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Extended kinetic models with waiting-time distributions: Exact results
Anatoly B. Kolomeiskya) and Michael E. Fisher
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

~Received 21 July 2000; accepted 28 September 2000!

Inspired by the need for effective stochastic models to describe the complex behavior of biological
motor proteins that move on linear tracks, exact results are derived for the velocity and dispersion
of simple linear sequential models~or one-dimensional random walks! with generalwaiting-time
distributions. The concept of ‘‘mechanicity’’ is introduced to conveniently quantify departures from
simple ‘‘chemical,’’ kinetic rate processes, and its significance is briefly indicated. The results are
extended to more elaborate models that have finite side branches and include death processes~to
represent the detachment of a motor from the track!. © 2000 American Institute of Physics.
@S0021-9606~00!50948-9#

I. INTRODUCTION AND SUMMARY

Motor proteins, such as kinesins, dyneins, myosins, and
DNA and RNA polymerases, are important for the biological
functioning of cells. Consuming energy obtained from the
hydrolysis of ATP or related compounds, and moving along
rigid linear tracks~microtubules, actin filaments, DNA mol-
ecules, etc.!, they play a significant role in cell division, cel-
lular transport, muscle contraction, and genetic
transcription.1,2 Such molecular motors can move with ve-
locities,V, up to 1000 nm/s,3–6 and may sustain an external
load, F, of 5–8 pN for kinesins6 and up to 30–40 pN for
DNA and RNA polymerases.7,8 Understanding the detailed
mechanism of the functioning of motor proteins is a major
challenge of modern biology.

In recent years, significant advances have been made in
experimental techniques for studying motor proteins: one can
now observe and investigate accurately the mechanical prop-
erties of single molecules over wide parameter ranges.3–8

However, our theoretical understanding of how these pro-
teins work is still incomplete. Theoretical modeling of mo-
lecular motors has followed two main directions. One class
of models is based on ‘‘thermal ratchets’’9–12 in which the
motor protein is viewed as a Brownian particle that diffuses
in two or more periodic but asymmetric potentials between
which it switches stochastically. Another, more traditional
‘‘chemical’’ approach is based on multistate kinetic descrip-
tions of the motion with various rate processes determining
the transitions between the states.13–23 In this paper we con-
sider various extensions of the chemical kinetic schemes for
which we derive exact, closed-form results in terms of the
underlying transition rate parameters.

The simplest periodic sequential kinetic model assumes
that a motor protein molecule moves along a periodic mo-
lecular track~a microtubule in the case of a kinesin! and
binds at sites atx5 ld( l 50,61,62,¯). It is postulated that
there areN discrete states,j 50,1,¯ ,N21, between con-
secutive binding sites and the motor protein in statej l ~‘‘at’’

site l! can move forward to state (j 11)l ~normally pulling a
load! at a rateuj and can slip backward, to state (j 21)l at a
rate wj .18,19 This basicN-state model is, clearly, precisely
isomorphic to a discrete but, in general, biased random walk
on a periodic one-dimensional lattice. Such random walks
are of broad interest for a variety of applications,24–29 in
particular, for studying diffusion in random environ-
ments28–30which may, for example, be approached by allow-
ing the periodN to become infinite.28 Indeed, some time ago
Derrida28 presented a mathematical approach that provides
formally exact and explicit formulas for the asymptotic drift
velocity

V05V0~$uj ,wj%!5 lim
t→`

d

dt
^x~ t !& ~1!

and for the dispersion~or effective diffusion constant!

D05D0~$uj ,wj%!5
1

2
lim
t→`

d

dt
@^x2~ t !&2^x~ t !&2#, ~2!

wherex(t) is the spatial position of the motor protein mol-
ecule or, equally, of the random walker along the linear track
at time t and, by periodicityuj 6N5uj andwj 6N5wj . Der-
rida’s results have recently been exploited in developing
theory for molecular motors.17–20,23A valuable feature of the
exact closed expressions is that it is quick and straightfor-
ward to explore the precise effects of a wide range of param-
eter values, revealing a variety of different characteristic
types of behavior,18–20 in contrast to employing approximate
numerical schemes or Monte Carlo simulations, or to study-
ing oversimplified models.

The ‘‘purpose’’ of a motor protein in a biological setting
is to move various biochemical entities, such as vesicles,
etc., that exert load forces,F, which act on the protein mol-
ecule. The questions of what force can be exerted by a motor
protein within the basic model and how the transition rates
should be changed by the load,F, have been discussed
critically.18,19 The resulting calculations for these models
show qualitative and good semi-quantitative agreement with
the experimentally observed behavior of normal two-headed
kinesins.3–8,18,19,23
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To describe motor proteins more realistically, however,
and to understand the behavior of proteins other than two-
headed kinesins,7,8,31,32extensions of the basicN-state peri-
odic sequential kinetic model were recently introduced.20

These extended models take into consideration the complex-
ity of real biochemical cycles~multiple kinetic paths and
branched states! and allow for the irreversible stochastic de-
tachment of molecular motors from the linear track which is
always observed. Exact expressions for velocities and disper-
sions have been derived for these extended chemical kinetic
models20 in terms of the basic forward and backward rate
constants,uj and wj , the corresponding rate constants for
the side branches, and the death rates from any of theN
intermediate states.

Now, the basic concept underlying chemical kinetic
models is the idea that the motion of the motor protein is
essentially ‘‘chemical,’’ i.e., the molecule undergoes a tran-
sition or ‘‘jump’’ from one chemical state to a nearest neigh-
bor state~in the kinetic diagram! at a given rate, having
‘‘forgotten’’ how it arrived at the state. The time intervals
between such jumps are thus distributed exponentially ac-
cording to Poisson statistics. In other words, the time inter-
vals are described by exponentialwaiting-time distribution
functions in which the coefficient in the exponent represents
the overall rate of transition from the state in question.

A conceptually possible alternative picture of the motion
is that it is ‘‘purely mechanical’’ so that the motor works like
a clock, jumping from state to state within narrowly distrib-
uted time intervals. Real molecular motors work with a sur-
prisingly high mechanical efficiency~which may be esti-
mated as 80%–90% for kinesins!. This, in turn, suggests that
some of the steps in the dynamical sequence of the motion
might reasonably be described as rather more mechanical
than purely random in nature. In that case, the waiting-time
distribution functions for the time intervals marking transi-
tions between different internal states might be modeled
more effectively or more economically23 asnonexponential.
To that end we present here a generalization of the basic
periodic chemical kinetic models, and of their extensions,
that explicitly considersgeneral waiting-time distributions.
By using the results of Montroll and co-workers24–27we are,
again, able to obtain explicit, exact results forV and D for
the various models. We also briefly explore the quantitative
significance of the ‘‘mechanical’’ factors that could represent
departures from purely chemical kinetic processes in the mo-
tion of molecular motors.

To proceed, consider first the extension of the simple
sequential kinetic model~with period N! shown schemati-
cally in Fig. 1. To characterize the dynamics of the motor
protein ~or random walkers! we introduce waiting-time dis-
tribution functionsc j

6(t) and c j
0(t), wherec j

1(t)dt is the
probability of jumping one step forward from statej in the
time interval t to t1dt after arriving in statej, while
c j

2(t)dt is the corresponding probability of jumping one
step backward from statej, andc j

0(t)dt is the probability of
attempting to move in the same time interval but failing to do
so and hence restarting at the same site after the attempt. The
allowance forc j

0(t) is potentially useful in modeling motor
proteins since it can describe, say, the ‘‘futile’’ hydrolysis of

an ATP molecule without achieving a forward step.
A more complicated model allows for the possibility of

irreversible detachments or ‘‘deaths.’’ Deaths are described
by a distributionc j

d(t) such thatc j
d(t)dt is the probability of

leaving from statej in the time intervalt to t1dt but not
appearing in any other state.20 Alternatively, the detachment
or death process may carry the motor, or walker, to a reser-
voir ~or graveyard! from which no returns are allowed.

Finally, another possible extension of the simple kinetic
sequential scheme is to incorporate finite side-branch
processes:20 see Fig. 2. If state (j ,k) l labels a statek on a
branch emanating from the primary statej l , the dynamics
can be described by additional distributionsc j ,k

b (t) where
c j ,k

b (t)dt is the probability of jumping one step further out
from the branch state (j ,k) l in the time interval t to t
1dt(k50,1,¯ ,L21), while c j ,k

g (t)dt is the correspond-
ing probability of jumping one step back in toward the pri-
mary state j l[( j ,0)l from the branch state (j ,k) l (k
51,2,¯ ,L). Note that without loss of generality we may
assume that all side branches are of the same lengthL: see
Ref. 20.

FIG. 1. A schematic general linear, periodic, stochastic process with for-
ward and backward waiting-time distributions,c j

1(t) andc j
2(t), failing or

futile attempt distributionsc j
0(t), and irreversible death rates,c j

d(t), from
states j l , where the reference states, 0l , are located at positionsx5 ld.
@Note that the precise locations of the intermediate states 1l ,2l ,¯ ,(N
21)l , have no significance for the velocity,V, and dispersion,D, since
these are defined asymptotically for large times,t→`.#

FIG. 2. A schematic periodic stochastic process with branches of finite
length (<L) grown from each primary site (j ,0)l[ j l ; outward and inward
waiting-time distributions,c j ,k

b (t) with k50,1,̄ ,(L21), andc j ,k
g (t) with

k51,2,̄ ,L, are specified at each branch site (j ,k) l . Failing or futile at-
tempt distributions,c j ,k

0 (t), are not shown but may be considered as present.
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The waiting-time distribution functions respect the basic
N-state periodicity so that

c j ,k
z ~ t !5cJ6N,k

z ~ t !, ~3!

wherez51, 2, 0, d, b, or g. Furthermore, for any state~j,k!
normalization requires

(
z
E

0

`

c j ,k
z ~ t !dt51. ~4!

For all these extensions of the original chemical kinetic
model we have derived explicit general expressions for the
drift velocities and for the dispersions by generalizing Der-
rida’s method.28 When appropriate exponential waiting-time
distribution functions are substituted, we recover Derrida’s
original formulas28 for the simple linear model and, likewise,
our previous results for the extended kinetic models.20 For
convenience, we present all of our concrete results, namely,
the expressions for the mean velocities and for the disper-
sions, in this section. The detailed, and unavoidably some-
what involved, calculations and derivations are described in
Secs. III–V.

To quantify the importance of ‘‘purely mechanical’’ fac-
tors in the motion of motor proteins the concept ofmech-
anicity is introduced and discussed in Sec. II. The mechanic-
ity varies from 0 for a ‘‘chemical’’ or Poisson process~with
exponential waiting-time distribution functions! to 1 for a
purely mechanical process~with clockwork or delta-function
waiting-time distributions!. It provides a convenient quanti-
tative measure of deviations from a simple chemical picture
of the dynamics of molecular motors which may well prove
useful in applications.23

To simplify the presentation of our results it is conve-
nient to introduce theoverall waiting-time distribution,
c j ,k(t), which is merely the sum of all the distinct distribu-
tions associated with the state~j,k!. @Recall thatk50 corre-
sponds to primary states,j l[( j ,0)l , on the linear sequence.#
We will need the Laplace transform of the overall distribu-
tion defined by

c̃ j ,k~s!5E
0

`

e2stc j ,k~ t !dt512sm1; j ,k1
1

2
s2m2; j ,k2¯ ,

~5!

wheremn; j ,k (n50,1,¯) is the nth moment ofc j ,k(t) and
we have used the normalization condition Eq.~4! to con-

clude m0; j ,k[1. The transforms,c̃ j ,k
z (s), of the partial

waiting-time distributions and their momentsmn; j ,k
z are de-

fined similarly. Of course, for the specific models that we
consider some ofc̃ j ,k

z will be absent~and, so, can be set to
zero!.

Analysis reveals that a crucial role is played by the as-
sociatedwaiting-time rate distributions, w j ,k

z (t), which are
defined via their Laplace transforms

w̃ j ,k
z ~s![sc̃ j ,k

z ~s!/@12c̃ j ,k~s!#, ~6!

wherez, as before, can be1, 2, 0, d, b or g. Note that it is
the transformc̃ j ,k of the total or overall waiting-time distri-
bution that appears here in the denominator.

It then transpires, as seen below and proved in Secs.
III–V, that in terms of thew̃ j ,k

z (s) one can readily define
effective kinetic transition rates: i.e., uj andwj , for the for-
ward and backward rates along the primary linear sequence;
d j for the death processes from statesj [( j ,0); and side-
branch rates,b j ,k and g j ,k , outward and inward from the
states ~j,k!. In the main, especially for the velocity
V@$c j ,k

z (t)%#, these effective kinetic rates play the same role
in our results as do the simple~Poissonian! rates, denoted by
the same symbols,18–20 in the analysis of the original kinetic
models with exponential waiting-time distributions. Further-
more, for the velocity and dispersion~in the absence of death
processes!, only low order moments ofw j ,k

z (t) enter explic-
itly. These, in turn, can be expressed in terms of low order
waiting-time moments,mn; j ,k and mn; j ,k

z . To be explicit,
dropping the state labels~j,k!, we can write

w̃z~s!5v0
z2sv1

z1 1
2s

2v2
z2¯ , ~7!

where the rate momentsvn
z are expressed in terms ofmn and

mn
z in Table I. We will assume that all the moments dis-

played in the table are finite.
As previously found in analyzing the various simple ki-

netic models, our expressions forV and D in the extended
models with waiting-time distributions depend on certain lin-
ear sequential products of rate ratios. Following Ref. 20, we
thus define two types of product for the sequential model
with waiting times, namely,

P j
k[)

i 5 j

k
wi

ui
and P j

†k[)
i 5 j

k
wi 11

ui
5

wk11

wj
P j

k , ~8!

where we recall the periodicityuj 6N5uj and wj 6N5wj .
The model with branches requires one more type, namely,
the branch products

P j
b,k[)

i 51

k
b j ,i 21

g j ,i
. ~9!

For the model with deaths or irreversible detachments we
introduce modified analogs of Eq.~8!, namely,P̃ j

k andP̃ j
†k ,

that are obtained simply by substitutinguj and wj by the
‘‘renormalized’’ values

ũ j5uje j 11 /e j and w̃j5uje j 21 /e j , ~10!

where the periodic renormalization coefficients,e j[e j 6N

( j 50,1,̄ ,N21), are conveniently normalized by the con-
dition

e0[1. ~11!

TABLE I. Expressions for the rate moments in terms of waiting-time mo-
ments. See Eqs.~5!–~7! and note thatvn

z[0 for n>1 whencz(t)}c(t)
}e2ct for any c(.0).

v0
z5

m0
z

m1
, v1

z5
m1

z

m1
2

m0
zm2

2~m1!
2 ,

v2
z5

m2
z

m1
2

m1
zm2

~m1!
22

m0
zm3

3~m1!
2 1

m0
z~m2!

2

2~m1!
2 .
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The remaining coefficientse j then form the components of
the right eigenvector,e5@e j #, corresponding to the smallest
eigenvalue,l5l($uj ,wj%), of theN3N transition rate ma-
trix M @$uj ,wj ;d j%# which is defined by the nonzero ele-
ments

M j , j 2152wj , M j , j5uj1wj1d j , M j , j 1152uj , ~12!

and, because of periodicity,

M0,21[M0,N2152w0 and MN21,N[MN21,052uN21 .
~13!

With these preliminaries established we can now present our
explicit results in fairly compact form.

A. Results for the simple sequential model with
waiting times

The formal expression for the velocity in this case is
precisely the same as derived by Derrida28 for the sequential
chemical kinetic model, that is,

V5d~12P1
N!/RN , ~14!

where, using the definitions given above,

RN5 (
j 50

N21

r j , r j5uj
21F11 (

k51

N21

P j 11
j 1kG , ~15!

andd is a distance between neighboring binding sites on the
linear track. However, the effective transition ratesuj andwj

are now given by

uj , wj5w j
6~s50!5v0; j

6 5
*0

`c j
6~ t !dt

*0
`tc j~ t !dt

, ~16!

where we have used Eq.~7! and Table I and may recall that
c j5c j

11c j
21c j

0.
The dispersion takes a new, more complex form which

can be written as

D5D01D1 , ~17!

where the first term is given by

D05~d/N!$@VSN1dUN#/~RN!22 1
2~N12!V%, ~18!

SN5 (
j 50

N21

sj (
k50

N21

~k11!r k1 j 11 , UN5 (
j 50

N21

ujr jsj , ~19!

in which new coefficientssj are determined by

sj5uj
21F11 (

k51

N21

P j 21
† j 2kG . ~20!

The second contribution to the dispersion is found to be

D15~d/N!@NV/~RN!2# (
j 50

N21

sj~gj
1r j2gj 11

2 r j 11!, ~21!

where new, ‘‘nonexponential parameters,’’gj
6 , are defined

by

gj
65

dw̃ j
6

ds
U

s50

52E
0

`

tw j
6~ t !dt52v1; j

6 . ~22!

For the relation of these parameters to the waiting-time mo-
ments, see Table I. When the waiting times are exponentially
distributed with, in particular,c j

1(t), c j
2(t), and c j

0(t),
each proportional to exp(2cjt), the parametersgj

6 vanish
identically. When this occurs for allj, the dispersionD is
given byD0 alone and, as mentioned, Derrida’s original for-
mula is recovered.18,19,28We remark that thegj

6 are typically
negative but may, in fact, also be positive: Their character is
discussed in more concrete terms in Sec. II.

B. Sequential model with branches and waiting times

For models with branches of finite length~see Fig. 2! the
velocity is given by

Vb~b,g!5d~12P1
N!/RN

b , ~23!

which is identical to the expression Eq.~14! for the un-
branched models except for the modified functions

RN
b5 (

j 50

N21

r j
b , r j

b5r jF11 (
k51

L

P j
b,kG , ~24!

in which the effective transition rates in and out of the
branch states are defined in parallel to Eq.~16! by

b j ,k5w̃ j ,k
b ~s50!, g j ,k5w̃ j ,k

g ~s50!. ~25!

It is appropriate to recall, however, that the ratesb j ,0 , uj ,
andwj involve c j ,0(t), which now entails thethreedistribu-
tions c j

1 , c j
2 , andc j ,0

b .
The dispersion can be expressed as

Db5D0,b1D1,b1D2,b , ~26!

where the first two terms are very similar toD0 andD1 for
the unbranched models: explicitly we find

D0,b5~d/N!$@VbSN
b1dUN

b#/~RN
b !22 1

2~N12!Vb%, ~27!

D1,b5~d/N!@NVb /~RN
b !2# (

j 50

N21

sj
b~gj

1r j2gj 11
2 r j 11!, ~28!

where the modified functions, analogous toSN andUN in Eq.
~19!, are

SN
b5 (

j 50

N21

sj
b (

k50

N21

~k11!r k1 j 11
b , UN

b5 (
j 50

N21

ujr jsj
b , ~29!

in which, in parallel to Eq.~20!, we require

sj
b5uj

21F11(
l 51

L

P j
b,l1 (

k51

N21 S 11(
l 51

L

P j 2k
b,l DP j 2k

† j 21G . ~30!

The third term in Eq.~26!, which is a contribution due to the
presence of branches, is given by

D2,b5Vb
2 (

j 50

N21

(
k51

L

Wj ,k
b , ~31!

where, for the coefficients, we have
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Wj ,k
b 5

r j

RN
bg j ,k

F(
l 5k

L

P j
b,l2gj ,k21

b P j
b,k211gj ,k

g P j
b,k

1 (
i 51

k21
b j ,i

b j ,0
P j

b,iS (
l 5k2 i

L

P j
b,l2gj ,k2 i 21

b P j
b,k2 i 21

1gj ,k2 i
g P j

b,k2 i D G . ~32!

The nonexponential parameters,gj ,k
b andgj ,k

g , are defined in
precise analogy to Eq.~22! by

gj ,k
b 5~dw̃ j ,k

b /ds!us5052v1; j ,k
b ,

~33!
gj ,k

g 5~dw̃ j ,k
g /ds!us5052v1; j ,k

g

where, again, the relation to the waiting-time moments fol-
lows from Table I. Similarly, if c j ,k

z (t)5Qj ,k
z exp(2cj,kt)

holds for all (j ,k), the results of Ref. 20 are once more
obtained. Section II discusses expressions forgj ,k

z in terms of
associated ‘‘mechanicities’’M j ,k

z .

C. Sequential model with deaths and waiting times

The mean velocity is now given by

Vd5d~12P̃1
N!/RN

d , ~34!

whereP̃1
N and ther̃ j ~appearing below! are defined, usingũ j

andw̃j @see Eq.~10!#, in exact analogy to Eqs.~8! and~15!.
However, in contrast to Eq.~16!, the effective transition rates
uj andwj and the death rated j , which enter the expression
for RN

d , require new definitions. Specifically, we find

uj , wj[w̃ j
6~s52l!5

l*0
`e1ltc j

6~ t !dt

*0
`~e1lt21!c j~ t !dt

, ~35!

and d j5w̃ j
d(s52l) which can, likewise, be expressed in

the integral form exhibited in Eq.~35!, where it may be
recalled thatc j5c j

11c j
21c j

01c j
d . In these expressionsl

is, as stated above, the smallest eigenvalue of the transition
rate matrix M @$uj ,wj ;d j%# @see Eqs.~12! and ~13!#. The
function RN

d is then given by

RN
d 5 (

j 50

N21

r j
d , r j

d5@11~12a j !gj
d# r̃ j , ~36!

where the modified death and nonexponential parametersgj
d

andgj
6 are embodied in

a j[@gj
1~e j 112e j !1gj

2~e j 212e j !#/~e jgj
d!, ~37!

while the parameters themselves are now given by

gj
d[~dw̃ j

d/ds!us52l , gj
6[~dw̃ j

6/ds!us52l , ~38!

where the integral expressions corresponding to that in Eq.
~35! are somewhat more elaborate but may be found straight-
forwardly from Eq. ~6! and will mirror the form ofv1

z in
Table I. Recall from Eqs.~10!–~13! that the coefficientse j

form the right eigenvector ofM for l, the smallest eigen-
value.

Finally, the dispersion can be written as

Dd5D0,d1D1,d1D2,d , ~39!

where the first term is given by

D0,d5~d/N!$@VdSN
d 1dUN

d #/~RN
d !22 1

2~N12!Vd%, ~40!

in which SN
d and UN

d are defined in precise analogy to Eq.
~19!, that is,

SN
d 5 (

j 50

N21

sj
d (

k50

N21

~k11!r k1 j 11
d , UN

d 5 (
j 50

N21

ũ j r̃ j sj
d , ~41!

r̃ j being defined just after Eq.~34!, while the analog of Eq.
~20! is

sj
d5ũ j

21

3F11~12a j !gj
d1 (

k51

N21

@11~12a j 2k!gj 2k
d #P j 21

† j 2k G .

~42!

The second term in Eq.~39! is then given by

D1,d5~d/N!@NVd /~RN
d !2# (

j 50

N21

sj
d~ g̃ j

1 r̃ j2g̃ j 11
2 r̃ j 11!, ~43!

where we have introduced the renormalized modified nonex-
ponential parameters

g̃ j
65gj

6e j 61 /e j . ~44!

Finally, the last term in the dispersion, which arises solely
because of the possibility of death or detachment, is given by

D2,d5
1

2
~Vd

2/RN
d ! (

j 50

N21

~12b j !hj
d r̃ j , ~45!

where the new functions

b j5@hj
1~e j 112e j !1hj

2~e j 212e j !#/~e jhj
d!, ~46!

incorporate the second-order nonexponential parameters

hj
65~d2w̃ j

6/ds2!us52l5E
0

`

t2eltw j
6~ t !dt, ~47!

hj
d5~d2w̃ j

d/ds2!us52l5E
0

`

t2eltw j
d~ t !dt. ~48!

It is interesting that these higher moments of the waiting-
time rates,w j

6(t) andw j
d(t), arise only when death processes

come into play. They can be written as integrals of the cor-
respondingc j

z(t), as in Eq.~35!, but will then exhibit the
structure ofv2

z in Table I and entail, in particular, the modi-
fied third moments*0

`t3eltc j
6 dt, etc. Note that when the

probability of death or detachment vanishes, one hasl50
and the coefficientsa j , b j , hj

6 , hj
d , andgj

d all vanish; then
we recapture the results stated above for simple sequential
model with waiting times.

II. DEGREES OF MECHANICITY

Our analysis of the velocity and dispersion for the sto-
chastic models with waiting-time distributions has revealed
that, in terms of the effective ratesuj , wj , etc.@as defined in
Eqs.~16!, ~25!, and~35!#, deviations from Poisson processes
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with nonexponential waiting times donot change the formal
expressions for the velocities: Compare, e.g., Eqs.~14!, ~23!,
and~34! with the corresponding results presented in Ref. 20.
On the other hand, the expressions for the dispersions change
dramatically and, in particular, involve new ‘‘nonexponential
parameters’’ likegj

6 @see Eqs.~22!, ~33!, ~39!, etc.# that
evidently provide a measure of some sort for the departures
from simple ‘‘chemical,’’ kinetic processes. To gain a more
concrete and intuitive picture of what these departures in-
volve, we introduce a quantitative concept which we call the
mechanicity, M j

z , of the specific transition process described
by the waiting-time distributionc j

z(t) ~where, as previously,
z51,2,0,̄ ).

The basic idea is to discriminate, in an explicit way, a
standard exponential distribution from distributions that de-
part from it in varying degrees, and from a sharp, ‘‘clock-
work’’ distribution of zero width. Now, if t̄ is the mean
waiting time for a particular process, the mean square devia-
tion (Dt)25t22 t̄ 2 provides a natural measure of the width
of the distribution. Then the dimensionless ratioQ
5(Dt)2/ t̄ 2 represents a scale-free index of the relative
width. In the purely mechanical or clockwork limitDt5t

2 t̄ must vanish identically and soQ50; conversely, if the
distributionc(t) yielding t̄ and(Dt)2 is a simple exponen-
tial, one hasQ[1. Thus the mechanicity parameterM[1
2Q vanishes for a Poisson or ‘‘chemical’’ process but at-
tains the value unity for a purely mechanical process.

More illustratively,18 suppose the waiting-time distribu-
tion has the familiar general form

c~ t !5Qtn21e2st ~n.0!. ~49!

An elementary calculation then yields

M[12Q512n21. ~50!

By construction, the chemical limit is described byn51;
conversely, the mechanical limit is realized whenn→`.
This example also shows thatM may benegative~and, then,
indefinitely large!. Evidently, this arises whenc(t) is
sharply peaked at the origin exhibiting a power law behavior
;1/tx with x5uM u/(11uM u) ~for M,0!.

In applying these considerations to a general waiting-
time distribution,c j

z(t), with moments

^tz
n& j[mh; j

z 5E
0

`

tnc j
z~ t !dt, ~51!

a little care is needed since the zeroth moment,m0; j
z

[^tz
0& j , represents the total probability that the transition of

type z occurs which, in general, is less than unity. The ap-
propriate definition of the mechanicity for the processz from
a statej is thus

M j
z[12Q j

z522^tz
0& j^tz

2& j /^tz& j
2, ~52!

Now, in applying the various expressions displayed in
Sec. I for the dispersions,D, it would be convenient if the
nonexponential parameters,gj

6 ~or gj
b andgj

g!, could be ex-
pressed directly in terms of the associated mechanicities,M j

6

~and/orM j
b andM j

g! and the effective rates

uj5^t1
0 & j /t j and wj5^t2

0 & j /t j ~53!

~and/orb j ,k and g j ,k!, where if, for simplicity, we suppose
only forward and backward processes act from statej, the
mean dwell time is just

t j5^t1& j1^t2& j5~uj1wj !
21. ~54!

However, becausegj ,k
z are defined via the rate distributions

w j ,k
z (t), which, in turn, as seen in Eq.~6!, require the total

waiting-time distributions,c j ,k(t), matters are not entirely
straightforward. If one stays with the simplest case (c j

0

5c j
b5c j

d[0) a singleextraparameter proves essential: this
might, for example, be taken as the dimensionless ratio:

u j
15^t1& j /t j<1. ~55!

But the resulting formula, derived from

gj
15

uj

2t j
@^t1

2 & j1^t2
2 & j22^t1& j /uj #, ~56!

which in turn follows with the aid of Table I, has a paradoxi-
cal feature~for which reason we do not quote it!. Namely,
even if the separate mechanicities,M j

1 and M j
2 , vanish,

parametersgj
1 andgj

2 do not, in general, vanish! The reason
is that in a pure kinetic scheme with forward and backward
ratesuj andwj describing departures from the same statej,
the resulting waiting-time distributions,c j

1(t) and c j
2(t),

share a common exponential factor, namely, exp@2(uj

1wj)t#5e2t/tj. Thus even ifc j
1(t) andc j

2(t) are both simple
exponentials, the overall process willnot have a simple
chemical description unless the1 and2 decay rates match.
More generally, however, ifM j

15M j
250 and the~single!

additional condition

^t6
0 & j5^t6& jt j /~^t1& j

21^t2& j
2! ~57!

is met, then, indeed,gj
1 and gj

2 vanish.~Similar consider-
ations apply, of course, to the behavior on branches; but the
extra process available at a primary state, where a branch
starts, must not be forgotten.!

Despite these conceptual complications, one can devise
instructive examples with simpler dependence on the mech-
anicities. One useful case when only forward and backward
transitions from a statej occur is described by

c j
6~ t !5Qj

6tn621e2n6t/t j , ~58!

where, with Eq.~53!, the relations

Qj
65~uj ,wj !t j

12n6n
6

n6/G~n6! ~59!

ensure that the normalization condition*0
`(c j

11c j
2)dt51

is satisfied. The mechanicities are clearly

M j
1512n1

21 and M j
2512n2

21, ~60!

where, of course,n1 andn2 could also depend on the state
j; the nonexponential parameters are then given by

gj
652 1

2~uj ,wj !t j
2~ujM j

11wjM j
2!. ~61!

This resultdoesdepend only on the effective rates and the
associated mechanicities and thegj

6 do vanish whenM j
6

→0 in accord with the naive expectations.
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Similar examples can be devised when branching and
death processes occur from a statej. For modeling
purposes23 we believe the associated loss of full generality is
likely to be insignificant. But note that, by Eq.~61!, gj

6 are
always negative for the special cases considered; if, however,
n15n251 so thatM j

15M j
250 but there aredistinct time

constants,t j
1Þt j

2 , then gj
1 and gj

2 will have opposite
signs. We stress, nonetheless, that the results presented in
Sec. I apply for quite general waiting-time distributions: The
mechanicity may be regarded as an auxiliary concept of in-
tuitive and descriptive value.

III. PERIODIC SEQUENTIAL MODEL WITH GENERAL
WAITING TIMES

To derive the results presented in Sec. I, consider first
the general periodic sequential model with waiting-time dis-
tributions as specified in Fig. 1. This model can be regarded
as a one-dimensionalcontinuous-time random walkwith N
internal states (j 50,1,̄ ,N21), a class of walks consid-
ered some decades ago by Montroll and co-workers.24–27,29

The crucial result, demonstrated by Landman, Montroll, and
Shlesinger in 1977,27 is that the probabilityPj ( l ,t) of finding
the walker at sitel in statej at timet satisfies thegeneralized
master equation

d

dt
Pj~ l ,t !5E

0

t

$w j 21
1 ~t!Pj 21~ l ,t2t!

1w j 11
2 ~t!Pj 11~ l ,t2t!

2@w j
1~t!1w j

2~t!#Pj~ l ,t2t!%dt, ~62!

where the relaxation or memory functions,w j
6(t), are di-

rectly related to the waiting-time distribution functions,
c j

6(t), precisely as specified in Eq.~6!. This master equation
replaces the simple kinetic rate equations which were the
starting points of the previous analyses.17–20,28

For our purposes, we may, without loss of generality,
assume that the initial condition isPj ( l ,0)5Pj

0d l ,0 : i.e., the
walker starts at the originx5 l 50. Conservation of probabil-
ity then dictates

(
l 52`

1`

(
j 50

N21

Pj~ l ,t !51 ~all t !. ~63!

On the other hand, in any arbitrary statej l in the kinetic
picture the normalization requirement Eq.~4! yields

E
0

`

@c j
1~ t !1c j

2~ t !1c j
0~ t !#dt51, ~64!

or, in terms of Laplace transforms,

c̃ j
1~s50!1c̃ j

2~s50!1c̃ j
0~s50!51. ~65!

To find the drift velocityV and dispersionD we now
generalize Derrida’s method28 by defining two auxiliary
functions for each statej, namely,

Bj~ t ![ (
l 52`

1`

Pj~ l ,t !, Cj~ t ![ (
l 52`

1`

~ j 1Nl !Pj~ l ,t !. ~66!

The generalized master equation~62! then yields

d

dt
Bj~ t !5E

0

t

$w j 21
1 ~t!Bj 21~ t2t!1w j 11

2 ~t!Bj 11~ t2t!

2@w j
1~t!1w j

2~t!#Bj~ t2t!%dt. ~67!

Similarly, we obtain

d

dt
Cj~ t !5E

0

t

$w j 21
1 ~t!Cj 21~ t2t!1w j 11

2 ~t!Cj 11~ t2t!

2@w j
1~t!1w j

2~t!#Cj~ t2t!2w j 11
2 ~t!

3Bj 11~ t2t!1w j 21
1 ~t!Bj 21~ t2t!%dt. ~68!

Again, following Derrida28 we introduce the ansatz

Bj~ t !→bj , Cj~ t !2aj t→Tj , ~69!

which should be valid whent→`. Because of the periodic-
ity in j we have

bj 1N5bj , aj 1N5aj , and Tj 1N5Tj . ~70!

After long times a steady state,dBj /dt50, will be
achieved. Then, recalling in Eq.~35! that *0

`w j
6(t)dt

5w̃ j
6(s50), we introduce the effective transition ratesuj

and wj defined, in anticipation, in Eq.~16!. Thus Eq.~67!
yields

05uj 21bj 211wj 11bj 112~uj1wj !bj . ~71!

Following precisely the arguments given in Ref. 20@see Eqs.
~45!–~47!# we can then conclude

bj5
r j

RN
, with r j5

1

uj
F11 (

k51

N21

P j 11
j 1kG , ~72!

where the compact notation introduced in Eqs.~8! and ~15!
has been used.

To determine the coefficientsaj andTj that control the
behavior ofCj (t) in Eq. ~69!, we substitute this ansatz into
Eq. ~68! concluding, fort→`,

aj5E
0

`

$w j 21
1 ~t!@aj 21~ t2t!1Tj 21#

1w j 11
2 ~t!@aj 11~ t2t!1Tj 11#2@w j

1~t!1w j
2~t!#

3@aj~ t2t!1Tj #2w j 11
2 ~t!bj 11

1w j 21
1 ~t!bj 21%dt. ~73!

Now we may introduce the first moments of the relaxation
functions via

2E
0

`

tw j
6~t!dt5~dw̃ j

6/ds!us505gj
6 , ~74!

@see also Eq.~22!# which leads to

aj5t@uj 21aj 211wj 11aj 112~uj1wj !aj #

1@gj 21
1 aj 211gj 11

2 aj 112~gj
11gj

2!aj #

1@uj 21Tj 211wj 11Tj 112~uj1wj !Tj #

1@uj 21bj 212wj 11bj 11#. ~75!
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The secular term proportional tot should vanish here, which
condition requires

05uj 21aj 211wj 11aj 112~uj1wj !aj , ~76!

while the coefficientsTj then satisfy

aj5@gj 21
1 aj 211gj 11

2 aj 112~gj
11gj

2!aj #

1@uj 21Tj 211wj 11Tj 112~uj1wj !Tj #

1@uj 21bj 212wj 11bj 11#. ~77!

Comparing Eq.~76! with Eq. ~71! one can conclude that

aj5Abj , ~78!

where, using the normalization( j 50
N21 bj51 following from

Eqs.~66! and~63!, the constantA can be calculated by sum-
ming Eqs.~77! on j: theTj identically, cancel which leads to

A5 (
j 50

N21

aj5 (
j 50

N21

~uj2wj !bj . ~79!

Then, on using the result Eq.~72! for bj , we find

A5N@12P1
N#/RN . ~80!

To obtain the coefficientsTj we introduce, following
Ref. 20@see Eqs.~54!–~57!#,

yj[wj 11Tj 112ujTj , ~81!

and rewrite Eq.~75! as

yj2yj 215aj2@gj 21
1 aj 211gj 11

2 aj 112~gj
11gj

2!aj #

2uj 21bj 211wj 11bj 11 . ~82!

The solution of this equation, which is achieved using the
strategy described in Ref. 20, yields

yj5ujbj1~A/N! (
i 50

N21

~ i 11!bj 1 i 11

1~ajgj
12aj 11gj 11

2 !1c, ~83!

wherec is an arbitrary constant which will cancel in the final
formula for the dispersion,D ~see Refs. 20 and 28!. The fact
that this expression solves Eq.~82! can be checked with the
help of the relation

ujbj2wj 11bj 115A/N, ~84!

which follows from Eqs.~72! and ~79!. Then, iterating Eq.
~81! and invoking the periodicity Eq.~70! yields the relation

Tj52
1

uj
F yj1 (

k51

N21

yj 1kP j 11
j 1kG Y ~12P1

N!, ~85!

which, via Eqs.~83!, ~78!, ~79!, and ~72!, represents an ex-
plicit result in terms of the effective rates defined in Eq.~16!.

Now we can calculate the drift velocity,V, and the dif-
fusion constant,D, using the long-time definitions Eqs.~1!
and ~2!. The mean position of a particle is given by

^x~ t !&5
d

N (
l 52`

1`

(
j 50

N21

~ j 1Nl !Pj~ l ,t !5
d

N (
j 50

N21

Cj~ t !. ~86!

With the aid of the generalized master equation~62! the de-
rivative can be taken which, whent→`, leads to

lim
t→`

d

dt
^x~ t !&5

d

N (
j 50

N21

~uj2wj !bj5
d

N
A. ~87!

Using the result Eq.~80! yields our final formula for the drift
velocity, namely,

Va5d@12P1
N#/RN , ~88!

where we recall thatRN is defined in Eq.~15!. This expres-
sion corresponds exactly to Derrida’s original result for the
simple sequential kinetic model.

A similar approach suffices to determine the dispersion.
We start from

^x2~ t !&5
d2

N2 (
l 52`

`

(
j 50

N21

~ j 1Nl !2Pj~ l ,t !, ~89!

and again appeal to the master equation~62! in the long-time
limit. This leads to

lim
t→`

d

dt
^x2~ t !&52

d2

N2 F (
j 50

N21

~uj2wj !~aj t1Tj !

1
1

2 (
j 50

N21

~uj1wj !bj1aj~gj
12gj

2!G . ~90!

Then, using Eqs.~86!, ~87!, and the definition Eq.~2!, we
obtain

D5
d2

N2 F (
j 50

N21

~uj2wj !Tj1
1

2 (
j 50

N21

~uj1wj !bj

1 (
j 50

N21

aj~gj
12gj

2!2A (
j 50

N21

Tj G . ~91!

CoefficientsTj can be re-expressed using Eqs.~85! and~83!
from which the constantc then cancels.20,28Finally, the defi-
nitions Eqs.~19! and~20! allow us to write the dispersion in
the form presented in Eqs.~17!–~21!, while the nonexponen-
tial parameters first introduced in Eq.~22! are confirmed by
Eq. ~74!. Note that the dispersion consists of two terms,D0

andD1 , the second arising purely from the deviations of the
waiting-time distribution functions from the ‘‘chemical,’’
Poissonian forms.

IV. PERIODIC MODEL WITH BRANCHES AND
WAITING TIMES

Now consider the one-dimensional periodic model with
branches and waiting-time distributions as presented in Fig.
2. LetPj ,k( l ,t) be the probability of finding the walker at site
l in statej of the main sequence~labeledk50! or in state
k51,...,L, on the associated side branch, at timet. Appealing
again to Landmanet al.27 this probability is governed by the
generalized master equation
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d

dt
Pj ,0~ l ,t !5E

0

t

$w j 21
1 ~t!Pj 21,0~ l ,t2t!

1w j 11
2 ~t!Pj 11,0~ l ,t2t!

1w j ,l
g ~t!Pj ,1~ l ,t2t!2@w j

1~t!1w j
2~t!

1w j ,0
b ~t!#Pj ,0~ l ,t2t!%dt, ~92!

for k50, by

d

dt
Pj ,k~ l ,t !5E

0

t

$w j ,k21
b ~t!Pj ,k21~ l ,t2t!

1w j ,k11
g ~t!Pj ,k11~ l ,t2t!2@w j ,k

b ~t!

1w j ,k
g ~t!#Pj ,k~ l ,t2t!%dt, ~93!

for 1<k,L, while for k5L we have

d

dt
Pj ,L~ l ,t !5E

0

t

@w j ,L21
b ~t!Pj ,L21~ l ,t2t!

2w j ,L
g ~t!Pj ,L~ l ,t2t!#dt. ~94!

The relaxation functionsw j
1(t), w j

b(t), and w j
g(t), are de-

fined, as before, via their Laplace transforms as specified in
Eq. ~6!. At t50 we may assume thatPj ,k( l ;0)5Pj ,k

0 d l ,0 and
normalization requires

(
l 52`

`

(
j 50

N21

(
k50

L

Pj ,k~ l ,t !51 ~all t !. ~95!

Again following the strategy of Derrida’s method as de-
scribed in the previous section, we introduce the auxiliary
functions

Bj ,k~ t ![ (
l 52`

`

Pj ,k~ l ,t !,

~96!

Cj ,k~ t ![ (
l 52`

`

~ j 1Nl !Pj ,k~ l ,t !.

The time evolution ofBj ,k(t) is then described by the set of
L11 equations

d

dt
Bj ,0~ t !5E

0

t

$w j 21
1 ~t!Bj 21,0~ t2t!

1w j 11
2 ~t!Bj 11,0~ t2t!1w j ,1

g ~t!Bj ,1~ l ,t2t!

2@w j
1~t!1w j

2~t!1w j ,0
b ~t!#Bj ,0~ t2t!%dt,

~97!

d

dt
Bj ,1~ t !5E

0

t

$w j ,k21
b ~t!Bj ,0~ t2t!1w j ,k11

g ~t!Bj ,2~ t2t!

2@w j ,k
b ~t!1w j ,k

g ~t!#Bj ,0~ t2t!%dt, ~98!

]

d

dt
Bj ,L~ t !5E

0

t

@w j ,L21
b ~t!Bj ,L21~ t2t!

2w j ,L
g ~t!Bj ,L~ t2t!#dt. ~99!

Similarly, the time evolution ofCj ,k(t) obeys the equations

d

dt
Cj ,0~ t !5E

0

t

$w j 21
1 ~t!Cj 21,0~ t2t!

1w j 11
2 ~t!Cj 11,0~ t2t!1w j ,1

g ~t!Cj ,1~ l ,t2t!

2@w j
1~t!1w j

2~t!1w j ,0
b ~t!#Cj ,0~ t2t!

1w j 21
1 ~t!Bj 21,0~ t2t!

2w j 11
2 ~t!Bj 11,0~ t2t!%dt, ~100!

d

dt
Cj ,1~ t !5E

0

t

$w j ,k21
b ~t!Cj ,0~ t2t!1w j ,k11

g ~t!Cj ,2~ t2t!

2@w j ,k
b ~t!1w j ,k

g ~t!#Cj ,0~ t2t!%dt, ~101!

]

d

dt
Cj ,L~ t !5E

0

t

@w j ,L21
b ~t!Cj ,L21~ t2t!

2w j ,L
g ~t!Cj ,L~ t2t!#dt. ~102!

The previous arguments20,28 lead to the expectation

Bj ,k~ t !→bj ,k , Cj ,k~ t !2aj ,kt→Tj ,k , ~103!

for t→`. At large times the equations of motion~97!–~99!
then yield the relations

wj 11bj 11,02ujbj ,05wjbj ,02uj 21bj 21,0

1~b j ,0bj ,02g j ,1bj ,1!, ~104!

b j ,0bj ,02g j ,1bj ,15b j ,1bj ,12g j ,2bj ,2

5¯5b j ,L21bj ,L212g j ,Lbj ,L50, ~105!

where we have invoked the definitions Eqs.~16! and~25! for
ratesuj , wj , b j ,k and g j ,k . Recalling, likewise, the defini-
tions Eqs.~22! and ~33!, the coefficientsaj ,k and Tj ,k must
satisfy, first,

aj ,05@gj 21
1 aj 21,01gj 11

2 aj 11,02~gj
11gj

2!aj ,0#

1@uj 21Tj 21,01wj 11Tj 11,02~uj1wj !Tj ,0#

1@uj 21bj 21,02wj 11bj 11,0#

1@gj ,1
g aj ,12gj ,0

b aj ,01g j ,1Tj ,12b j ,0Tj ,0#, ~106!

aj ,15@gj ,0
b aj ,01gj ,2

g aj ,22~gj ,1
b 1gj ,1

g !aj ,1#

1@b j ,0Tj ,01g j ,2Tj ,22~b j ,11g j ,1!Tj ,1#, ~107!

]

aj ,L5@gj ,L21
b aj ,L212gj ,L

g aj ,L

1b j ,L21Tj ,L212g j ,LTj ,L#, ~108!

while the vanishing of the secular terms yields, also,

wj 11aj 11,02ujaj ,0

5wjaj ,02uj 21aj 21,01~b j ,0aj ,02g j ,1aj ,1!, ~109!
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b j ,0aj ,02g j ,1aj ,15b j ,1aj ,12g j ,2aj ,2

5¯5b j ,L21aj ,L212g j ,Laj ,L50. ~110!

The side-branch functionsbj ,k are found easily by solving
Eqs.~105! recursively, which gives

bj ,k5P j
b,kbj ,0 ~k51,¯ , L !, ~111!

where we have used the product notation Eq.~9!. To obtain
an expression forbj ,0 we follow exactly the method used to
derive Eq.~72! in Sec. III, thereby finding

bj ,05r j /RN
b , ~112!

wherer j is defined in Eq.~15! while RN
b was introduced in

Eq. ~24!. Comparing Eqs.~104! and ~105! with ~109! and
~110! leads to

aj ,k5Abj ,k with A5N~12P1
N!/RN

b . ~113!

The final derivation of the expressions for the drift ve-
locity and the dispersion now follows along the lines devel-
oped in the previous section for models without branches.
The results have been presented in full in Sec. I B. As re-
gards the velocity, the branches generate no changes beyond
the replacement ofr j by r j

b and RN by RN
b . However, an

additional term,D2,b , appears in the dispersion: see Eqs.
~31!–~33!.

V. PERIODIC MODEL WITH DEATHS AND WAITING
TIMES

Consider, finally, the periodic sequential model with
waiting-time distributions and the possibility of an irrevers-
ible detachment or death from each state that is described by
a waiting-time distribution functionc j

d(t)5c j 6N
d (t): see

Fig. 1. The generalized master equation for the probability
Pj ( l ,t) now reads27

d

dt
Pj~ l ,t !5E

0

t

$w j 21
1 ~t!Pj 21~ l ,t2t!

1w j 11
2 ~t!Pj 11~ l ,t2t!

2@w j
1~t!1w j

2~t!1w j
d~t!#Pj~ l ,t2t!%dt,

~114!

where, as before, the relaxation functionsw j
6(t) and w j

d(t)
are related to waiting-time distribution functions via Eqs.~5!
and ~6!. We may again assume that the initial condition is

Pj~ l ,0!5Pj
0d l ,0 with (

j 50

N21

Pj
051. ~115!

However, as discussed in Ref. 20, because the total probabil-
ity is no longer conserved@so that( l 52`

1` ( j 50
N21 Pj ( l ,t.0)

,1#, we look for long-time solutions of the generalized mas-
ter equation~114! that are of the form

Pj~ l ,t !'e2lt2t j P̃ j~ l ,t !, ~116!

where, as before,20 the decrement and the periodic state co-
efficients,t j[t j 6N , are to be found from the requirement
that P̃j ( l ,t) satisfies a suitably ‘‘renormalized,’’probability
conservingmaster equation

d

dt
P̃j~ l ,t !5ũ j 21P̃j 21~ l ,t !1w̃j 11P̃j 11~ l ,t !

2~ ũ j1w̃j !P̃j~ l ,t !. ~117!

By substituting the ansatz Eq.~116! into the full generalized
master equation~114!, we obtain, for large times, the equa-
tion

d

dt
P̃j~ l ,t !5uj 21et j 2t j 21P̃j 211wj 11et j 2t j 11P̃j 11

2~uj1wj1d j2l!P̃j , ~118!

in which the modified rate definitions Eq.~35! et seq., which
depend explicitly onl, have been used. Matching terms with
those in Eqs.~117! generates the identifications

ũ j5uje j 11 /e j and w̃j5uje j 21 /e j with e j5et j .
~119!

It also yields a condition which thee j must satisfy for con-
sistency, namely,

2wje j 211~uj1wj1d j !e j2uje j 115le j . ~120!

But, recognizing the periodicity inj, this is precisely equiva-
lent to the eigenvalue equationMe5le, whereM is theN
3N matrix specified in Eqs.~12! and ~13!. Since the
asymptotic decay is required in Eq.~116!, l must be the
smallest eigenvalue which, clearly, should be real and posi-
tive.

To find expressions for the drift velocity and the disper-
sion we now require three auxiliary functions, namely,

Bj~ t ![ (
l 52`

`

Pj~ l ,t !, Cj~ t ![ (
l 52`

`

~ j 1Nl !Pj~ l ,t !, ~121!

and also

Ej~ t ![ (
l 52`

`

~ j 1Nl !2Pj~ l ,t !. ~122!

For larget we may expect the asymptotic behavior

Bj~ t !'e2lt2t j B̃ j~ t !, Cj~ t !'e2lt2t j C̃ j~ t !,

and ~123!

Ej~ t !'e2lt2t j Ẽ j~ t !,

with, extending Derrida’s ansatz,

B̃j~ t !→bj , C̃j~ t !2aj t→Tj ,

and ~124!

Ẽj~ t !2ej t
22 f j t→Xj .

The explicit formulas for the coefficientsbj , aj , Tj , ej , f j ,
andXj can now be found straightforwardly by extending the
procedures outlined in Secs. III and IV. However, the de-
tailed calculations are fairly tedious and, because of the pres-
ence of the functionsEj (t), give rise to the higher order
nonexponential parameters,hj

6 andhj
d , defined in Eqs.~47!

and ~48!.
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The mean displacement at timet must now be suitably
normalized so as to include only surviving walkers. Thus we
have

^x~ t !&5
d

N (
l 52`

`

(
j 50

N21

~ j 1Nl !Pj~ l ,t !Y (
l 52`

`

(
j 50

N21

Pj~ l ,t !

5
d

N (
j 50

N21

Cj~ t !Y (
j 50

N21

Bj~ t !, ~125!

while the desired mean-square displacement is similarly
given by

^x2~ t !&5
d2

N2 (
l 52`

`

(
j 50

N21

~ j 1Nl !2Pj~ l ,t !Y
(

l 52`

`

(
j 50

N21

Pj~ l ,t !

5
d2

N2 (
j 50

N21

Ej~ t !Y (
j 50

N21

Bj~ t !. ~126!

On taking the derivatives required by Eqs.~1! and ~2! and
the steady-state limit, these expressions yield the results for
the velocity and the dispersion given in Eqs.~34! and~39!–
~48!. Naturally, when there is no possibility of detachments
@c j

d(t)[0, l50# one recovers all the results for the periodic
sequential models with waiting times as reported in the In-
troduction and Summary and in Sec. III.

This completes the description of our mathematical
analysis. In brief summary, we have introduced linear, peri-
odic sequential stochastic models with general waiting-time
distributions and have found explicit expressions for the cor-
responding mean velocities and dispersions that have been
reported in Sec. I. The simplest sequential models have been
extended by including finite branches and by allowing for the
possibility of death or detachment processes. Deviations
from the exponential waiting-time distribution functions that
characterize standard kinetic models embodying Poisson
processes do not change the form of the velocity expressions;
however, the dispersions entail nonexponential parameters
that enter in a more complicated manner. The concept of
‘‘mechanicity,’’ introduced in Sec. II, is useful to quantify
and visualize the departures from the usual ‘‘chemical’’ ki-
netic descriptions.
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