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Abstract

Motivated by recent applications to experiments on processive molecular motors (i.e., protein
molecules that drag loads along linear, periodic molecular �laments), the analysis of Derrida
(J. Stat. Phys. 31 (1983) 433–450) is extended to obtain exact, closed form expressions for the
velocity, V , and dispersion (or di�usion constant), D, of discrete one-dimensional nearest-neighbor
kinetic hopping models with arbitrary forwards and backwards periodic rate constants of general
period N , which include, in addition: (i) direct jumps between sites, l = kN (k = 0;±1; : : :)
and sites (k ± 1)N ; (ii) the possibility of �nite, periodically arranged, but otherwise arbitrary,
side branches at each site l; and (iii) an arbitrary (but periodic) probability rate of death at
each site (which describes the motor protein detaching from the track). General expressions,
following from previously developed theoretical principles, are given for the forces predicted by
the corresponding extended motor models. The results are illustrated by plots of “randomness”
(˙ D=V ) for more-or-less realistic N = 2 molecular-motor models as a function of the load
force, F . c© 2000 Elsevier Science B.V. All rights reserved.

Dedicated to Joel L. Lebowitz with admiration and a�ection

1. Introduction and summary

Problems concerning the molecular basis of biological motion and transport (see, e.g.,
Refs. [1,2]) have recently attracted increased theoretical attention [3–14] stimulated, in
particular, by striking experiments [15–19] in which a single motor protein molecule
— such as kinesin [1,2,15–17] — is observed in vitro to move stochastically along a
linear molecular track — a microtubule in the case of kinesin. Such molecular motors
are, typically, powered by ATP (adenosine triphosphate [1,2]); they move with mean
velocities, V , up to 1000 nm=s [19] and may exert forces of 5 or 6 pN, or more [18,19]
on biological vesicles, in vivo [1,2], or silica beads, etc., in vitro [15–17]. Since the
motion is stochastic, the location, x(t), at time t of a motor initially bound at a site
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Fig. 1. Representation of the basic N -state periodic sequential kinetic scheme with forward and backward rates
uj and wj (j=0; 1; : : : ; N −1) between states 0l, 1l; : : : ; (N −1)l, at lattice site l and state Nl ≡ 0l+1 at site
l+1, etc., supplemented by direct forward and backward jumps from states 0l to 0l±1, with rates u00 ≡ �+

and w00 ≡ �−, respectively. When regarded as a one-dimensional lattice hopping model, successive sites
l; l + 1; : : : (in states 0l; 0l+1; : : :) are spaced at separations �x = d along the x-axis, while the successive
intermediate (“internal motor”) states jl; (j + 1)l; : : : ; may be regarded as separated by uniform spaces
�x1 = d=N .

on the molecular track at x = 0, is subject to variation: the variance of x(t) may also
be observed [15,19] and can be encapsulated in a dispersion, or e�ective di�usion
constant, D [15,4,8,9]. The dependence of both V and D on the load, F , and on
the power supply (measured, e.g., by the concentration, [ATP]) can be studied in
vitro [15–19].
The simplest theoretical models, appropriate to periodic molecular tracks (such as

microtubules) with sites at x = ld (l = 0;±1;±2; : : :); postulate a sequence of N dis-
crete “internal” states, j = 0; 1; : : : ; N − 1; N ≡ 0, of a motor protein, linked together
dynamically by a sequential (or one-dimensional) kinetic scheme: see Fig. 1 in the
special case of vanishing “jumping” rates, i.e., with u00 = w00 = �± ≡ 0 [7–10]. After
passing “processively” through kN states (k = 1; 2; : : :), say from state jl (“at” site l)
to state jl+k (“at” site l+ k), the motor has moved a distance �x= kd along the track
Fig. 1. More elaborate “thermal ratchet” models, in which the molecular motor is
viewed as a Brownian particle switching stochastically between continuous, one-
dimensional periodic but asymmetric potentials [6,9,14], have also been studied; in
addition, the extension of the kinetic schemes to allow for waiting-time distributions
has also been considered [10,11].
The current theoretical models give reasonable semi-quantitative descriptions of mo-

tor protein motion. However, these theories neglect some potentially signi�cant features
such as (i) detachment or “death,” in which the motor irreversibly unbinds from the
molecular track; (ii) the possible existence of branching biochemical motor states that
lead o� the main processive sequence; and (iii) the random “jumping”, or di�usion,
of a molecular motor along the track in the absence of a power source (or, e.g.,
without using the ATP hydrolysis cycle). All of these features have been observed
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experimentally [17–19], but they have not so far been addressed theoretically in a
systematic way.
In an e�ort to repair these omissions, we present here analyses of three extensions of

the basic periodic sequential kinetic scheme sketched above (and embodied in Fig. 1
when �± ≡ 0). Note �rst, however, that if, for simplicity, we associate the elementary
internal motor transitions (j → j+1) with equal spatial increments �x1=d=N (so that
in a full cycle, (j → j + N ), the motor advances through the “stepping distance,” d,
separating adjacent sites on the molecular track), then the basic kinetic scheme reduces
to a periodic hopping model on a uniform one-dimensional lattice with (nonnegative)
nearest-neighbor forward and backward rate parameters

uj ≡ uj±N ; wj ≡ wj±N ; (1)

see Fig. 1 with �± ≡ 0. Such models have been investigated in the past with the
primary aim of attacking the more di�cult problems of di�usion and random walks in
random media: see, e.g., [20,21] and, for some more recent developments, [22]. But,
as noted recently [9], the seminal analysis of Derrida [20] in 1983 already provides
precisely what is needed in the context of molecular motors, namely, formally exact
and explicit expressions for the asymptotic (long time) drift velocity

V0 = V0({uj; wj}) = lim
t→∞

d
dt
〈x(t)〉 ; (2)

and dispersion (or di�usion constant)

D0 = D0({uj; wj}) = 1
2 limt→∞

d
dt
[〈x2(t)〉 − 〈x(t)〉2] ; (3)

where, again, x(t) represents the spatial displacement along the motor track.
The �rst (and simplest) extension of the basic periodic sequential kinetic scheme

we consider is that shown in Fig. 1: parallel jumping rates, u00 = �+ (forwards) and
w00=�− (backwards) allow for drift and di�usion from site to site along the molecular
track even if the processive sequence is “switched o�”, e.g., by setting u0 = w0 = 0.
Fig. 2 generalizes the basic scheme by allowing a �nite side-branch process to spring
from each primary motor state j with “outward” rates �j; i ≡ �j±N; i (i=0; 1; : : : ; L− 1)
and “inward” rates j; i ≡ j±N; i (i = 1; 2; : : : ; L). For notational convenience we take
all side branches to be of length L: but if some branches are shorter one need only
set the appropriate rates, say �j; Lj , to zero. Multiple branches and branched branches,
or trees, can easily be handled by the methods described below (in Section 3). Finally,
the extended scheme illustrated in Fig. 3 allows for detachment of the motor protein
from the track by introducing a speci�c death rate, �j ≡ �j±N , for each motor state j.
For all these three general kinetic schemes we have obtained explicit expressions for

the velocities V�; V�, and V�, and for the dispersions, D�; D�, and D�, by extending
the original method devised by Derrida [20]. Of course, when the extra rates, which we
denote collectively by �; �;  and �, vanish, Derrida’s original results are recaptured
in all cases. Compound models that combine, e.g., jumping and branching, can be
analyzed in a precisely parallel way in order to compute V�� and D��, etc. It is also
worth recalling that Derrida’s method extends (although with greater complications)
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Fig. 2. Depiction of the basic N -state periodic sequential kinetic scheme, as shown in Fig. 1 (with �± ≡ 0)
with states 0l; 1l; : : : ; which can be regarded as carrying a label k = 0, supplemented by side branches with
outwards and inwards rates �j; k ≡ �j+N; k and j; k ≡ j+N; k between branch states (j; k)l with k=1; 2; : : : ; L.

Fig. 3. Representation of an N -state periodic sequential kinetic scheme with periodic but otherwise arbitrary
death rates, �j¿0, present at each site, so modeling the stochastic detachment of a motor protein from its
molecular track.

to higher-order long-time moments of x(t) [20]. For ease of reference we report our
main velocity and di�usion results in this Section and present the detailed derivations
in Sections 2–4.
To apply any kinetic scheme as a model of a molecular motor one needs theoretical

principles relating the kinetics to the forces exerted and to any external loads imposed.
The authors have recently expounded a general theory [10,11] to answer this need. The
principal results of that approach for the extended kinetic schemes considered here are
presented in Section 5. In addition, as an illustration, the explicit application of the
results to some (N =2)-state models that roughly describe real motor protein systems,
is sketched.
To present our expressions for V and D we note, �rst, that they depend algebraically

only on linear sequential products of rate ratios (which might be regarded, chemically,
as pseudo partial equilibrium constants for intermediate reactions or subprocesses).
Speci�cally, for the model with jumping it is su�cient to consider only the two types
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of product

�k
j ≡

k∏
i=j

wi

ui
and �†k

j ≡
k∏

i=j

wi+1

ui
=

wk+1

wj
�k

j : (4)

The branching scheme requires, in addition, the branch products

��; k
j ≡

k∏
i=1

�j; i−1
j; i

: (5)

For the model with deaths one needs the analogs of (4), which we will call �̃k
j and

�̃†; k
j , that are obtained by replacing uj and wj by the “renormalized” values

ũ j = uj’j+1=’j and w̃j = uj’j−1=’j ; (6)

where the renormalization coe�cients, ’j ≡ ’j±N (j=0; 1; : : : ; N−1), are conveniently
normalized by

’0 ≡ 1 : (7)

Speci�cally, the ’j are the components of the right eigenvector, ’ = [’j], associated
with the eigenvalue � = �({uj; wj}) of smallest magnitude of the N × N rate matrix
M[{uj; wj; �j}] with the nonzero elements

Mj; j−1 =−wj; Mj; j = uj + wj + �j; Mj; j+1 =−uj ; (8)

where the periodicity (1) should be recalled so that, in particular,

M0;−1 ≡ M0; N−1 =−w0 and MN−1; N ≡ MN−1; 0 =−uN−1 : (9)

Thus M is close to tridiagonal but has nontrivial corner elements on the counter diag-
onal. Since ’ is de�ned via M’=�’, the determination of the ’j requires, in general,
solution of the N th order algebraic equation |M− �I|=0: but for certain special cases
(such as when the rates take values u¡; w¡ and �¡ for 06j¡ j† and conversely for
j†6j¡N − 1) explicit analytical results may be obtained. Note that M is stochastic
when �= 0 (in the sense that the row sums then vanish identically).

1.1. Hopping with jumps

For the basic kinetic scheme supplemented by jumps from states 0l to states 0l±1
(see Fig. 1), the drift velocity may now be written as

V� = V0 + V1(�±) ; (10)

V0 = d(1−�N
1 )=RN ; V1 = d(�+ − �−)r0=RN ; (11)

where, using the notations above,

RN =
N−1∑
j=0

rj; rj = u−1j

[
1 +

N−1∑
k=1

�j+k
j+1

]
: (12)
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Note that V0 in (11) is just Derrida’s original expression for the mean velocity [20].
The dispersion may, similarly, be decomposed as

D� = D0; � + D1(�±) + D2(�±) ; (13)

with a primary contribution, surviving when �+ = �− = 0, of

D0; � = (d=N ){[V�SN + dUN ]=(RN )2 − 1
2 (N + 2)V0}(V�=V0) ; (14)

SN =
N−1∑
j=0

sj
N−1∑
k=0

(k + 1)rk+j+1; UN =
N−1∑
j=0

ujrjsj ; (15)

in which, recalling (4), the new sum is given by

sj = u−1j

[
1 +

N−1∑
k=1

�†j−k
j−1

]
: (16)

Setting V� = V0 in (14) reproduces Derrida’s result for the dispersion [20]. The sym-
metric jump contribution to D� is simply

D1(�±) = 1
2d
2(�+ + �−)r0=RN ; (17)

while the antisymmetric part, vanishing when �+ = �−, is

D2(�±) = d2(�+ − �−){[V�J0 − dJ1]=V0RN − 1
2 (N − 2)r0}=NRN ; (18)

where the further sums required are

J0 = r0
N−1∑
j=0

jsj − u−10

N−1∑
j=0

(j + 1)

[
rj+1 +

N−1∑
k=1

rj+k+1�k
1

]
; (19)

J1 = r0 +
N−1∑
j=1

rj�
j
1 + (�

+ − �−)
r0
u0

N−1∑
j=1

j�j
1 : (20)

We may, �nally, remark that, with obvious changes, these results adapt immediately to
jumps from motor state jl to jl±1 for any j. Further sets of parallel jumps can also be
handled: in the expression for V� they lead to further additive terms like V1 in (11).

1.2. Hopping with branches

For the branching kinetic scheme speci�ed in Fig. 2 the velocity is given by

V�(�; ) = d(1−�N
1 )=R

�
N ; (21)

which is identical to Derrida’s result, namely V0 in (11), except for the modi�ed sum

R�
N =

N−1∑
j=0

r�j ; r�j = rj

[
1 +

L∑
k=1

��; k
j

]
; (22)
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where the de�nitions (5) and (12) should be recalled. The dispersion can be written
as

D�(�; ) = D0; �(�; ) + D1; �(�; ) (23)

with the primary term, that survives even when all the �j; i vanish, given by

D0; � = (d=N ){[V�S
�
N + dU�

N ]=(R
�
N )
2 − 1

2 (N + 2)V�} ; (24)

where the sums, closely analogous to SN and UN in (15), are

S�
N =

N−1∑
j=0

s�j

N−1∑
k=0

(k + 1)r�k+j+1; U�
N =

N−1∑
j=0

ujrjs
�
j ; (25)

in which, in analogy to (16), we have

s�j = u−1j

[
1 +

L∑
l=1

��; l
j +

N−1∑
k=1

(
1 +

L∑
l=1

��; l
j−k

)
�†j−1

j−k

]
: (26)

The contribution due purely to the branching is

D1; � = V 2�

N−1∑
j=0

L∑
k=1

J �
j; k ; (27)

with coe�cients, vanishing when the �j; i vanish, given by

J �
j; k =− rj

R�
N j; k

[
L∑

l=k

��; l
j +

k−1∑
i=1

�j; i

�j; 0
��; i

j

L∑
l=k−i

��; l
j

]
: (28)

1.3. Hopping with deaths

One must now compute the renormalization factors de�ned in (7)–(9) above and,
thence, the renormalized rate factors ũ j and w̃j given in (6). The mean velocity is then
given by

V� = d(1− �̃N
1 )=R̃N ; (29)

where �̃N
1 ; R̃N , and the r̃j are de�ned, using ũ j and w̃j, in precise analogy to (4) and

(12). Likewise, the dispersion is given by

D� = (d=N ){[V�S̃N + dŨN ]=(R̃N )2 − 1
2 (N + 2)V�} ; (30)

where S̃N , ŨN , and s̃j are de�ned, similarly, in precise analogy to (15) and (16).
For the general (N = 2)-state model with death rates �0 and �1 the ’j are read-

ily found and, recalling convention (7), the velocity and dispersion may be written
explicitly as

V� = d(u0u1 − w0w1)’1(u; w; �)=�1(u; w;’1) ; (31)

D� = 1
2d
2[(u0u1 + w0w1)’1 − 2’1(V�=d)2]=�1 ; (32)
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Fig. 4. Variation of the dimensionless “randomness” parameter, r = 2D=dV , for particular (N = 2)-state
model motor proteins as a function of the load force, F = �FS , relative to the stalling force, FS , at which
the velocity, V (F), goes to zero. The bold curves labeled (i) in parts (a) and (b) correspond to a simple,
unmodi�ed sequential model with moderately realistic rates u0; u1; w0 and w1 and “load distribution factors”
(see Refs. [10,11]) �+0 = �+1 = 0, �

−
0 = �−1 = 0:5: see Table 1 (and model (d) in Refs. [10,11]). In plot (ii)

direct jumps, with �+ = �−, have been incorporated, while in (iii) a side branch process of length L1 = 1
has been introduced in motor state j=1. The e�ects of (iv) a death rate from state j=0 only and (v) from
state j= 1 only, are illustrated in (b); note the change of scales from (a). The speci�c parameters for cases
(i)-(v) are given in Table 1.

with the auxiliary functions given by

�1 ≡ (u0 + w0)’21 + u1 + w1 ; (33)

’1 = 1
2 (u0 + w0)−1[u0 + w0 + �0 − u1 − w1 − �1 +

√
�] ; (34)

� = (u0 + w0 + �0 − u1 − w1 − �1)2 + 4(u0 + w0)(u1 + w1) : (35)

An application of these speci�c results is illustrated in Fig. 4.

2. Periodic kinetics with jumping

In this section we consider the general periodic sequential kinetic model with jumps
as described in Fig. 1. The probability Pj(l; t) of �nding the motor at site l in state j
at time t satis�es the master equation

d
dt

Pj(l; t) = uj−1Pj−1(l; t) + wj+1Pj+1(l; t)− (uj + wj)Pj(l; t) ; (36)
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for j 6= 0, while for j = 0 one must include the jumping rates so that
d
dt

P0(l; t) = uN−1PN−1(l− 1; t) + w1P1(l; t) + �+P0(l− 1; t) + �−P0(l+ 1; t)

− (u0 + w0 + �+ + �−)P0(l; t) : (37)

Recall that, because of the periodicity, the state Nl coincides with 0l+1. Without loss
of generality, for the present purposes, we may assume that the initial condition is
Pj(l; 0) = P0j �l; 0. Conservation of probability then requires

+∞∑
l=−∞

N−1∑
j=0

Pj(l; t) = 1 for all t ; (38)

where, here and below, we see that Pj(l; t) approaches zero rapidly when l → ±∞ at
�xed t¿0 for all j.
Following Derrida’s approach closely [20], we now de�ne two auxiliary functions

for each state j, namely,

Bj(t) ≡
+∞∑

l=−∞
Pj(l; t); Cj(t) ≡

+∞∑
l=−∞

(j + Nl)Pj(l; t) : (39)

The master equations (36) and (37) then yield

d
dt

Bj(t) = uj−1Bj−1 + wj+1Bj+1 − (uj + wj)Bj (40)

which is valid for all j since the j = 0 terms containing �+ and �− cancel in the
summation on l. Similarly, for j 6= 0 we obtain

d
dt

Cj(t) = uj−1Cj−1 + wj+1Cj+1 − (uj + wj)Cj + uj−1Bj−1 − wj+1Bj+1 ; (41)

while for j = 0 the result is

d
dt

C0(t) = uN−1CN−1 + w1C1 − (u0 + w0)C0

+ uN−1BN−1 − w1B1 + (�+ − �−)NB0 : (42)

Now it is heuristically clear that for �xed �nite N , the behavior of Pj(l; t) at large
times should describe a packet of probability density moving with a steady drift ve-
locity, V , and broadening di�usively. This conclusion may be demonstrated generally
with the aid of a matrix formulation in which a Fourier-space (x ⇒ q) representation is
utilized (see, e.g., Ref. [23]). With this picture in mind we introduce (again following
Derrida [20]) the ansatz

Bj(t)→ bj; Cj(t)− ajt → Tj (43)

which should be valid for suitable constants bj, aj and Tj, which we will determine,
when t → ∞. Note that periodicity implies

bj+N = bj; aj+N = aj; and Tj+N = Tj : (44)
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Then from (40) with dBj=dt = 0 we may conclude

fj+1 ≡ wj+1bj+1 − ujbj = wjbj − uj−1bj−1 ≡ fj : (45)

By iteration one sees that fj+1 = f0 must be constant which leads to

bj =−f0
uj
+

wj+1

uj
bj+1 =−f0

uj

[
1 +

wj+1

uj+1

]
+

wj+1wj+2

ujuj+1
bj+2 = · · · : (46)

After N −1 steps we may use (44), i.e., bj+N =bj. Then, noting that the normalization
condition (38) yields

∑N−1
j=0 bj = 1, enables us to conclude

bj =
rj
RN

with rj =
1
uj

[
1 +

N−1∑
k=1

�j+k
j+1

]
; (47)

where the notations in (4) and (12) have been invoked.
To determine the coe�cients aj and Tj in (43) we use (41) and (42): the secular

term, Cj ≈ ajt, imposes the condition

wj+1aj+1 − ujaj = wjaj − uj−1aj−1 (all j) ; (48)

while the “phase shifts” Tj must satisfy

aj = [uj−1Tj−1 + wj+1Tj+1 − (uj + wj)Tj] + uj−1Bj−1 − wj+1Bj+1 ; (49)

for j 6= 0 but with, for j = 0,
a0 = [uN−1TN−1 + w1T1 − (u0 + w0)T0] + uN−1BN−1 − w1B1 + (�+ − �−)NB0 :

(50)

Comparing (48) with (45) we conclude

aj = Abj ; (51)

where, since
∑N−1

j=0 bj = 1, the constant A can be found by summing the aj and using
(49) and (50): the Tj then cancel identically to yield

A=
N−1∑
j=0

aj =
N−1∑
j=0

(uj − wj)bj + (�+ − �−)Nb0 : (52)

On substituting result (47) for bj one �nds that all the intermediate products cancel in
the summation leaving the simple result

A= N [1−�N
1 + (�

+ − �−)r0]=RN ; (53)

where we may note that �N−1
0 ≡ �N

1 .
In order to �nd the Tj we introduce (following Derrida [20])

yj ≡ wj+1Tj+1 − ujTj ; (54)

and rewrite (49) and (50) as

yj − yj−1 = aj − uj−1bj−1 + wj+1bj+1 for j 6= 0 ; (55)

y0 − yN−1 = a0 − uN−1bN−1 + w1b1 − (�+ − �−)Nb0 for j = 0 : (56)
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These equations can be solved along the lines used to treat (45) which yield

yj = j(�+ − �−)b0 + ujbj + (A=N )
N−1∑
i=0

(i + 1)bj+i+1 + c ; (57)

where c is an arbitrary constant which, it transpires, cancels in the �nal expression for
the dispersion, D. One can check that this form solves (55) and (56) with the help of
the relation

ujbj − wj+1bj+1 = A=N − (�+ − �−)b0 (58)

which follows from (52) and (47). Iterating (54) yields

Tj =−yj

uj
+

wj+1

uj
Tj+1 =−yj

uj
− wj+1yj+1

ujuj+1
+

wj+1wj+2

ujuj+1
Tj+2 = · · · : (59)

Invoking the periodicity (44) then leads to [20]

Tj =− 1
uj

[
yj +

N−1∑
k=1

yj+k�
j+k
j+1

]
=(1−�N

1 ) : (60)

To calculate the drift velocity V� and the di�usion constant D� we use the general
de�nitions adopted in (2) and (3). Clearly, one has

〈x(t)〉= d
N

+∞∑
l=−∞

N−1∑
j=0

(j + Nl)Pj(l; t) =
d
N

N−1∑
j=0

Cj(t) ; (61)

from which, using (36) and (37), we �nd

d
dt
〈x(t)〉= d

N

+∞∑
l=−∞

N−1∑
j=0

(j + Nl)[uj−1Pj−1(l; t)+wj+1Pj+1(l; t)−(uj + wj)Pj(l; t)]

+
d
N

+∞∑
l=−∞

Nl[�+P0(l− 1; t) + �−P0(l+ 1; t)− (�+ − �−)P0(l; t)]

=
d
N

N−1∑
j=0

(uj − wj)Bj(t) +
d
N
(�+ − �−)NB0(t) : (62)

When t → ∞ this reduces, with the aid of (52) to

lim
t→∞

d
dt
〈x(t)〉= d

N

N−1∑
j=0

(uj − wj)bj + (�+ − �−)Nb0

= d
N

A : (63)

Finally, using (2) and result (53) we can express the drift velocity as

V� = d[1−�N
1 + (�

+ − �−)r0]=RN : (64)

This can be rewritten as a sum of two terms, as in (10) and (11), where the �rst
term, V0(u; w), is independent of the jumping rates, �±, and corresponds precisely to
Derrida’s original model. The second term allows for the possibility of direct jumps
over a full period. As remarked in the Introduction after results (10)–(20), further
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parallel jumps with rates �+j and �−j from jl to jl±1 can clearly be handled similarly
and simply lead to further additive terms in (64) and (10) and (11).
To determine the dispersion, we start from

〈x2(t)〉= d2

N 2

+∞∑
l=−∞

N−1∑
j=0

(j + Nl)2Pj(l; t) (65)

which leads to

d
dt
〈x2(t)〉= 2 d

2

N 2

N−1∑
j=0

(uj − wj)Cj(t) +
1
2

N−1∑
j=0

(uj + wj)bj(t)

+ N (�+ − �−)C0(t) + 1
2N

2(�+ + �−)b0(t)

 ; (66)

where we have (i) used the master equations (36) and (37), (ii) relying on the rapid
convergence of the sums, shifted the summation variables by j ⇒ j± 1 and l ⇒ l± 1
so that, because of the conservation of the probability current, terms proportional to
l2Pj(l; t) cancel, and (iii) substituted for the sums on l using the de�nitions (39).
Then on using de�nition (3) of the dispersion, results (61) and (62) for 〈x(t)〉 and
(d〈x(t)〉=dt), and recalling the long-time ansatz (43) we �nd formal expression

D� =
d2

N 2

N−1∑
j=0

(uj − wj)(ajt + Tj) + 1
2

N−1∑
j=0

(uj + wj)bj

+N(�+ − �−)(a0t + T0)+ 1
2N

2(�+ + �−)b0−A
N−1∑
j=0

(ajt + Tj)

 : (67)

When one uses (51)–(53) the secular terms proportional to t cancel and one is left
with

D� =
d2

N 2

N−1∑
j=0

(uj − wj)Tj + 1
2

N−1∑
j=0

(uj + wj)bj

+ N (�+ − �−)T0 + 1
2N

2(�+ + �−)b0 − A
N−1∑
j=0

Tj

 : (68)

Now we can substitute for the Tj using expressions (57) and (58). The constant c
then cancels [20]. Finally, introducing de�nition (16) for sj, enables us to write the
dispersion in the forms given in (13)–(20). One sees, as noted above, that the dis-
persion consists essentially of three terms, the �rst corresponding to Derrida’s original
model without jumping, the other two arising directly from the presence of jumps. For
symmetric jumping with �+ = �−, the drift velocity is the same as in the absence of
jumps while the dispersion is simply increased by d2�±r0=RN .
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3. Periodic kinetics with branching

Consider the one-dimensional periodic model with branches as presented in Fig. 2.
Let the probability of �nding the motor at site l at time t in state j of the main
sequence (labeled k=0) or in state k=1; : : : ; L, on the associated branch, be Pj; k(l; t).
The appropriate master equation for k = 0 is then

d
dt

Pj; 0(l; t) = uj−1Pj−1; 0(l; t) + wj+1Pj+1; 0(l; t) + j; 1Pj; 1(l; t)

−(uj + wj + �j; 0)Pj; 0(l; t) ; (69)

while for 16k ¡L one has
d
dt

Pj; k(l; t) = �j; k−1Pj; k−1(l; t) + j; k+1Pj; k+1(l; t)− (�j; k + j; k)Pj; k(l; t) ; (70)

and, �nally, for k = L,
d
dt

Pj; L(l; t) = �j; L−1Pj; L−1(l; t)− j; LPj; L(l; t) : (71)

We may consider the initial condition Pj; k(l; 0) = P0j; k�l; 0 and then have the normal-
ization relation

+∞∑
l=−∞

N−1∑
j=0

L∑
k=0

Pj; k(l; t) = 1 (all t) : (72)

Following the spirit of Derrida’s method as expounded in Section 2, we introduce the
auxiliary functions

Bj; k(t) ≡
+∞∑

l=−∞
Pj; k(l; t); Cj; k(t) ≡

+∞∑
l=−∞

(j + Nl)Pj; k(l; t) ; (73)

for which normalization requires
N−1∑
j=0

L∑
k=0

Bj; k(t) = 1 (all t) : (74)

The time evolution of the Bj; k(t) is given simply by

d
dt

Bj; 0(t) = uj−1Bj−1; 0(t) + wj+1Bj+1; 0(t) + j; 1Bj; 1(t)− (uj + wj + �j; 0)Bj; 0(t) ;

d
dt

Bj; 1(t) = �j; 0Bj; 0(t) + j; 2Bj; 2(t)− (�j; 1 + j; 1)Bj; 1(t) ;

...
d
dt

Bj; L(t) = �j; L−1Bj; L−1(t)− j; LBj; L(t) ; (75)

while the Cj; k(t) must satisfy

d
dt

Cj; 0(t) = uj−1Cj−1; 0(t) + wj+1Cj+1; 0(t) + j; 1Cj; 1(t)− (uj + wj + �j; 0)Cj; 0(t)

+ uj−1Bj−1; 0(t)− wj+1Bj+1; 0(t) ;
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d
dt

Cj; 1(t) = �j; 0Cj; 0(t) + j; 2Cj; 2(t)− (�j; 1 + j; 1)Cj; 1(t) ;

...
d
dt

Cj; L(t) = �j; L−1Cj; L−1(t)− j; LCj; L(t) : (76)

Arguing, as before, that the long-time behavior of Pj; k(l; t) must represent a proba-
bility packet drifting steadily, we introduce the ansatz

Bj; k(t)→ bj; k ; Cj; k(t)− aj; k t → Tj; k (77)

for t → ∞. By (75) and (76) the coe�cients bj; k must then satisfy

wj+1bj+1; 0 − ujbj; 0 = wjbj; 0 − uj−1bj−1; 0 + (�j; 0bj; 0 − j; 1bj; 1) ; (78)

�j; 0bj; 0 − j; 1bj; 1 = �j; 1bj; 1 − j; 2bj; 2 = · · ·= �j; L−1bj; L−1 − j; Lbj; L = 0 ; (79)

while the aj; k and Tj; k , should be determined from

aj; 0 = uj−1Tj−1; 0 + wj+1Tj+1; 0 − (uj + wj)Tj; 0 + uj−1bj−1; 0 − wj+1bj+1; 0

−(�j; 0Tj; 0 − j; 1Tj; 1) ; (80)

aj; 1 = (�j; 0Tj; 0 − j; 1Tj; 1)− (�j; 1Tj; 1 − j; 2Tj; 2); : : : ;

aj; L = �j; L−1Tj; L−1 − j; LTj; L ; (81)

and from the set

wj+1aj+1; 0 − ujaj; 0 = wjaj; 0 − uj−1aj−1; 0 + (�j; 0aj; 0 − j; 1aj; 1) ; (82)

�j; 0aj; 0 − j; 1aj; 1 = �j; 1aj; 1 − j; 2aj; 2 = · · ·= �j; L−1aj; L−1 − j; Laj; L = 0 ; (83)

which precisely matches (78) and (79).
The side-branch relations (79) are readily solved recursively: recalling the notation

(5), one �nds

bj; k =��; k
j bj; 0 (k = 1; : : : ; L) (84)

and sees that the � and  terms drop out of (78) which then reduces to the same form
as (45) in Section 2. Consequently, the method of solution used to derive (47) works,
the only change arising from the normalization of the bj; k which now follows from
(74). Thus we obtain

bj; 0 = rj=R
�
N ; (85)

where the rj were already de�ned in (12) while R�
N is given by (22). As noted, the

recursion relations (82) and (83) for the aj; k have the same form as for the bj; k and
so, as in Section 2, we are led to

aj; k = Abj; k with A= N (1−�N
1 )=R

�
N : (86)

The remainder of the analysis now proceeds on the basis of (80) and (81) in com-
pletely parallel fashion to that presented in Section 2 for the model with jumps. The
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results for the drift velocity V� and the dispersion D� are given in (21)–(28) of the
Introduction. Inspection of the analysis leading from (73) to (85) reveals that the only
changes introduced by adding further branches, trees, etc., arise from the overall nor-
malization requirement which led here to the replacement of rj by r�j and RN by R�

N :
see (85) and (22).

4. Periodic kinetics with death

Finally, we consider the periodic sequential model with the possibility of detachment
from each state with rates �j ≡ �j±N¿0 as depicted in Fig. 3. The time evolution of
the probability Pj(l; t) of �nding a live motor in state j at site l at time t is now
governed by the master equation

d
dt

Pj(l; t) = uj−1Pj−1(l; t) + wj+1Pj+1(l; t)− (uj + wj + �j)Pj(l; t) ; (87)

where, as previously, we may accept a localized initial condition of the form

Pj(l; 0) = P0j �l; 0 with
N−1∑
j=0

P0j = 1 : (88)

However, because of the death processes, the overall normalization of Pj(l; t), as pre-
viously stated in (38), is no longer valid. Likewise, the conservation of the probability
current, which also played a crucial role in the previous analysis, is not now available.
Nevertheless, heuristic considerations suggest that the long-time behavior should

again describe a steadily drifting and di�usively broadening packet of probability with,
however, an overall amplitude that decays exponentially in time. Accordingly, we ask
whether one might �nd long-time solutions of the master equation (87) of the form

Pj(l; t) ≈ e−�t−�j P̃j(l; t) ; (89)

where the decrement � and the periodic state coe�cients, �j ≡ �j±N , are to be �xed
so that P̃j(l; t) satis�es the “renormalized”, probability conserving master equation

d
dt

P̃j(l; t) = ũ j−1P̃j−1(l; t) + w̃j+1P̃j+1(l; t)− (ũ j + w̃j)P̃j(l; t) (90)

with suitable “renormalized” periodic rates ũ j = ũ j±N and w̃j = w̃j±N . Clearly, if such
solutions can be found, we will require only those for which the real part of � is
smallest since these must be the longest lived. (In actuality we expect, in general, to
�nd a unique, real, positive � of smallest magnitude.)
Now if, as is in reality implied by (88), a localized initial condition of the form

P̃j(l; 0) = P̃
0
j �l; 0 is acceptable, the renormalized problem is of precisely the form orig-

inally treated by Derrida (see Ref. [20] and Section 2, above). Thus, in the presence
of deaths the velocity and dispersion, V� and D�, of the surviving motor proteins, i.e.,
discounting the overall exponential decay of probability, may be obtained simply by
replacing uj and wj in Derrida’s results by ũ j and w̃j, so yielding the expressions
reported in the Introduction: see (29) and (30).
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To proceed, let us substitute the ansatz (89) in the master equation (87) and multiply
by e�t+�j to obtain

d
dt

P̃j(l; t) = uj−1e�j−�j−1 P̃j−1 + wj+1e�j−�j+1 P̃j+1 − (uj + wj + �j − �)P̃j : (91)

Matching the �rst two terms here to those in (90) yields the relations

ũ j = uj’j+1=’j and w̃j = wj’j−1=’j with ’j = e�j ; (92)

these should be compared with (6) in the Introduction. However, matching the last
terms in (91) and (90) yields a condition on (ũ j + w̃j). On multiplication by ’j, this
may be rewritten as

− wj’j−1 + (uj + wj + �j)’j − uj’j+1 = �’j (93)

for j=0; 1; : : : ; N −1 with, clearly, the periodicity conditions ’−1 =’N−1 and ’N =’0
understood.
Evidently, this condition can be read as the eigenvalue equation M’=�’, where M

is the N ×N matrix speci�ed in (8) and (9) of the Introduction while ’ is the column
vector [’j] which may be normalized by ’0 = 1, in accord with (7). Thus � = �0 is
to be chosen as the smallest eigenvalue of M and the required ’j are the components
of the corresponding eigenvector.
For �nite N we expect in general that, as mentioned, �0 will be real, positive and

nondegenerate: should �0 prove degenerate or should a complex pair of eigenvalues
have the smallest real part, etc., further investigation of the asymptotic behavior of
Pj(l; t) would be required. If we neglect such possibilities, however, we have now
established the results claimed in the Introduction for periodic sequential processes
with deaths.
The speci�c expressions for N = 2 quoted in (31)–(35) follow readily by solving

the quadratic equation |M− �I|=0 and selecting the appropriate root. As can then be
seen from (35), the positivity of either u0u1 or w0w1 is su�cient to ensure that �0 is
real and nondegenerate. More generally note, by virtue of (93) with (7), that one may
express the decrement as

�= �0 + u0(1− ’1) + w0(1− ’N−1) : (94)

In the trivial case where all the death rates are the same, i.e., �j=�, one readily checks
from (93), etc., that �= � and ’j = 1 (all j), as is to be anticipated.

5. Applications to motor protein models

To illustrate the application of our various results for the extended periodic sequential
kinetic schemes, we recall one of the N = 2 sequences, namely model (d), that was
discussed in Refs. [10,11] in the context of experiments on kinesin [15–17]. This motor
protein moves processively (i.e., with small death rates) along microtubules taking steps
of size d = 8:2 nm [1,2,15,16]. It must be emphasized, however, that model (d) was
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Table 1
Values of N = 2 model motor protein parameters illustrating the e�ects of including jumping, branching
(with L0 = 0 and L1 = 1), and death processes. The theory of Refs. [10,11] is invoked for force calculations

Model Zero-load properties Stall force

u0j ; w
0
j ; �

±
j ; �±� : see (96)–(100) ln� ≡ U V 0 (nm=s) D0 (nm2=s] FS (pN)

(i) (d) 11.1 763 1774 5.55
(ii) With jumps

�+ = �− = 20 s−1 11.1 763 2400 2.31
(iii) With a branch

�1; 0 = 1; 1 = 200 s−1 11.1 497 1720 5.55
With death

(iv) �0 = 200 s−1, �1 = 0 11.1 711 1819 5.55
(v) �0 = 0, �1 = 200 s−1 11.1 674 1830 5.55

not speci�cally designed to provide a description of kinesin — work in that direction
is proceeding in the light of the more extensive experiments by Visscher et al. [19].
However, the magnitudes of the selected rates for model (d), and, in particular, the
value of the basic product [10,11]

� = 1=�N
1 =

N−1∏
j=0

uj

wj
≡ eU (95)

were chosen to accord roughly with experimental data (inasfar as available [10]).
Explicitly, model (d) can be speci�ed by rates

u00 = u01 = 200 s
−1; w00 = 30 s

−1; w01 = 0:02 s
−1 : (96)

These rates lead to U= 11:1 in (95), which value correlates sensibly with the reduced
free energy, �G0=kBT , released by the hydrolysis of one ATP molecule at ambient
temperatures, say T = 300 K [10,11]. Note that the superscript zero on the rates here
indicates the operation of the motor under zero load force F . The corresponding ve-
locity and dispersion, V 0 =V (F =0) and D0 =D(F =0) are presented in Table 1 line
(i). Note that the values are not unreasonable [10].
Also shown in Table 1 are particular rate parameters (�; �;  and �), selected to

illustrate the e�ects of extending model (d) to include (ii) jumps in the symmetric
(“thermal di�usion”) situation, �+=�−; (iii) a single branch of length L1=1 emanating
from state j = 1; and (iv) death (or detachment) only from the resting state j = 0 or
(v) only “in process,” i.e., from state j=1. One sees, �rst, in line (ii) of the table, that
the inclusion of symmetric jumps has no e�ect on the zero-load velocity, V 0, although,
naturally, the dispersion increases markedly. When the motor spends time undergoing
branching, the velocity is decreased and, although less strongly, the dispersion under
zero load also falls: see line (iii). Conversely, the same death rate from states j = 0
or 1, reduces the zero-load velocity by di�ering amounts and increases, in these cases,
the zero-load dispersion, D0: see lines (iv) and (v).
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Now, as mentioned in the Introduction, to determine the force exerted by a motor
described by a kinetic model, further theory is evidently necessary. The same is true
if one is to allow for the action of loads on the motor: clearly these must modify the
transition rates in some fashion. An appropriate general formulation has been developed
by the authors [10,11]: we appeal to that for the results presented here without further
exposition beyond indicating that, under a load F , the forward and backward rates, uj

and wj, should be modi�ed by factors

exp(−�+j Fd=kBT ) and exp(+�−j Fd=kBT ) ; (97)

respectively, where � =
∑N−1

j=0 (�
+
j + �−j ) may reasonably be taken as unity. The cru-

cial feature of these expressions is the presence of the “load distribution factors,” �+j
and �−j ; these serve to describe how the overall load force, F , acts on the various
transitions between the internal motor states, j. As such they represent an intrinsic
(and inescapable!) part of the mechanochemical description of a molecular motor. For
simplicity, the values adopted for model (d) were

�+0 = �+1 = 0 and �−0 = �−1 =
1
2 : (98)

When jumps along the track are also present, it is clear physically that the corre-
sponding forward and backwards rates should also be modi�ed by the action of a load,
F . Speci�cally, then, we suppose

�+ ⇒ �+(F) = �+e−�+� Fd=kBT ; �+ ⇒ �−(F) = �−e+�−� Fd=kBT ; (99)

where �+� +�−� =�� (which we will again take as unity). For the purposes of numerical
illustration on the basis of model (d), we will accept the simple assignment

�+� = �−� =
1
2 : (100)

In principle, the branching and death rates could also be sensitive to load. Indeed, it is
observed, in particular, that the rate of detachment of kinesin from a microtubule in-
creases under high loads (at �xed [ATP]) [19]. In an optimal model, therefore, one
or more of the death rates should probably increase with F . However, we assume
here that only the principal sequential rates, u(F)j and w(F)j , vary with F [in accord
with (97) and (98)]. Likewise, we will suppose that the branching rates �1; 0 and 1; 1
remain independent of load.
The behavior of the velocity, V (F), and dispersion, D(F), as the load varies can

now be calculated from the results derived above. When F increases to the stalling
load, FS , the velocity approaches zero; i.e., the motor “stalls.” Results (21) and (29)
for the velocities combined with (6) and de�nition (95), show that V vanishes when
� = 1. Via (97), this leads to the expression

FS = UkBT=d (101)

for the stalling load in the models with branching and death. This conclusion is identical
to the result originally found for the simple sequential models [10,11]. In these cases,
therefore, the stalling force for model (d) remains �xed at 5:55 pN (see Table 1) even
when branching and deaths are included.
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When jumping is present, however, one must take account of (99) which destroys
any zero-load symmetry. Then the velocity V (F) is given by (10) and (11) with (98)
and (99). Since not only �+ and �− but also r0 [in (11) and (12)] depend on the
reduced load, �F ≡ FSd=kBT , one is led to a transcendental equation for the reduced
stalling force, �FS , which is generally intractable. If �+ and �− are su�ciently small,
however, one can use

�F ≡ FSd=kBT ≈ U− r0( �F = U)(�+e−�+� U − �−e+�−� U) : (102)

For model (d) with (100) and the chosen �+ = �−, line (ii) of Table 1 shows the
numerically computed change in stalling force induced by the jumping: it is negative
and quite large in this case.
We may mention in passing that a general “barometric” measure, fB, of the force

exerted by a kinetic motor model under, in essence, zero-load conditions was introduced
in Refs. [10,11]. For the simple sequential models this led to the same value as in
(101) (subject to the condition �=1). This remains true for the extended models with
branching and deaths; but with jumps present a di�erent result is again found, namely,

fB = (kBT=d) ln[(1 + �+r0=(e−U + �−r0)] (103)

which furthermore, no longer agrees with FS (as is not really surprising).
Now for the original model (d) a reduced velocity-load plot, i.e., V (F)=V (0) vs.

� ≡ F=FS , has already been presented [10,11]: one �nds that V (F) decreases monoton-
ically as F increases, which is a typical situation although exceptions are possible [11].
We focus here, however, on the dispersion or e�ective di�usion constant, D, which
gives additional insight into the operation of a molecular motor [4,15,19]. Speci�-
cally, the “randomness” r(F)=2D=dV represents an interesting dimensionless measure
[15,19] since it is subject, in the simple kinetic models, to the lower bound r¿1=N
[10,11].
In Fig. 4 we thus display the variation of the randomness with reduced load for the

unadorned model (d) [solid curves labeled (i)] and for the model supplemented, as in
Table 1, (ii) by jumps; (iii) by a side-branch process; and (iv) and (v) by death (or
detachment). It is interesting that even for the pure model (d) the variation of r with F
reveals signi�cant structure: and these features are reected in the recent observations
[19].
As already noted, one sees from Fig. 4(a) that the inclusion of jumping and branching

increases the dispersion at low loads and this remains true up to moderate loads for the
selected parameters. The relative e�ects of the side branch on the randomness decreases,
however, quite sharply at higher loads. The e�ects of including death processes is
more subtle: in the �rst case, (iv) where motor detachment occurs only from the
“unactivated” or “resting state” j = 0, the randomness always increases. On the other
hand, when detachment occurs only “in process”, i.e., from state j=1, the randomness
(of the surviving motors) at intermediate loads is actually somewhat reduced: see
plot (v). This e�ect arises primarily because the relative velocity becomes larger at
intermediate loads.
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Clearly, these examples are no more than indicative of the usefulness of the ex-
tensions to the original periodic sequential kinetic models we have studied here. But
they serve to suggest how detailed observations of real molecular motors under load
(and, also, under varying power source [19]) may cast light on the mechanisms. Fur-
ther applications should, certainly, be tied to observations of real systems as far as
practicable. Nevertheless, on the theoretical side we plan to extend the analysis to
the more general class of models in which waiting-time distributions,  ±

j (t), etc.,
replace the simple kinetic schemes discussed here (which correspond to
 ±
j (t)˙ e−�±j t). The initial steps in that direction have already been sketched [10,11].
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