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Extended kinetic models with waiting-time distributions: Exact results

Anatoly B. Kolomeisky® and Michael E. Fisher
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

(Received 21 July 2000; accepted 28 September 2000

Inspired by the need for effective stochastic models to describe the complex behavior of biological
motor proteins that move on linear tracks, exact results are derived for the velocity and dispersion
of simple linear sequential modelsr one-dimensional random walkwith generalwaiting-time
distributions The concept of “mechanicity” is introduced to conveniently quantify departures from
simple “chemical,” kinetic rate processes, and its significance is briefly indicated. The results are
extended to more elaborate models that have finite side branches and include death pfcesses
represent the detachment of a motor from the frac® 2000 American Institute of Physics.
[S0021-9606)050948-9

I. INTRODUCTION AND SUMMARY sitel) can move forward to statg ¢ 1), (normally pulling a
load at a rateu; and can slip backward, to statg{1), at a

Motor proteins, such as kinesins, dyneins, myosins, andate w; .*®*° This basicN-state model is, clearly, precisely
DNA and RNA polymerases, are important for the biologicalisomorphic to a discrete but, in general, biased random walk
functioning of cells. Consuming energy obtained from theon a periodic one-dimensional lattice. Such random walks
hydrolysis of ATP or related compounds, and moving alongare of broad interest for a variety of applicatidfis?® in
rigid linear tracks(microtubules, actin filaments, DNA mol- particular, for studying diffusion in random environ-
ecules, etg, they play a significant role in cell division, cel- ment$®—*°which may, for example, be approached by allow-
lular  transport, muscle contraction, and geneticing the periodN to become infinit&® Indeed, some time ago
transcriptiont? Such molecular motors can move with ve- Derrid&® presented a mathematical approach that provides
locities, V, up to 1000 nm/$;® and may sustain an external formally exact and explicit formulas for the asymptotic drift
load, F, of 5-8 pN for kinesinSand up to 30—-40 pN for velocity
DNA and RNA polymerase$® Understanding the detailed
mechanism of the fungtioning of motor proteins is a major Vo=Vo({u;,w;})=lim di<x(t)> (1
challenge of modern biology. to AT

In recent years, significant advances have been made in . . . e
experimental techniques for studying motor proteins: one caﬁmd for the dispersiofor effective diffusion constaht
now observe and investigate accurately the mechanical prop- 1 d
erties of single molecules over wide parameter rarigés. Do=Do({uj,wj}) =7 lim a[(xz(t»_(X(t))Z], 2
However, our theoretical understanding of how these pro- o
teins work is still incomplete. Theoretical modeling of mo- wherex(t) is the spatial position of the motor protein mol-
lecular motors has followed two main directions. One classcule or, equally, of the random walker along the linear track
of models is based on “thermal ratchets"'?in which the  at timet and, by periodicityu; .. =Uu; andw;.y=w; . Der-
motor protein is viewed as a Brownian particle that diffusesrida’s results have recently been exploited in developing
in two or more periodic but asymmetric potentials betweentheory for molecular motors.~2%2%A valuable feature of the
which it switches stochastically. Another, more traditionalexact closed expressions is that it is quick and straightfor-
“chemical” approach is based on multistate kinetic descrip-ward to explore the precise effects of a wide range of param-
tions of the motion with various rate processes determiningter values, revealing a variety of different characteristic
the transitions between the statds?®In this paper we con-  types of behaviot®=2%in contrast to employing approximate
sider various extensions of the chemical kinetic schemes failumerical schemes or Monte Carlo simulations, or to study-
which we derive exact, closed-form results in terms of theing oversimplified models.
underlying transition rate parameters. The “purpose” of a motor protein in a biological setting

The simplest periodic sequential kinetic model assumess to move various biochemical entities, such as vesicles,
that a motor protein molecule moves along a periodic moetc., that exert load force§, which act on the protein mol-
lecular track(a microtubule in the case of a kinesiand  ecule. The questions of what force can be exerted by a motor
binds at sites at=1d(I=0,=1,£2,---). Itis postulated that protein within the basic model and how the transition rates
there areN discrete states,=0,1,---,N—1, between con- should be changed by the loa#, have been discussed
secutive binding sites and the motor protein in sfat¢at”  critically.!®!° The resulting calculations for these models
show qualitative and good semi-quantitative agreement with
INow at Department of Chemistry, Rice University, Houston, Texasth€ experimentally observed behavior of normal two-headed
77005-1892. kinesing®~818.19.23
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To describe motor proteins more realistically, however,
and to understand the behavior of proteins other than two-
headed kinesin§®3132extensions of the basis-state peri-
odic sequential kinetic model were recently introdug&d.
These extended models take into consideration the complex-
ity of real biochemical cyclegsmultiple kinetic paths and
branched statésnd allow for the irreversible stochastic de- 0
tachment of molecular motors from the linear track which is l
always observed. Exact expressions for velocities and disper-
sions have been derived for these extended chemical kinetic
model<® in terms of the basic forward and backward rateF!G- 1. A schematic general linear, periodic, stochastic process with for-

- ward and backward waiting-time distributiong; (t) and ¢ (t), failing or
ConSt.antS“j and Wi the corresponding rate constants fOrfutile attempt distributions/%(t), and irrever:ﬁj)k(e Leathléagezé-‘s(t), f?om
the side branches, and the death rates from any of\the statesj,, where the referejnce states,, Gare located at posi{ionx=ld.
intermediate states. [Note that the precise locations of the intermediate state®,1:-,(N

Now, the basic concept underlying chemical kinetic —1);, have no significance for the velocity,, and dispersionD, since
models is the idea that the motion of the motor protein isihese are defined asymptotically for large timies,. ]
essentially “chemical,” i.e., the molecule undergoes a tran-
sition or “jump” from one chemical state to a nearest neigh-
bor state(in the kinetic diagramat a given rate, having an ATP molecule without achieving a forward step.
“forgotten” how it arrived at the state. The time intervals A more complicated model allows for the possibility of
between such jumps are thus distributed exponentially adrreversible detachments or “deaths.” Deaths are described
cording to Poisson statistics. In other words, the time interpy a diStI’ibUtiOﬂlﬂf(t) such thatz/xf(t)dt is the probability of
vals are described by exponentiahiting-time distribution  |eaving from statq in the time intervalt to t+dt but not
functions in which the coefficient in the exponent representsippearing in any other stat®Alternatively, the detachment
the overall rate of transition from the state in question. or death process may carry the motor, or walker, to a reser-

A conceptually possible alternative picture of the motionvoir (or graveyard from which no returns are allowed.
is that it is “purely mechanical” so that the motor works like Finally, another possible extension of the simple kinetic
a clock, jumping from state to state within narrowly distrib- sequential scheme is to incorporate finite side-branch
uted time intervals. Real molecular motors work with a sur-processe&’ see Fig. 2. If statej(k), labels a statk on a
prisingly high mechanical efficiencywhich may be esti- branch emanating from the primary stgie the dynamics
mated as 80%—-90% for kinesjnd his, in turn, suggests that can be described by additional distributiomﬁk(t) where
some of the steps in the dynamical sequence of the motiomffk(t)dt is the probability of jumping one step further out
might reasonably be described as rather more mechanicﬁgm the branch statej(k), in the time intervalt to t
than purely random in nature. In that case, the waiting-time+dt(k=0,1,--- ,L—1), while wﬁk(t)dt is the correspond-
distribution functions for the time intervals marking transi- ing probability of jumping one step back in toward the pri-
tions between different internal states might be modelednary state j,=(j,0), from the branch state j(k), (k
more effectively or more economicafffasnonexponential. =1,2,---,L). Note that without loss of generality we may
To that end we present here a generalization of the basiassume that all side branches are of the same ldngsee
periodic chemical kinetic models, and of their extensionsRef. 20.
that explicitly considerggeneral waiting-time distributions.

By using the results of Montroll and co-worké&ts?’ we are,
again, able to obtain explicit, exact results férand D for
the various models. We also briefly explore the quantitative L B $
significance of the “mechanical” factors that could represent v.®
departures from purely chemical kinetic processes in the mo- ¥ .
tion of molecular motors. VO TGk

To proceed, consider first the extension of the simple ' ¢
sequential kinetic modelwith period N) shown schemati-
cally in Fig. 1. To characterize the dynamics of the motor
protein (or random walkernswe introduce waiting-time dis-
tribution functionsy;™(t) and ¢{(t), wherey; (t)dt is the
probability of jumping one step forward from stgtén the 0 0
time interval t to t+dt after arriving in statej, while 1 1+1 142
i (t)dt is the corresponding probability of jumping one x=Ild —
step backward from stajeand zp?(t)dt is the probability of ] o _ _ o
attempting to move in the same time interval but failing to doF!G. 2. A schematic periodic stochastic process with branches of finite

. . ength (<L) grown from each primary sitej (0),=j, ; outward and inward
so and hence restarting at the same site after the attempt. Thgiting_ﬁme distributionsy,(t) with k=01 -+ (L—1), andy?,(t) with

0 . . . .
allowance foryj(t) is potentially useful in modeling motor k=1 2... L, are specified at each branch sifekj, . Failing or futile at-
proteins since it can describe, say, the “futile” hydrolysis of tempt distributionsys (t), are not shown but may be considered as present.

x=ld —
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The waiting-time distribution functions respect the basicTABLE I. Expressions for the rate moments in terms of waiting-time mo-
N-state periodicity so that ments. See Eq$5)—(7) and note thavé=0 for n=1 when y¢(t)= y(t)
e~ for any c(>0).

WD = e D), 3 c i
e R )
where{=+, —, 0, §, B, or y. Furthermore, for any statgk) Yo VT 2w
normalization requires wh ooy pbus b))

w (m)? 3w’ 2P

S [ Cutvde-1 @
14 0

For all these extensions of the original chemical kinetic
model we have derived explicit general expressions for the
drift velocities and for the dispersions by generalizing Der- It then transpires, as seen below and proved in Secs.
rida’s methoc?® When appropriate exponential waiting-time 111-V, that in terms of the@ (s) one can readily define
distribution functions are substituted, we recover Derrida’seffective kinetic transition rates.e., u; andw;, for the for-
original formulag® for the simple linear model and, likewise, Ward and backward rates along the primary linear sequence;
our previous results for the extended kinetic modelsor ~ &; for the death processes from stajes(j,0); and side-
convenience, we present all of our concrete results, namel;branCh ratesg; x and y; x, outward and inward from the
the expressions for the mean velocities and for the dlsperStates (k. In the main, especially for the velocity
sions, in this section. The detailed, and unavoidably someV[{'ﬂJ «(D)}1, these effective kinetic rates play the same role
what involved, calculations and derivations are described i our results as do the simp{Poissonianrates, denoted by
Secs. llI-V. the same symbof$-?in the analysis of the original kinetic

To quantify the importance of “purely mechanical” fac- models with exponential waiting-time distributions. Further-
tors in the mo“on Of motor prote|ns the Conceptméch_ more, fOI’ the Velocity and diSperSi(Qiln the absence Of death
anicity is introduced and discussed in Sec. II. The mechanicProcesses only low order moments O‘fDJ «(t) enter explic-
ity varies from 0 for a “chemical” or Poisson proceésith itly. These, in turn, can be expressed in terms of low order
exponential waiting-time distribution functionso 1 for a  waiting-time momentsu; « and uf; . To be explicit,
purely mechanical proceswith clockwork or delta-function dropping the state labelgk), we can write
waiting-time distributions It provides a convenient quanti- 4(s)= v —svi+ispl—--- @
tative measure of deviations from a simple chemical picture
of the dynamics of molecular motors which may well provewhere the rate moments, are expressed in terms gf, and

useful in applicationg? ws in Table I. We will assume that all the moments dis-
To simplify the presentation of our results it is conve- played in the table are finite.
nient to introduce theoverall waiting-time distribution As previously found in analyzing the various simple ki-

#; k(t), which is merely the sum of all the distinct distribu- netic models, our expressions forandD in the extended

tions associated with the stafjgk). [Recall thatk=0 corre- ~ models with waiting-time distributions depend on certain lin-
sponds to primary stateg=(j,0),, on the linear sequende. ear sequential products of rate ratios. Following Ref. 20, we
We will need the Laplace transform of the overall distribu-thus define two types of product for the sequential model

tion defined by with waiting times, namely,
k k
~ © 1 K__ Wi tk__ Wi-*—l_ Wi+1 Kk
‘/’j,k(s):fo e Sy (D) dt=1—su )+ Eszﬂz;j,k_"', Hj=i].;[j m and I, =i1:Ij U W, Iy, (¥
)

where we recall the periodicity; . y=U; and wj.ny=W;.
where up.j « (n=0,1,---) is thenth moment ofy; \(t) and  The model with branches requires one more type, namely,
we have used the normalization condition Ed) to con-  the branch products

clude ug;jk=1. The transforms?pj (), of the partial k B
waiting-time distributions and their momeng, ; , are de- k=[] == :
fined similarly. Of course, for the specific models that we =1 Vi

consider some Oﬂ/j,k will be absent(and, so, can be set to For the model with deaths or irreversible detachments we

zero. introduce modified analogs of E(B), namely,iT¥ andfif*,

Analysis reveals that a crucial role is played by the asthat are obtained simply by substituting and w; by the
sociatedwaiting-time rate dlstr|but|on,s<pJ «(t), which are  “renormalized” values

defined via their Laplace transforms

C)

Uj=ujej+1/€ and ®;=uje;_1/¢j, (10
’(,Bj{’k(S)ESIﬂf,k(S)/[l_¢j,k(s)]' ©®)  where the periodic renormalization coefficientg=e¢;-y
where(, as before, can be, —, 0, 5, 8 or . Note that it is g.ti:o?]’l’m’N_l)’ are conveniently normalized by the con-

the transforrn?bj,k of the total or overall waiting-time distri-
bution that appears here in the denominator. e=1. (17
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The remaining coefficients; then form the components of For the relation of these parameters to the waiting-time mo-

the right eigenvectore=| €], corresponding to the smallest ments, see Table I. When the wamng times are exponenually

eigenvalueh =\ ({u; ,w;}), of theNX N transition rate ma-
trix M[{u;,w;;d;}] which is defined by the nonzero ele-
ments

Mj,j—l:_wj! Mj,j:uj+wj+5j! Mj,j+l:_uj! (12)

and, because of periodicity,

Mo 1=Mon-1=—Wp and My_1n=My_10=—Un_1-
(13

distributed with, in particular, zﬁj (t), ¢ (1), and 1,0] OF
each proportional to exp{(ct), the parameterg] vanish
identically. When this occurs for aJ| the dispersiorD is
given byDg alone and, as mentioned, Derrida’s original for-
mula is recovered®'*?®We remark that the;~ are typically
negative but may, in fact, also be positive: Their character is
discussed in more concrete terms in Sec. Il.

With these preliminaries established we can now present our

explicit results in fairly compact form.

A. Results for the simple sequential model with
waiting times

B. Sequential model with branches and waiting times

For models with branches of finite lengthee Fig. 2the
velocity is given by

Vg(B,y)=d(1-11})/RE, (23

The formal expression for the velocity in this case isWhich is identical to the expression E(l4) for the un-

precisely the same as derived by Derfftfor the sequential
chemical kinetic model, that is,

v=d(1-IY)/Ry, (14
where, using the definitions given above,
N—-1
Ry=> rj, rj=u 1+ > Ik, (15
i=0 k=1

branched models except for the modified functions

L

Rﬁ=j§0 . b= 1+k§1 k|, (24)

in which the effective transition rates in and out of the
branch states are defined in parallel to Ef) by

Bi k=% k(s=0), (25)

Yjk= @] (s=0).

andd is a distance between neighboring binding sites on the

linear track. However, the effective transition ratgsandw;
are now given by

+ fOlr/,J
#j (5=0)=vg;= fow,(t)dt

where we have used E(7) and Table | and may recall that

V=9 oy

up, wj= (16)

The dispersion takes a new, more complex form whic

can be written as

D=Dy+D;,, (17
where the first term is given by
Do=(d/N){[VSy+dUnJ/(Ry)*= 3(N+2)V}, (18)

N-1 N-1 N-1
SN:,ZO sjgo (k+ 1)l esjr1, UN=JZ0 uris;, (19
in which new coefficientsj are determined by

Y1+ 2 ik (20)

The second contribution to the dispersion is found to be
N—1

D1=(d/N)[NV/(RN)2]JZO S(971—g7 40, (2D

where new, “nonexponential parametersgji, are defined
by

. _dgf
9 =ds

=—fo te; (Hdt=—vg;. (22

s=0

It is appropriate to recall, however, that the rags, u;,
andw; involve ¢; o(t), which now entails théhreedistribu-

tions l/f, AR andz,/; 0
The dispersion can be expressed as
Dg=Dgg+Dis+ Doy, (26)

where the first two terms are very similar By, and D, for

rthe unbranched models: explicitly we find

Do = (d/N){[V Sk +dURI/(R{)?— 3(N+2)V,z}, 27
N—-1

D1s=(d/N)[NV4/(RD?1 2 sP(g)rj—garj40), (28
j=0

where the modified functions, analogousSipandUy in Eq.
(19), are

N—1 N—1
sﬁzgo sjﬁkzo (k+Drf 4, U 2 ur;s?, (29
in which, in parallel to Eq(20), we require
L N—1 L
=u 1+ > I+ Y 1+2 ne! )H“ 1} (30)
I=1 k=1

The third term in Eq(26), which is a contribution due to the
presence of branches, is given by

N-1 L

033, 3, Wh

(31)

where, for the coefficients, we have
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where the first term is given by

W58, = B, B,
M RGyal =K ' : Do 5= (d/N){[VsSi+dURT(RY?~ 5(N+2)Vg}, (40
kK1 g L in which S}, and U}, are defined in precise analogy to Eq.
B N in w _ X
+§1 ﬁ—_J(')Hf”'(l_Ek_i nft—gf _mpkit (19), that is,
b N-1 N-1 N-1
_ Se=2> 2> (k+DLri. ..., U= UF;s’, (41
+gﬁkinjﬁ,k.”_ G ST S, D U= Z TS (4D

. _ _ T; being defined just after E434), while the analog of Eq.
The nonexponential parameteﬁ,k andgfk, are defined in (20) is
precise analogy to Eq22) by 5 -1
~ J J
9fk= (def/ds)]s—0=—vf; k» -

33 -
(33 X 1+(1—ozj)gj‘9+IZ,l [1+(1—aj_0g)  JI]15<].

gjy,k:(dzojy,k/ds)ls:oz_U:{;j,k
where, again, the relation to the waiting-time moments fol- (42)
lows from Table I. Similarly, if z//fk(t)=Qf'kexp(—cjykt) _ _ _
holds for all (j,k), the results of Ref. 20 are once more The second term in Ed39) is then given by
obtained. Section Il discusses expression@fgrin terms of N-1
associated “mechanicitiesM¢ , . Dy 5= (d/N)[NV;s/(RR)?] ,—Z’o SO Ti— 01T+, (49
C. Sequential model with deaths and waiting times

o ) where we have introduced the renormalized modified nonex-
The mean velocity is now given by ponential parameters

Ve=d(1-TI/RY, (34 G =0 €j1le. (44)

wherelI) and ther; (appearing beloyvare defined, using; Finally, the last term in the dispersion, which arises solely
andWw; [see Eq(10)], in exact analogy to Eq¢8) and(15). because of the possibility of death or detachment, is given by

However, in contrast to Eq16), the effective transition rates 1 N-1
uj angwj anq the death_rr_:lt_éj , which _e_nter the ex_pression D2,5=—(V§/R,‘3) E (1_Bj)h1'5rj , (45)
for Ry, require new definitions. Specifically, we find 2 j=0
. A pet My (tdt where the new functions
Uj, W=9;(s=—\) ] (39

:fg(e*“—l)t//,-(t)dt’ Bj:[hr(EjJrl_Gj)+hj7(5jfl_€j)]/(€jhj§)r (46)

and 5J=Zoj’5(s= —\) which can, likewise, be expressed in incorporate the second-order nonexponential parameters
the integral form exhibited in Eq(35), where it may be .

recalled thaty; = i + ¢ + ¢+ . In these expressions h=(d%%; 1) |-\ = f %Mo (t)dt, (47)
is, as stated above, the smallest eigenvalue of the transition 0

rate matrixM[{u;,w;;d;}] [see Egs.(12) and (13)]. The "

function R}, is then given by h?=(d?%//ds?)]s-_\= JO t2eMe(t)dt. (48)

N—-1
R,‘f,z 2 rf, r,—‘5=[1+(1—a1)g,—5]7j, (36) It is interesting that these higher moments of the waiting-
= time rates,(pji(t) andgoj‘s(t), arise only when death processes
come into play. They can be written as integrals of the cor-
respondingz,/;f(t), as in Eq.(35), but will then exhibit the
structure ofv$ in Table | and entail, in particular, the modi-
a;=[9 (11— €)+0; (-1~ €)1/(€9)), (37)  fied third momentsfgt3e*y: dt, etc. Note that when the
probability of death or detachment vanishes, one &9
and the coefficients;, 8;, hj", h/, andg? all vanish; then
gj(SE(d'¢j5/dS)|s=,)\, gfz(d?pf/dsﬂsz,w (38)  we recapture the results stated above for simple sequential

. . , . model with waiting times.
where the integral expressions corresponding to that in Eq.

(35) are somewhat more elaborate but may be found straight-
forwardly from Eq.(6) and will mirror the form ofvﬁ in
Table I. Recall from Eqs(10)—(13) that the coefficientg; !l DEGREES OF MECHANICITY
form the right eigenvector oM for \, the smallest eigen-
value.

Finally, the dispersion can be written as

where the modified death and nonexponential paramgfers
andg;" are embodied in

while the parameters themselves are now given by

Our analysis of the velocity and dispersion for the sto-
chastic models with waiting-time distributions has revealed
that, in terms of the effective rates, w;, etc.[as defined in
Ds=DgstDys+Dys, (39 Eqgs.(16), (25), and(35)], deviations from Poisson processes
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with nonexponential waiting times dwot change the formal u; =<t(-)+—>j /7; and Wj=(t9)j I (53)
expressions for the velocities: Compare, e.g., Etd), (23), ) o
and(34) with the corresponding results presented in Ref. 20(@nd/or 8j , and y; ), where if, for simplicity, we suppose
On the other hand, the expressions for the dispersions chan§ly forward and backward processes act from sjatée
dramatically and, in particular, involve new “nonexponential méan dwell time is just
pa.rameters” I?kegj— [see Egs.(22), (33), (39), etc] that Tj=<t+)j+<t_>,-=(uj+W,~)’1. (54)
evidently provide a measure of some sort for the departures
from simple “chemical,” kinetic processes. To gain a more H?WGVGE becausgj, are defined via the rate distributions
concrete and intuitive picture of what these departures in#j (t), which, in turn, as seen in E6), require the total
volve, we introduce a quantitative concept which we call thewaiting-time distributions; \(t), matters are not entlroely
mechanicityM{ , of the specific transition process describedStralghtf%rWafd- If one stays with the simplest casg (
by the waiting-time distributiorwf(t) (where, as previously, = lﬁj-ﬁ: 7=0) a singleextraparameter proves essential: this
{=+,—,0:). might, for example, be taken as the dimensionless ratio:
The basic |dea_ is t(_) d_|scr_|m|nate, in an ex_pI|C|t way, a 0-+=<t+>,- In=<1. (55)
standard exponential distribution from distributions that de- J
part from it in varying degrees, and from a sharp, “clock- But the resulting formula, derived from
work” distribution of zero width. Now, ift is the mean u.
waiting time for a particular process, the mean square devia- g/ :2—;[<ti>1 + (12— 2(t. ) uj], (56)
tion (At)2=t>—1t? provides a natural measure of the width J
of the distribution. Then the dimensionless rati® which in turn follows with the aid of Table I, has a paradoxi-
=(At)?/t? represents a scale-free index of the relativecal feature(for which reason we do not quote.itNamely,
width. In the purely mechanical or clockwork limit=t  €ven if the separate mechanicitied; and M; , vanish,
—t must vanish identically and s8=0; conversely, if the Parameterg; andg; donot in general, vanish! The reason
distribution (1) yielding T and (At)2 is a simple exponen- > that in a pure kinetic scheme with forward and backward
tial, one has®=1. Thus the mechanicity parametir=1 ratesu; andw; describing departures fro+m the same sfate
— O vanishes for a Poisson or “chemical” process but at-ﬂ;]e resulting waiting-time ct1_|s|tr|?ut|tonspj (t) almd 4 (O,
tains the value unity for a purely mechanical process. share _a Et(,):nmﬁ n expon$n+|a a((:jorl namet))/ ' heﬁ(?(ujl
More illustratively® suppose the waiting-time distribu- +Wi)t]_e. . Thus even ifyy (t) an l//i.(t) are bot simpe
tion has the familiar general form exponentials, the overall process wilbt have a simple
chemical description unless thie and — decay rates match.

Y(H)=Qt" e ' (1p>0). (49 More generally, however, iMrzMj‘=O and the(single
_ _ additional condition
An elementary calculation then yields o ) )
o) =t ) m /({t )T H{E L)) (57
M=1-0=1-»1, (50 (=t dim /(o]
_ _ o _ is met, then, indeectg;r andg; vanish.(Similar consider-
By construction, the chemical limit is described by=1;  ations apply, of course, to the behavior on branches; but the

conversely, the mechanical limit is realized wher-.  extra process available at a primary state, where a branch
This example also shows thst may benegative(and, then,  starts, must not be forgotten.

indefinitely large. Evidently, this arises whenj(t) is Despite these conceptual complications, one can devise
sharply peaked at the origin exhibiting a power law behaviolnstructive examples with simpler dependence on the mech-
~1/X with x=[M[/(1+[M]) (for M<0). anicities. One useful case when only forward and backward

In applying these considerations to a general waitingtransitions from a statpoccur is described by
time distribution,i{(t), with moments

Y ()=Qftr e, (58)
ADi=nh;= fo t"yi(t)dt, (51)  where, with Eq.(53), the relations
Q =(uj, w7 VT (vs) (59

a little care is needed since the zeroth momeﬂg;j
E(tg)j , represents the total probability that the transition ofensure that the normalization conditigi(y;" + ¢; )dt=1
type { occurs which, in general, is less than unity. The ap-s satisfied. The mechanicities are clearly
propriate definition of the mechanicity for the procégsom N 1 _ 1
a statgj is thus Mj=1-v," and M;=1-v_", (60)
where, of coursey, andv_ could also depend on the state
j; the nonexponential parameters are then given by

Now, in applying the various expressions displayed in 1 + -
Sec. | for the F3j[i)syrl)e(r“:lsion®, it would ICt;e convenienrt) ifythe 0" == 3(uy W) T/ (U;M["+ WMD), (6D
nonexponential parametegﬁ (or gjﬁ andg]), could be ex-  This resultdoesdepend only on the effective rates and the
pressed directly in terms of the associated mechaniches, —associated mechanicities and thg do vanish whenM
(and/oer”’ and Mj“/) and the effective rates —0 in accord with the naive expectations.

Mé=1-0F=2—(t%(t3); /(t)?, (52
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Similar examples can be devised when branching and

death processes occur from a stgte For modeling
purpose$’ we believe the associated loss of full generality is
likely to be insignificant. But note that, by E¢61), gj: are
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d t
&B,-m:fo{sor_l(r)sjﬂ(t—r>+<p;+1<r>s,-+l<t—r>

—[¢] (1) +¢j (1)]Bj(t—)}dr. (67)

always negative for the special cases considered; if, however,

v,=v_=1s0 thatMJ-+ =M; =0 but there aralistincttime
constants,7 # 7, , theng,” and g; will have opposite
signs. We stress, nonetheless, that the results presented
Sec. | apply for quite general waiting-time distributions: The
mechanicity may be regarded as an auxiliary concept of in
tuitive and descriptive value.

Ill. PERIODIC SEQUENTIAL MODEL WITH GENERAL
WAITING TIMES

To derive the results presented in Sec. I, consider first

Similarly, we obtain

d

Jncitt

t
)= fo{(PjJr—l(T)Cj—l(t_ )+ 1(7)Cja(t—17)

—[e] (D+e; (DIC;(t—7)—¢41(7)
XBj+1(t_T)+(,Dj+_l(7')Bj_1(t_T)}dT. (68)
Again, following Derrid&® we introduce the ansatz

the general periodic sequential model with waiting-time dis-which should be valid wheh— . Because of the periodic-
tributions as specified in Fig. 1. This model can be regardegy in j we have

as a one-dimension&ontinuous-time random walkith N
internal statesj(=0,1;--,N—1), a class of walks consid-
ered some decades ago by Montroll and co-work&is:2°

The crucial result, demonstrated by Landman, Montroll, andaCh

Shlesinger in 1977’ is that the probability?;(1,t) of finding
the walker at sité in statej at timet satisfies thejeneralized
master equation

d t
apj(l,t>=fo{gor_1<r>Pj_1<l,t—T>

(Pt )
Lo (Nte (DIP(-D}dr, (62

where the relaxation or memory functionﬁf(t), are di-
rectly related to the waiting-time distribution functions,
zpji(t), precisely as specified in E(). This master equation

replaces the simple kinetic rate equations which were th8

20,28

starting points of the previous analysés

For our purposes, we may, without loss of generality,
assume that the initial condition B;(l,0)= P?ém: i.e., the
walker starts at the origin=1=0. Conservation of probabil-
ity then dictates

+ oo

N
. (63
j

1
|2— > Pil,n=1 (all t).

=0

On the other hand, in any arbitrary stgtein the kinetic
picture the normalization requirement E¢) yields

|t 0+ 0+ sinat=, (64
or, in terms of Laplace transforms,
Ui (s=0)+4; (s=0)+3(s=0)=1. (65)

To find the drift velocityV and dispersiorD we now
generalize Derrida’s methét by defining two auxiliary
functions for each statg namely,

+ o0

Bi()= 2 Py, Ci()= 2 (j+NDPi(L1. (66)

The generalized master equati@®) then yields

bj+N=ij aj+NT ), and Tj+N=Tj. (70)

After long times a steady statelB;/dt=0, will be
ieved. Then, recalling in Eq(35 that fggoji(t)dt
=<”pf($= 0), we introduce the effective transition rates
andw; defined, in anticipation, in Eq(16). Thus Eq.(67)
yields

O:Uj_lbj_1+Wj+1bj+1_(Uj+Wj)bj. (71)

Following precisely the arguments given in Ref.[3@e EQs.
(45)—(47)] we can then conclude

N—-1
1+ > 11
k=1
where the compact notation introduced in E@.and (15)

as been used.
To determine the coefficienmﬁ and T that control the

behavior ofC;(t) in Eq. (69), we substitute this ansatz into
Eq. (68) concluding, fort— oo,

:i j+k
Ry’

with j+1

i :u_j (72

b;

;= fow{sojtl(ﬂ[ajfl(t_ N+Tjal

o a(Daya(t-1)+ T 1]~ (e () + e (7]
X[aj(t_7)+Tj]_€0;+1(7)bj+1
+¢_4(7)bj_1}d7. (73

Now we may introduce the first moments of the relaxation
functions via

—f:wﬁ(r)dF(d?pf/ds)|s=o=gf, (74)
[see also Eq(22)] which leads to
aj=tluj_1a; 1+ Wj; 1341~ (Uj+W))3q]
+[9;-18j-11 94 185+1— (9] +9])a;]
FLUj T+ W1 T = (Uj+wy) T ]
LUy =Wy qbjg] (75
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The secular term proportional tashould vanish here, which With the aid of the generalized master equati6 the de-

condition requires rivative can be taken which, whdan-«, leads to
0=Uj,laj,l-l-WHlaHl—(uj-i—Wj)aj, (76) d dN 1
while the coefficientdT; then satisfy tlm @=y 2 (U= w;)b; = ®7

=Tagt .a T a.— (g +a)a;
3=[0j-18j-17 011811~ (9j +0;)ay] Using the result Eq80) yields our final formula for the drift

FU g T+ Wiy Ty — (U +w)) T velocity, namely,
U1 1 =Wy abja]. (77 V,=d[1-TI}'I/Ry, (89
Comparing Eq(76) with Eq. (71) one can conclude that where we recall thaRy, is defined in Eq(15). This expres-
=Abyj, (79 sion corresponds exactly to Derrida’s original result for the
simple sequential kinetic model.
where, using the normalizatioB]_' b;=1 following from A similar approach suffices to determine the dispersion.

Egs.(66) and(63), the constanA can be calculated by sum- \ye start from
ming Eqs.(77) onj: the T; identically, cancel which leads to

— _ d2 o0 N—1
2(t))= — i+ND2P(1,1), 89
2 2 i~ w))b; . (79 ()=, 2, 2 (+NDPPi(1D (89)
Then, on using the result EG72) for b;, we find and again appeal to the master equat&®) in the long-time

limit. This leads to

A=N[1-TI}]/Ry. (80) S

To obtain the coefficient§; we introduce, following I|m —(xz(t)> 2d E (U —wj)(at+T))
Ref. 20[see Eqs(54)—(57)],

Yi=Wj 1 Tja— Ty, (81

N7
1
—2 u;+w))b;+a;(g — f)] (90)
and rewrite Eq(75) as 2 = )BT a;(g; —g;
Yi—Yi-1=8 =[928 -1+ 0213)+1— (9] +9))ay] Then, using Eqs(86), (87), and the definition Eq(2), we

obtain
_uj—lbj—1+Wj+1bj+1' (82)

N 1

N—-1
The solution of this equation, which is achieved using the d?

strategy described in Ref. 20, yields

N-1 N-1
yj=ujbj+(A/|\|)iZO (i+1)bj1is1 + > aj(g;’—gj_)—AE T,}. (91)
- =0 j=0
+(2;9] —aj19;1 1)+, (83) CoefficientsT; can be re-expressed using E(35) and(83)

0,28
wherec is an arbitrary constant which will cancel in the final from which the constart then cancel& Finally, the defi-
formula for the dispersiorD (see Refs. 20 and 28The fact nitions Eqgs.(19) and(20) allow us to write the dispersion in
that this expression solves E@2) can be checked with the the form presented in Eql7)—(21), while the nonexponen-

help of the relation tial parameters first intrqduceq in E(22). are confirmed by
Eq. (74). Note that the dispersion consists of two tersg,
ujb;—wj 101 =A/N, (84 andD,, the second arising purely from the deviations of the

waiting-time distribution functions from the *“chemical,”

which follows from Eqs.(72) and (79). Then, iterating Eq. Poissonian forms

(81) and invoking the periodicity Eq70) yields the relation

1
Tj:
UJ

/ (1-1¥ 1), (85
IV. PERIODIC MODEL WITH BRANCHES AND
WAITING TIMES

+ 2 yj+kH]+1

which, via Eqs.(83), (78), (79), and(72), represents an ex-
plicit result in terms of the effective rates defined in EL). Now consider the one-dimensional periodic model with
Now we can calculate the drift velocity,, and the dif- branches and waiting-time distributions as presented in Fig.

fusion constantP, using the long-time definitions Eqél) 2. LetP; \(l,t) be the probability of finding the walker at site
and(2). The mean position of a particle is given by | in statej of the main sequenc@abeledk=0) or in state

to N-1 N-1 k=1,...,L, on the associated side branch, at tim&ppealing
(x(t))= E 2 2 (1+NDP(1,t) = 2 2 Ci(t).  (86) again to_ Landmaret al?’ th_is probability is governed by the

NI=== =0 N =o generalized master equation
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d to, Similarly, the time evolution oC; ,(t) obeys the equations
apj,o(u):fO{GDj—l(T)Pj—Lo(',t—T)

gc (t)—Jt{ —1(DCj_1dt—7)
o1 (Pl t—7) T U

+o] (NP t=1) —[¢] (D) + ¢ (7) T 1(TCj 1 dt=7)+ ¢/ ((7)Ca(l,t=17)
+oPo(1)1P; ol t—7)}d7, (92 —Lof (N +e; (1)+¢fo(1)IC) ot —7)
for k=0, by +¢{(7)Bj_1dt—7)
d t — . —
api,k(l’t):J'O{(Pjﬁ,kfl(T)Pj,kfl(Lt_T) (PJ+1(T)BJ+1,O(t T)}dT, (100)
d t

4P krallt= 1)~ [of(7) GO0~ ] (st et
el k(M]Pj (I 1= 7)idr, (93 —[ P (T + @7 ((T)]C; ot — T)}d7, (101)

for 1<k<L, while for k=L we have

d t
&Pi,L(I’t)ZJ [(Pfol(T)Pj,Lfl(lat_T) d .
° aCJ,L(t):fo[@j,L—l(T)Cj,L—l(t_T)

—¢/ (P (I,t=7)]dT. (94
The relaxation functionsoj*(t), (pjﬁ(t), and ¢/(t), are de-

fined, as before, via their Laplace transforms as specified in  The previous argumerf¥®lead to the expectation
Eq. (6). At t=0 we may assume th& (1;0)=P}, 4 oand

— @/ (71)Cj L (t—7)]dT. (102

normalization requires Bik(D—=Dbjk,  CjuO)—ajd—=Tjk, (103
® N-1 L for t—. At large times the equations of motid@7)—(99)
| _20 kEO Pix(,H=1 (all 1). (95  then yield the relations
=—w |= =

. . . Y of —u.b; g=w;b: o—u;_4b: _
Again following the strategy of Derrida’s method as de- ") *1Pi+20~ U%j0=Wibjo™Uj-18j-10

scribed in the previous section, we introduce the auxiliary +(Bj.dbj .o~ vjabj 1), (104
functions
B Bjabj 0= ;105 1= Bj 10j.1— ¥ ;2
Bj.k(t)Elzw Pix(l.0), =:=BjL-1bj -1~ 7.b;,.=0, (109
- (96) where we have invoked the definitions E¢s5) and(25) for
C. ()= CENDP (1) ratesu;, w;j, Bj andy; . Recalling, likewise, the defini-
iK1 |:E_m (I P tions Egs.(22) and (33), the coefficientsa; , and T; , must
The time evolution oB; () is then described by the set of satisfy, first,
L+1 equations ay,0=[9;_18j 10T 9j118)+ 1.0~ (g +7;)a o]
d ! Ui T ot Wi g Ty o= (U +wW,)T;
aBj,o(t):fo{‘Pjtl(T)Bj—l,o(t_T) [Uj—1Tj—10t Wi+ 110~ (Uj+W)) T o]

+{Uj-1bj- 1,0~ Wj41bj41,0]

= . — Y . _
+(PJ+1(T)BJ+1,O(t T)+(Pjvl( T)Bj,l(lit 7-) _'_[g]’leaJ'l_ gfoaj’0+ ’yjy]_Tj']__ BJVOTj’O]a (106)

—[o (1 +; (1)+¢P((7)]B; o(t—7)}dT,
: : )0 : a;1=[90@ 019722 .~ (91 +971)a; 1]

97
d t +[BjoTj0m ¥i2Tj 2= (Bjat ¥ 0Tl (107
dt Bja(h)= fo{qDJﬁ,k—l(T)Bj,O(t_ )+ ¢ ki1 (7)Bj ot —17)
—[eP M)+ @7 (1B, o(t— T)}dT, (98) 8, =013, _1- 9.0
+BjL-1Tj-1= 7Tl (108

d t g while the vanishing of the secular terms yields, also,
at BjL(t)= J' (o] L—1(T)BjL-1(t—=7)
0 Wi +18j+1,0~ Uj@j 0

_QDjy,L(T)Bj,L(t_T)]dT- (99) =Wjaj’0— uj_laj_1’0+(ﬂj’0aj’0— ’)/j‘lajyl), (109)
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Bi.0dj 0~ ¥j185,1= Bj 18,1 ¥} 28 2
==BjL-18,L-1~7,.8,,=0. (110
The side-branch functions; , are found easily by solving
Egs. (105 recursively, which gives

bk =T1%%b; o (k=1,---,L), (111

where we have used the product notation £&. To obtain
an expression fob; , we follow exactly the method used to
derive Eq.(72) in Sec. lll, thereby finding

bjyozrj/Rﬁ, (112)

wherer; is defined in Eq(15) while Rﬁ was introduced in
Eq. (24). Comparing Eqs(104) and (105 with (109 and
(110 leads to

aj k=Ab;, with A=N(1-II})/Rf. (113

The final derivation of the expressions for the drift ve-
locity and the dispersion now follows along the lines devel-
oped in the previous section for models without branches

The results have been presented in full in Sec. IB. As r

gards the velocity, the branches generate no changes beyond

the replacement of; by er and Ry by Rﬁ. However, an

additional term,D, 5, appears in the dispersion: see Egs.

(3D—(33.

V. PERIODIC MODEL WITH DEATHS AND WAITING
TIMES

Consider, finally, the periodic sequential model with

A. B. Kolomeisky and M. E. Fisher

d-. ~ ~
dtP (LY =Tj_1P;_1(1,t) +W; 1P} 1(1,1)

(117
By substituting the ansatz E¢L16) into the full generalized
master equationil14), we obtain, for large times, the equa-
tion

dTD It)=

— (U + W) P;(l,1).

u]‘,1eTj_Tj’1Pj,1+Wj+1e7-j_7j+lpj+1

_(U1+Wj+5j_)\)~Pj, (118)

in which the modified rate definitions E(B5) et seq,. which
depend explicitly on\, have been used. Matching terms with
those in Eqs(117) generates the identifications

— T = ; — AT
Uj—UjEj+1/6j and Wj_ujej—l/ej with €=¢'.

(119

It also yields a condition which the; must satisfy for con-
S|stency, namely,

_Wjejfl+(uj+wj+5j)ej_ujej+1:)\ej- (120)

But, recognizing the periodicity ip this is precisely equiva-
lent to the eigenvalue equatidie=\ e, whereM is theN
XN matrix specified in Egs.(12) and (13). Since the
asymptotic decay is required in E¢L16), A\ must be the
smallest eigenvalue which, clearly, should be real and posi-
tive.

To find expressions for the drift velocity and the disper-

waiting-time distributions and the possibility of an irrevers- sion we now require three auxiliary functions, namely,

ible detachment or death from each state that is described by o

a waiting-time distribution functlonz/f =4 o J(): see

Fig. 1. The generalized master equatlon for the probab|I|ty

P;(I,t) now read¥’
d t
apj(lvt):JO{(Prfl(T)PJ*l(IIt_T)

+§Dj_+1(7')Pj+1(|1t_T)

—[o] (1 +e] (1) +e)(7)]P(I,t—7)}dT,

(114

where, as before, the relaxation functiapﬁ(t) and <pj§(t)
are related to waiting-time distribution functions via E@S.
and (6). We may again assume that the initial condition is
N—1

po=
JZO .

P;i(1,00=P}5 o with (115

However, as discussed in Ref. 20, because the total probaband

ity is no longer conservefso that>"™ E P j(1,t>0)

< 1], we look for long-time solutions of the generahzed mas-

ter equation(114) that are of the form

P(I,t)y~e M 7P(1,1), (116)

B(t)= 2 Pi(1,1), cj(t)zlg‘,m (j+NDP;(L,L), (12D

and also

s}

Ej(0= 2 (J+ND?Pi(1,0), (122

For larget we may expect the asymptotic behavior

Bj()~e M 7B(1), Cj(t)=e M TiCi(t),

and (123
E;()~e M TE (1),
with, extending Derrida’s ansatz,
Bj()—b;, Ci(h—at—Tj,
(124

The explicit formulas for the coefficients, a;, T;, €, f;,
andX; can now be found straightforwardly by extending the
procedures outlined in Secs. lll and IV. However, the de-

where, as befor&) the decrement and the periodic state co-tajled calculations are fairly tedious and, because of the pres-
efficients, 7j=7;., are to be found from the requirement ence of the functions;(t), give rlse to the higher order

that P, j(I,t) satisfies a suitably “renormalized,probability
conservmgmaster equation

nonexponential parametelhf andh
and (48).

, defined in Eqs(47)
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