (2). Such branching models may be useful, in particular, for
describing RNA-polymerase where individual motors exhibit lengthy “pauses” in their
motion on a DNA strand [12]. In addition, at some further cost in calculation, we
can [28] include “death processes” with waiting-time distributions,  �

j (t): the overall
probability of �nding a motor particle anywhere on the track then decays in time
(ultimately at an exponential rate) but those particles that remain on the track should
still be characterized by a drift velocity V and dispersion D. As mentioned, this enables
one to include irreversible detachment of a motor from its track as seen, e.g., in kinesin
experiments [7,11].

9. Conclusions

We have presented a general theoretical framework for addressing the questions of
the driving force, f that a molecular motor protein can exert and the relations of f
to the velocity under a load and to the positional dispersion of the motor as it moves
along its molecular track. While many of the general concepts advanced should be
widely applicable, the detailed analysis has focused on a fairly broad and basic class
of discrete-state stochastic models — kinetic descriptions in the simplest instance but
extended to jump-and-wait models at a somewhat more elaborate level of description.
These models prove amenable to a surprising degree of exact analysis.

13 The speci�c results quoted in Ref. [17], Eqs. (75) for � = 1
2 and 2 are in error. In addition the factor 4

in Eq. (76) should read 2. Dr. Harvey Scher has kindly acknowledged that these corrections are needed.
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It proves physically essential to recognize that, although in some sense isothermal and
isobaric, the crucial physicochemical operations in a motor protein are highly local and
take place intrinsically far from equilibrium. Thus close-to-equilibrium, Einstein-type
relations between friction, di�usion, and velocity yield only lower bounds on f; and,
in examples like kinesin on a microtubule, these are too small to use as guides to the
value of f by factors of three (or more).
By contrast, a “barometric formulation” in terms of a limiting spatial distribution of

a model motor faced with a rigid barrier, provides a simple relation for f, in terms
of the intrinsic rate constants, that appears quite consistent with available experimental
data (although, that is relatively limited).
The barometric approach agrees, in turn (subject to a rather natural, small pro-

viso), with a more elaborate quasiequilibrium hypothesis for the dependence of the
rate constants on imposed loads. It is essential in this connection to recognize that the
induced stresses in the motor protein molecule will, in general, cause quite di�erent
changes in the various “internal” forward and backward rate processes. As a result, a
full speci�cation of even the simplest two-state kinetic model requires six independent
parameters. The resulting plots of velocity vs. force can be quite varied in shape: see
Figs. 3–5. However, even precise experimental knowledge of such motility plots and
of the dispersion may not su�ce to pin down the model parameters. And, of course,
the parameters of even a very successful model may, by their nature, provide compar-
atively little insight into the detailed molecular mechanisms employed by a real motor
protein. Nevertheless, we believe that a systematic and general theoretical approach,
such as we have expounded, should play a useful role in analyzing and classifying
data, simulations, and more elaborate models.
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Appendix : General expressions for velocity and dispersion

For a one-dimensional hopping model with N states and arbitrary transition rates
uj and wj, as introduced in Eqs. (2)–(4), Derrida [16] obtained the exact steady-state
behavior. For the drift velocity he found

V = V [{uj; wj}N ] = d
RN


1− N−1∏

j=0

wj

uj


 ; (A.1)
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where d is the lattice spacing (or step size) while

RN =
N−1∑
j=0

rj; rj =
1
uj

(
1 +

N−1∑
k=1

k∏
i=1

wj+i

uj+i

)
: (A.2)

The expression for the dispersion (or di�usion constant) — de�ned as in (1) — is
more elaborate: it may be written as

D = D[{uj; wj}N ] = {(VSN + dUN )=R2N − 1
2 (N + 2)V} d

N
; (A.3)

where the further sums are given by

SN =
N−1∑
j=0

sj
N−1∑
k=0

(k + 1)rk+j+1; UN =
N−1∑
j=0

ujrjsj ; (A.4)

while the supplementary coe�cients are

sj =
1
uj

(
1 +

N−1∑
k=1

k∏
i=1

wj+1−i

uj−i

)
: (A.5)

Derrida’s methods will also yield further moments of the steady-state walk distribution;
but the expressions become increasingly cumbersome and have not been published to
our knowledge.
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