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Abstract 

We study the stability matrix (the matrix of second derivatives of the free energy functional with respect to the 
density at each point in the system) for various phenomenological models of interfaces between coexisting phases. 
The eigenvectors and eigenvalues of that matrix are the eigenmodes, and their inverse susceptibilities, of fluctuations 
of the interface. We find that, due to the presence of the interface, several discrete eigenvalues typically appear in 
addition to the continuous bands of eigenvalues of the bulk phases. Some features appear to be generic, while others 
depend on the details of the model. © 1997 Elsevier Science B.V. 

Keywords. Interfaces; Fluctuations; Phase equilibrium 

1. Introduction 

The equilibrium profile of an interface between 
two coexisting phases can be found by minimizing 
a suitable excess free energy functional. If one is 
interested in small fluctuations of the density pro- 
file around this minimum, the appropriate object 
to study is the stability matrix, the matrix of 
second derivatives of  the free energy functional 
with respect to the density at each point in the 
system. The eigenvectors and eigenvalues of this 
matrix are the eigenmodes of  the fluctuations of 
the system, and the inverse susceptibilities of the 
system to those eigenmodes. For a system in a 
stable equilibrium configuration, all susceptibilities 
must, of course, be positive. In addition, the 
stability matrix is closely related to the direct 
correlation function; hence, the scattering function 
can also be expressed in terms of its eigenvalues 
and eigenvectors [1,2]. 
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In earlier work [3], the eigenvalues of the sta- 
bility matrix were calculated to check the stability 
of an interface in a model of  a system of coexisting 
lamellar phases. There, it was found that the 
introduction of  the interface into the system caused 
only small changes in the set of eigenvalues: the 
continua that belonged to the bulk phases 
remained essentially unchanged, while a few 
discrete eigenvalues detached themselves from 
them. An examination of the associated eigenvec- 
tors has since shown that two of them are localized 
near the interface, and two near the ends of the 
(finite) system that was used for the calculation. 
So the interface between those two phases gives 
rise to two discrete eigenvalues. This problem is 
closely analogous to that of lattice vibrations in a 
harmonic lattice with defects [4]. 

Here, we extend the study of the eigenvalues 
and eigenvectors of the stability matrix to more 
general phenomenological models of interfaces 
between coexisting phases. In the next section, we 
give a general discussion of the problem in mean 
field approximation, and then specialize to two 
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cases for which explicit results were obtained. The 
first of these is the familiar squared gradient 
theory, with various suitable choices for the bulk 
free energy F(p), for which analytic results can be 
found. Then we give numerical results for a more 
general model. In both cases, the picture is con- 
firmed that a number of discrete eigenvalues, asso- 
ciated with the presence of the interface, is added 
to the continua of eigenvalues that arise from the 
bulk phases. The number of such discrete eigen- 
values depends on the details of the model. In 
addition, one or more continua of eigenvalues that 
are also associated with the interface can exist. 

2. Fluctuations of the interface 

The density profile in an interface between two 
coexisting phases is depicted schematically in 
Fig. 1, as a function of z, the coordinate perpendic- 
ular to the interface. The mean density p(z) varies 
smoothly from the vapor density Pv at z = - ~  to 
the liquid density Pl at z = ~ .  We model the 

particles of the fluid as hard spheres, with diameter 
b, interacting via a (spherically symmetric) attrac- 
tive potential ~b(r). In mean field theory, the excess 
free energy (per unit area) of an interface in such 
a system, with density profile p(r) and surface area 
A, is given by [5,6] 

a=l~d3r{F[p(r)]+ 1 

× d3r ' (~(r'l[p(r + r') - p(r)]} (1) 

This expression contains two contributions. The 
first, F[p(r)], is the free energy excess (per unit 
volume) of a homogeneous fluid of density p(r). 
It represents the cost of having values of the 
density, in the interfacial region, that are different 
from the equilibrium liquid and vapor densities, 
p~ and Pv. In the mean field approximation it is 
given by 

F ( p ) = & , ( p ) - a p  2 (2) 

/ 
z 

Fig. 1. Schematic density profile of  a liquid-vapor interface. 
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where Fhs(P) is the corresponding quantity for a 
reference system of hard spheres, and 

a =  -- -- d3r ~(r) (3) 
> h 

is the van der Waals constant a, representing the 
effect of the attractive interaction qS(r) between the 
molecules of the fluid. Fhs(P) can be calculated 
from one of various approximate equations of 
state for a hard-sphere system, such as the van der 
Waals (with a =0 )  or Carnahan Starling [7] equa- 
tion of state. F(p)  is qualitatively as shown in 
Fig. 2, with two equal minima at the two coexisting 
densities p~ and p~. The second term in Eq. (1) is 
the extra free energy due to the inhomogeneity of 
the density in the interracial region. (The integral 
is over values of r '= l r '  I larger than the particle 
diameter b.) That second term is the difference (in 
mean field approximation) between the interaction 
energy of a homogeneous system and that of a 
system with density profile p(r) .  

The density profile that minimizes the free 

energy ( 1 ) is found by solving the Euler-Lagrange 
equation obtained by setting the first functional 
derivative of cr equal to zero: 

6or 
- - - -  =0  (41 
&p(r) 

To verify that a stationary point p(r) found from 
Eq. (4) is actually a minimum, the second func- 
tional derivative evaluated at p(r).  

~2a 

A(r,r')  - ~p(r)~p(r ' )  ( 5 ) 

has to be positive. The eigenfunctions and eigen- 
values of the operator A are the eigenmodes of the 
fluctuations of the interface, and the inverse sus- 
ceptibilities of these modes, respectively. In order 
for a profile to be stable, all susceptibilities must 
be positive [8,9]. The eigenvalues and eigenvectors 
play a role, not only in determining the stability 
of the interfacial profile p(r) ,  but also in finding 
the correlation function and scattering function of 
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Fig. 2. The excess free energy density F(p) between the vapor and liquid densities. 
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the system with an interface. The direct correlation 
function c(2)(r, rr) is simply related to the second 
derivative A [ 1,2]: 

6(r-r ')  A 
d2)(r,r~ = - -  A(r,r') (6) 

p(r) kB T 

We will designate the eigenvalues and (normal- 
ized) eigenfunctions of the second functional deriv- 
ative of cr by 2. and ~b.(r), where n labels the 
different eigenfunctions. (In most cases n will be a 
continuous index.) They satisfy the equation 

~A(r,r')~.(r')d3r'= 2.~.(r) (7) 

As was first observed by Wertheim [1 ], one solu- 
tion of the eigenvalue equation (7) is p'(r), the 
derivative of the equilibrium profile. It has an 
eigenvalue 2=0,  indicating that fluctuations of 
that form cost no energy. Those fluctuations corre- 
spond to a translation of the interfacial profile as 
a whole (as can be seen by expanding p(z + 6z)), 
which indeed costs no energy. The existence of 
this eigenmode with eigenvalue 0 is a general 
property that does not depend on the details of 
the model. 

In the next sections we will calculate the eigen- 
values and eigenfunctions for two different versions 
of the excess free energy ~r. First, we will make the 
small-gradient approximation in the inhomogen- 
eous term, resulting in a squared-gradient van der 
Waals type description. This case was extensively 
discussed by Evans [8], and an analytical calcula- 
tion of the eigenvalues and eigenfunctions for the 
specific choice of a quartic polynomial for F(p) 
was done by Zittartz [10]. We will use and discuss 
some results for this case as an example. Second, 
we examine, numerically, the more general case, 
with the full integral non-locality as in Eq. (1), for 
a specific choice for the interaction ~b(r) and the 
bulk excess free energy F(p). Although the details 
of these two versions are different, there are various 
features that appear to be more or less generic. 

2.1. The squared-gradient approximation 

In this section we make the approximation that 
gradients in p(r) are small; or, in other words, that 
the thickness of the interface (which is of the order 

of the correlation length ~) is large, which is the 
case near the critical point. If  we expand the 
difference of densities in the integral term in Eq. ( 1 ) 
to second order in r', we find that the first-order 
term does not contribute to the integral, by symme- 
try. The second-order term gives a contribution of 

~d 3r' ~b (r')[p (r + r') - p (r)] ,~ - mg 2 p (r) (8) 

with 

1 
m = - 7[d3r ~b(r)r 2 (9) 

6- 

The excess free energy a is then, after an integ- 
ration by parts, 

~= Sd3r{ F[p(r)] + ½m[V p(r)] 2 } (10) 

The Euler-Lagrange equation that follows from 
this is 

F'[p (r)] - mV 2 p (r) = 0 (11) 

The equilibrium interface is planar, and we will 
choose the z-direction to be perpendicular to it. 
Then, the solution p(z) of this equation depends 
only on z. The second functional derivative of a, 
evaluated at the stationary profile p(z), is [8] 

62~ 

~p(r)ap(r') 
- F " [ ¢ ( z ) l c ~ ( r - r ' ) - m V 2  6 ( r - r  ') (12) 

The eigenvalue equation (7) then 
differential equation 

F"[p(z)] ¢, (r) - mV 2 q~, (r) = 2, ~), (r) 

becomes a 

(13) 

Eq. (13) is equivalent in form to a Schr6dinger 
equation for a particle in an external potential 
given by V(z)= F"[p(z)] [8]. Thus, the eigenmodes 
of the fluctuations of the interface are the eigen- 
functions of a quantum mechanical potential well 
problem, while the eigenvalues 2, are the energy 
levels associated with those eigenfunctions. A typi- 
cal example of the potential is shown in Fig. 3. 
Since the interface is planar, the potential V(z) 
depends only on z. Thus, the eigenfunctions are 
those of a free particle, i.e. plane waves, in the x- 
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V(z) 

\ 

V 

Fig. 3. The effective 

and y-directions: 

1 
~bp.,.(r) = ~ exp[i(pxx +p,,y)]~p,,(z) (p = (Px,Py)) 

(14) 

for a system of size L x L. Each of the eigenvalues 
2, then consists of the sum of an eigenvalue ,~,, 
corresponding to the z-dependent part O,.(z) of the 
eigenfunction, and a trivial contribution from the 
plane wave part: 

)~p.,. =,;,. +m(p~ +p2) (15) 

Since only the z-dependence of ~bp,~(r) is non- 
trivial, we will focus on it and its associated 
eigenvalues 2,., but in reality each eigenvalue ,~,. is 
only the lower edge of a continuum of states with 
various values of the momentum p in the x~ '  
plane. For a potential such as shown in Fig. 3. 
there will in general be a number of bound states 
with discrete eigenvalues ,~,,, and a continuum of 
eigenvalues above these. Differentiating the 
Euler---Lagrange equation (11) with respect to z 

potential V(z). 

shows that tpl(z)= O'(z) is indeed an elgenfunction 
with eigenvalue -~1 = 0, as was asserted before. For 
a profile with the generic shape shown in Fig. 1, 
the eigenfunction 01(z) is qualitatively as in 
Fig. 4(a); it is the nodeless ground state eigenfunc- 
tion. Consequently, all other eigenvalues ,~,. will be 
positive, since they correspond to higher, excited 
levels. 

By making various specific choices for the bulk 
free energy F(p) one can find solutions of the 
eigenvalue equation (13) analytically. The most 
obvious choice is that of the quartic polynomial 

F ( p ) =  C ( p -  pv ) 2 ( [ ) -  ~ol) 2 (16) 

This leads to the problem solved by Zittartz in the 
context of finding a harmonic approximation to 
the partition function of the Ising model [10]. It 
gives rise to the familiar hyperbolic tangent prolile 

(Pl + P~ ) 
#(z) = + ~Po tanh(z/~) ( 17 ) 

with 6p0 =(P l -pv) /2  and ~=V'm/2Capo. 
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',Vl(z) 

(a) 

%(z) 

(b) 

Fig. 4. The first two eigenfunctions: (a) 01(z); (b) ~O2(z). 
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Then, the eigenvalue equation determining the 
z-dependent part of the eigenfunctions, Or(z), can 
be transformed into an associated Legendre equa- 
tion by making the substitution t = tanh(z/~). Then 
it is seen that the functions Or(z) are eigenfunctions 
of the associated Legendre equation with n=2 ,  
q?~ (z) = P;[tanh(z/~)], with v 2 = 4 - 2~./2C6p 2. There 
are two discrete eigenvalues, corresponding to 
v = 2 and v= 1, ,~1 = 0 and "~2 ~-- 6C6p 2, followed by 
a continuum 2~.=2CbpZ(4-v2), with v2<0. (By 
the WKB approximation one estimates that there 
should be ~ / 6 - 1 / 2 =  1.95 bound states, which is 
consistent.) The corresponding wave functions, 
61(z) and O2(z), the ground state and the first 
excited state of the potential well, are shown in 
Fig. 4. The wave functions in the continuum are 
(non-localized) modified plane waves. 6l(z) is 
indeed the derivative of the equilibrium profile, 
corresponding to a translation in the z-direction. 
O2(z) corresponds to a fluctuation that makes the 
density profile alternately steeper and less steep 
than the equilibrium profile. These changes are 
favored by, respectively, the local and non-local 
terms in the free energy (Eq. (10)). This fluctuation 
causes the contribution of one term to increase, 
and the other to decrease, while the total free 
energy increases in both cases. 

To see what influence the interface has on these 
eigenvalues, we compare them with the case where 
there is no interface but only bulk liquid or vapor. 
The solutions of the eigenvalue equation in that 
case are simple plane waves, eip~/L 3/2, with eigen- 
values )-v = mP 2 + 8 C@o. The general picture, then, 
that follows from the above example with a quartic 
polynomial for F(p) is that this continuum of 
eigenvalues remains, albeit with modified eigen- 
functions, while one or more eigenvalues, associ- 
ated with localized eigenfunctions, appear below 
the continuum. The lowest of these is the ground 
state, corresponding to an eigenvalue 2=0.  The 
exact number of such discrete eigenvalues depends 
on the details of the function F(p). Several other 
choices for F(p) lead to models that can be solved 
analytically. If one takes 

F(p) = C cos~( ~ 2 p - p , - - p ~ )  
- Pl  - -  P v  

(18) 

only one discrete eigenvalue, 2 = 0, is found, with 
a continuum above it. For the choice 
F ( p ) = C ( p l - p ) 3 ( p - p v )  3 the eigenvalue 2=0  is 
itself the bottom limit of the continuum, but it still 
has a localized eigenfunction. Finally, F(p) can be 
constructed from three sections of parabolas, in 
such a way that the function and its first derivative 
are continuous. Then, by the proper choice of a 
parameter, any number of discrete eigenvalues can 
be obtained. 

2.2. Numerical resuhs for the integral non-locality 

If we do not make the squared-gradient approxi- 
mation, but instead keep the full form of the excess 
free energy a as in Eq. (1), the Euler Lagrange 
equation is 

F'[p(r)]+ ffr d3r'~)(r')[p(r+r')-p(r)]=O (19) 
t > b  

Again, we will denote the solution of this equation 
by fi(z). The eigenvalue equation with the second 
functional derivative of ~, Eq. (7), is now 

F"[p(z)]qS. (r) + f .  > b d 3r' 4 (r')[~n (r + r') 

--~bn(r)]=AnO~(r) (20) 

The x- and y-dependent parts of the eigenfunctions 
are again plane waves, and as before we will focus 
on the z-dependent part 0,.(z), and its associated 
eigenvalues ,~,.. In the following, for simplicity, we 
only discuss the case kx = k,, = o. 

The only solution of Eq. (20) that can easily be 
found is once again Ol(z)=p'(z) with eigenvalue 
2j = 0. It again results from the translational sym- 
metry of the problem. The other eigenvaiues and 
eigenfunctions of the problem can only be found 
by solving Eq. (20) numerically. Also, the equilib- 
rium profile p(z) has to be found numerically from 
Eq. (19) [6]. We have done so by discretizing the 
problem, and solving Eq.(19) iteratively as a 
matrix equation. Eq. (20) then also becomes a 
matrix equation, the eigenvalues and eigenvectors 
of which can easily be found. 

As in Section 2.1 we will compare the eigen- 
values and eigenfunctions of the systems with and 
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2e-27 / 
Oe +O0 i i i i 
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Fig. 5. The eigenvalues for the case of the integral non-locality. The lowest two eigenvalues (©) are the two discrete eigenvalues 
discussed in the text. Above them are a continuum of interface eigenvalues (Z]), then the continuum due to the bulk liquid (×), 
another continuum of interface eigenvalues ([])  and finally the continuum due to the bulk vapor (+). The eigenvalues are in order 
of increasing magnitude. 

without an interface. The eigenvectors of  the 
homogeneous liquid or vapor are again plane 
waves, e i p " / L  3/2, and the eigenvalues are given by 
2 ( p ) = F " ( p l . v ) + 2 a + ~ ( p ) ,  where ~(p) is the 
Fourier transform of  the attractive interaction 
potential ~(r). For a specific choice of  ~b(r), the 
Fourier transform ~(p) will cover a certain range 
of  values as p runs from 0 to ~ .  (In contrast to 
the case of  the previous section there is now in 
general an upper limit to this range.) This 
translates into a band of values 2(p) that are 
allowed eigenvalues in the bulk system. Note that 
the locations of  the bands for the bulk liquid and 
vapor are in general not the same; they are shifted 
relative to each other by an amount  
F " ( p O - - F " ( p v  ), the difference in curvature of  the 
excess free energy F ( p )  at the two coexisting 
densities. 

The effect of  introducing the interface is once 

again to add extra eigenvalues, corresponding to 
eigenmodes that are localized around the interface, 
to the continua of  the bulk phases. A particular 
example of  this is shown in Fig. 5, for a discretized 
system of  500 points. That  figure is the result of a 
calculation where the hard sphere part of the 
excess free energy, Fhs(p),  is of  the form leading 
to the Carnahan-Starl ing equation of  state. The 
attractive interaction between the particles is 
chosen to be ~b( r )=-~ / r  6. In this case, there are 
two types of  eigenvalues that are added to the 
bulk bands. First, there are the two lowest eigen- 
values, 21 and 2z. They are both discrete, 21 = 0 as 
was mentioned before, and )T2 has some non-zero 
value below the bottom of  the continuum. The 
eigenfunctions associated with these two eigen- 
values have qualitatively the same shape as in the 
previous section (Fig. 4). 

Above these two discrete eigenvalues the contin- 
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2 

Fig. 6. The fourth eigenfunction, which is part of the continuum of interface eigenfunctions. 

uum begins. However, in contrast to the previous 
case, here the eigenfunctions at the bottom of  the 
continuum are still localized around the interface, 
and the eigenvalues do not overlap with the bands 
of the bulk phases. In fact, the continuum of 
eigenvalues consists of the two bands of  the bulk 
phases (which for our choice of parameters do not 
overlap with each other), with below and between 
them two continuous bands of eigenvalues that 
are due to the presence of the interface, and whose 
eigenfunctions are localized there. An example of 
such a localized eigenfunction is shown in Fig. 6. 
The eigenfunctions in the bulk bands are delocal- 
ized, extending into the phase from which the band 
arises. An eigenfunction extending into the liquid 
phase is shown in Fig. 7. 

3. Discussion 

From the models studied above, it appears that 
there are some generic features in the spectrum of 

eigenvalues of the stability matrix for a system 
with an interface. In most cases, (at least) two 
discrete eigenvalues exist below the continuum due 
to the bulk phases. The first of these corresponds 
to a translational motion of the whole interfacial 
profile, and it is known to exist for any model. 
The second corresponds to a fluctuation in the 
density profile itself; the fluctuation is a shifting 
of energy between the two terms in the expression 
for the excess free energy, one favoring a sharp 
interface, and the other favoring a diffuse one. 
This eigenvalue is not always present, and indeed 
many other eigenvalues can exist in addition to 
these two. Still, these two eigenvalues appear in 
several of the models studied, both in the squared- 
gradient models that can be solved analytically 
(Section 2.1 ), and in the more general models of 
Section 2.2, including several models that are most 
often used in studies of the structure of interfaces. 
This suggests that they do represent a general 
feature of interfacial systems. 

Since the eigenvalues and eigenvectors of the 
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W28~(z) 

z 

Fig. 7. The 285th eigenfunction, which is part of the continuum of bulk liquid eigenfunctions. 

stability matrix play a role in determining the 
correlation function and the scattering function of 
the system, it is interesting to see what the conse- 
quences of the discrete eigenvalues are for these 
quantities in systems with interfaces. Work along 
these lines is in progress. 
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