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In order to describe the observed behavior of single motor proteins moving along linear molecular
tracks, a class of stochastic models is studied which recognizes the possibility of parallel
biochemical pathways. Extending the theoretical analysis of Derrida@J. Stat. Phys.31, 433~1983!#,
exact results are derived for the velocity and dispersion of a discrete one-dimensional kinetic model
which consists of two parallel chains ofN states andM states, respectively, with arbitrary forward
and backward rates. Generalizations of this approach forg.2 parallel chains models are briefly
sketched. These results and other properties of parallel-chain kinetic models are illustrated by
various examples. ©2001 American Institute of Physics.@DOI: 10.1063/1.1405446#

I. INTRODUCTION

Biological motor proteins such as kinesins, dyneins,
myosins, DNA and RNA polymerases have been shown to
play crucial roles in cell division, cellular transport, muscle
contraction, and genetic transcription.1,2 These proteins, also
known as molecular motors, operate in cells by consuming
energy provided by hydrolysis of ATP~adenosine triphos-
phate! or related compounds, and moving along polarized,
periodic linear tracks such as microtubules, actin filaments,
or DNA molecules.3

The mechanical and biochemical properties ofsingle
motor proteins can now be studied experimentally with great
accuracy under varying conditions.3–10 Experimental suc-
cesses have led to attempts to describe and understand the
mechanisms of functioning of molecular motor proteins.11–25

Most theoretical research on molecular motors follows
one of two main directions. One approach is based on the
‘‘physical’’ concept ofthermal ratchets.13–16Here, the motor
protein molecule is viewed as a Brownian particle which
diffuses in periodic but asymmetric potentials, between
which it switches stochastically. An alternative ‘‘chemical’’
approach is based on a kinetic multistate description of the
molecular motor transport.17–25It assumes that a sequence of
chemical transitions between consecutive spatially separated
biochemical states or conformations leads to the motion of
motor proteins.

In the simplest chemical kinetic model~see Fig. 1!, a
motor protein molecule moves along a linear periodic track
and binds at specific sitesx5 ld ( l 50,61,62,...), whered
is the distance between neighboring binding sites. There are
N discrete states,j 50,1,...,N21, on a biochemical pathway
between two consecutive binding sites. The motor protein
molecule in statej l ~at site l! can jump forward to state (j
11)l with rateuj , or it can step backward to state (j 21)l at
ratewj , as schematically pictured in Fig. 1.20,21 In this rep-
resentation, the model can easily be mapped onto a discrete
biased random walk on a periodic one-dimensional lattice.
This observation19 allows one to use the method of Derrida26

to obtain exact and explicit formulas for the asymptotic~long
time! drift velocity

V05V0~$uj ,wj%!5 lim
t→`

d

dt
^x~ t !&, ~1!

and for the dispersion~or effective diffusion constant!

D05D0~$uj ,wj%!5 1
2 lim

t→`

d

dt
@^x2~ t !&2^x~ t !&2#, ~2!

where x(t) is the position of the motor protein along the
linear track at timet.

In most experiments on motor protein motility the tra-
jectories of beads~to which motor protein molecules are
chemically attached! are monitored.3–10 This fact stimulated
Chen and co-workers23,24 to develop a formalism that takes
into consideration the interactions between the bead and the
motor protein molecule. Although the hydrodynamic relax-
ation and elastic properties of beads are important for trans-
port properties of molecular motors, the experiments sug-
gests that external force fluctuations due to these phenomena
are minimal.8 In addition, this method23,24 allows numerical
calculations only for drift velocities in simplified two-state
models. Thus, the application of phenomenological simple
chemical kinetic models20–22,25~which provide exact analytic
expressions for velocities and dispersions for anyN-state
model! for description of motor protein transport seems more
practical at current stage.

While the simple chemical kinetic model in Fig. 1 pro-
vides a reasonable description of the motion of a normal
two-headed kinesin walking on a microtubule,27 certain ex-
perimental observations on kinesins and other classes of mo-
tor proteins demand more elaborate theoretical treatments.
To take into consideration the complexity of real biochemical
pathways and to account for the irreversible dissociation of
molecular motors from the linear track, extensions of the
basicN-state periodic sequential kinetic model were recently
presented.22 In addition, the significance of deviations from
chemical kinetics in the motion of motor proteins was dis-
cussed in detail using generalized kinetic models with
waiting-time distributions.25 Moreover, recent experiments
on the processivity of single-headed kinesins and dyneins
reveal the existence of a second, ATP-independent biochemi-
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cal pathway.28–30 Finally, the possibility of parallel bio-
chemical pathways have been demonstrated experimentally
for translocating RNA polymerases.31 These observations
call for an extension of the basic chemical kinetic models,
which incorporate the existence of parallel biochemical path-
ways.

In this paper we consider the parallel-chain kinetic
model that is illustrated in Fig. 2: The motor protein mol-
ecule can be found on the upper biochemical pathway~chain
0!, which consists ofN discrete states, or it can diffuse along
the lower pathway~chain 1!, which hasM states. The mo-
lecular motor in statej l on chain 0 can make one step for-
ward at rateuj , or one step backward at ratewj ( j 50,...,N
21). Similarly, the motor protein molecule in statei l on
chain 1 can move forward~backward! with rate a i(b i) for
i 50,...,M21. Note that the extended chemical kinetic model
with jumps considered in Ref. 22 corresponds to our parallel-
chain model withM51. Our method can be easily general-
ized for parallel-chain models with more than two chains.

The analysis of different extended chemical kinetic
models22,25revealed that the corresponding expressions forV
and D depend on certain linear sequential products of rate
ratios. The same is true for the parallel-chain chemical ki-
netic model, where we define four types of product. Specifi-
cally, for chain 0 we have

P~0! j
k [)

i 5 j

k
wi

ui
and P~0!, j

†k [)
i 5 j

k
wi 11

ui
5

wk11

wj
P~0! j

k ,

~3!

with periodicity uj 6N5uj and wj 6N5wj . Similarly, for
chain 1 we have

P~1! j
k [)

i 5 j

k
b i

a i
and P~1! j

†k [)
i 5 j

k
b i 11

a i
5

bk11

b j
P~1! j

k ,

~4!

with periodicity a j 6M5a j andb j 6M5b j .
In parallel-chain chemical kinetic model, as shown in

Fig. 2, two chains form a loop. If the free energy changes
along each chain are equal, then from the principle of de-
tailed balance32 we have

P~0!1
N 5P~1!1

M . ~5!

However, our analysis is valid for more general situations
where detailed balance is not holding. For example, for mov-
ing motor proteins, one pathway may correspond to ATP-
dependent biochemical cycle, while the second pathway is
just simple diffusional slippage of the protein molecule from
one site to the other as was discussed by Chen and Yan.24

II. RESULTS FOR THE PARALLEL-CHAIN KINETIC
MODEL

We present here the explicit formulas for the drift veloc-
ity and the dispersion of the two-chain parallel chemical ki-
netic model. The derivations are outlined in the Appendix.

For the two-chain model, the formal expression for the
drift velocity is given as a sum of two terms corresponding to
transport across chain 0 and chain 1, namely,

V5V01V1 , ~6!

with

V05
d

r 0
~0! @12P~0!1

N #Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G , ~7!

and

V15
d

r 0
~1! @12P~1!1

M #Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G , ~8!

where, using the notations introduced above,

RN5 (
j 50

N21

r j
~0! , r j

~0!5uj
21F11 (

k51

N21

P~0! j 11
j 1k G , ~9!

and

RM5 (
j 50

M21

r j
~1! , r j

~1!5a j
21F11 (

k51

M21

P~1! j 11
j 1k G . ~10!

Taking into the consideration the detailed balance@see Eq.
~5!#, we obtain

V5d~1/r 0
~0!11/r 0

~1!!@12P~0!1
N #Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G .

~11!

For a general parallel-chain model withg chains~which sat-
isfy detailed balance conditions!, the drift velocity is given
by

V5dS (
i 50

g21

1/r 0
~ i !D @12P

~0!1
N0 #Y F (

i 50

g21
1

r 0
~ i ! RNi

21G ,

~12!

where i th chain hasNi discrete states, andr j
( i ) and RNi

are
defined similarly to Eqs.~9! and ~10!.

FIG. 1. General scheme for the simplestN-state chemical kinetic model
with forward ratesuj and backward rateswj ( j 50,1,...,N21).

FIG. 2. Schematic illustration for the two chains chemical kinetic model.
The upper chain hasN discrete states with forward~backward! ratesuj (wj )
for j 50,1,...,N21, while there areM discrete states in the lower chain with
ratesa i and b i( i 50,1,...,M21) for forward and backward transitions, re-
spectively.
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The expressions for dispersion of the two-chain chemi-
cal kinetic model are more complicated, and can be written
as

D5D01D11D21D3 , ~13!

with the first term given by

D05~d/N!H VN (
i 51

M21

bi
~1!2

V~N12!

2

2
d~N22!

2M (
j 50

M21

~a j2b j !bj
~1!1

VJ0

12P~0!1
N J , ~14!

with

J05
1

M (
j 50

N21

sj
~0! j (

i 50

M21

~a i2b i !bi
~1!1UN1~V/d!SN

2~V/d! (
j 50

N21

sj
~0! j (

i 51

M21

bi
~1! , ~15!

SN5 (
j 50

N21

sj
~0! (

k50

N21

~k11!bk1 j 11
~0! ,

~16!

UN5 (
j 50

N21

ujbj
~0!sj

~0! ,

where, using definitions~3! and ~4!, the new functions are
given by

sj
~0!5uj

21F11 (
k51

N21

P~0! j 21
† j 2k G , ~17!

and

bj
~0!5S r j

~0!

r 0
~0!D Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G , ~18!

bj
~1!5S r j

~1!

r 0
~1!D Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G . ~19!

Note that

b0
~0!5b0

~1!51Y F 1

r 0
~0! RN1

1

r 0
~1! RM21G . ~20!

The second term in~13! has a similar structure, namely,

D15~d/M !H VM (
i 51

N21

bi
~0!2

V~M12!

2

2
d~M22!

2N (
j 50

N21

~uj2wj !bj
~0!1

VJ1

12P~1!1
M J , ~21!

with

J15
1

N (
j 50

M21

sj
~1! j (

i 50

N21

~ui2wi !bi
~0!1UM1~V/d!SM

2~V/d! (
j 50

M21

sj
~1! j (

i 51

N21

bi
~0! , ~22!

SM5 (
j 50

M21

sj
~1! (

k50

M21

~k11!bk1 j 11
~1! ,

~23!

UM5 (
j 50

M21

a jbj
~1!sj

~1! ,

and, again recalling the definitions~3! and ~4!, we have for
the new function

sj
~1!5a j

21F11 (
k51

M21

P~1! j 21
† j 2k G . ~24!

The third term in~13! can be written as

D252~d/M !
VJ2

12P~1!1
M , ~25!

where

J25 (
j 50

M21 F j P~1!1
j

Na0
(
i 50

N21

~ui2wi !bi
~0!1

bj
~1!a jP~1!1

j

a0

1
VP~1!1

j

da0
S (

i 50

M21

~ i 11!bj 1 i 11
~1! 2 j (

i 50

N21

bi
~0!D G . ~26!

Finally, the last term in~13! is given by

D35d2F (
j 50

N21 bj
~0!

r 0
~1! ~12P~1!1

M !2 (
j 51

M21 bj
~1!

r 0
~0! ~12P~0!1

N !G
3S J2

M ~12P~1!1
M !

2
J3

N~12P~0!1
N ! D , ~27!

where

J35 (
j 50

N21 F j P~0!1
j

Mu0
(
i 50

M21

~a i2b i !bi
~1!1

bj
~0!ujP~0!1

j

u0

1
VP~0!1

j

du0
S (

i 50

N21

~ i 11!bj 1 i 11
~0! 2 j (

i 50

M21

bj
~1!D G . ~28!

Note that whenM51, the results for the drift velocity and
for the dispersion reduce to corresponding expressions for
the chemical kinetic model with jumps.22 For a single-chain
model, the original results of Derrida26 are recovered, as ex-
pected.

III. ILLUSTRATIVE EXAMPLES

In order to illustrate these exact results and other prop-
erties of parallel-chain kinetic models, we consider several
simple examples. First, we discuss a simple, although un-
physical,N52 and M52 model with only forward rates,
andu05a0 andu15a1 . The expression for the drift veloc-
ity can then be easily found:

V5V01V152V05d
2u0u1

2u01u1
, ~29!

and the expression for dispersion yields

D5
d2

2

2u0u1~u1
214u0

2!

~2u01u1!3 . ~30!
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For the model with only one chain with the same forward
rates, the expression for the drift velocity is given by26

V* 5d
u0u1

u01u1
, ~31!

while the dispersion is equal to

D* 5
d2

2

u0u1~u1
21u0

2!

~u01u1!3 . ~32!

It is clear thatV0,V* ,V. This example illustrates one of
the properties of general parallel-chains chemical models:
with the addition of parallel chains with intermediate states
(M.1), the transport in the positive directionincreasesin
accord with intuition, however the current per chainde-
creases. Similar behavior is found for dispersion.

Measurements of mechanical and biochemical properties
of motor proteins as a function of external load are important
tools in studying mechanisms of protein motility. In the sec-
ond example, we will illustrate how external load affects the
drift velocity in parallel-chain chemical kinetic model. Con-
sider N52 and M51 model with arbitrary forward and
backward rates which satisfy the detailed balance. Then the
expression for the drift velocity is given by

V5d
u0u12w0w11~a02b0!~u11w1!

u01u11w01w1
. ~33!

External loadF modifies the rate constants as discussed in
Refs. 20–22,

uj~F !5uj~0!e2u j
1Fd/kBT, wj~F !5wj~0!e1u j

2Fd/kBT,

~34!

a0~F !5a0~0!e2uaFd/kBT, b0~F !5b0~0!e1ubFd/kBT,

where( j 50
1 (u j

11u j
2)5ua1ub51.20–22The resulting force-

velocity curves for the parallel-chain and for the single-chain
(a05b050) models are presented in Fig. 3. It shows that,
although the addition of chains increases the drift velocity
and dispersion, the stalling force~when V50! remains un-
changed. This is due to the fact that stalling force for motor
proteins is determined by free-energy change between two
binding states, say states 0l and 0l 11 .20 The addition of
chains does not change free energy in the system because of
detailed balance conditions. This is similar to the action of
catalyst in chemical reactions when it opens a new reaction
channel but does not change an equilibrium constant.

To summarize, parallel-chain kinetic models are intro-
duced and explicit expressions are found for the drift veloc-
ity and the dispersion. It is found that the velocity is given by
the sum of the currents across the corresponding chains.
However, the expression for the dispersion cannot be pre-
sented as a linear combination of chain terms. These results
together with some properties of the parallel-chain kinetic
models, are illustrated on simple examples. It is proposed
that these results can be used to describe the complex mecha-
nism of the motion of several classes of motor proteins.
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APPENDIX A: PARALLEL-CHAIN CHEMICAL KINETIC
MODEL

In order to derive the results presented in Sec. II, we
consider the two-chains kinetic model as shown in Fig. 2. We
introduce the probabilityPj

(k)( l ,t) of finding the motor pro-
tein particle at sitel in statej on chaink k(k50,1) at timet,
which satisfies the master equations

d

dt
Pj

~0!~ l ,t !5uj 21Pj 21
~0! ~ l ,t !1wj 11Pj 11

~0! ~ l ,t !

2~uj1wj !Pj
~0!~ l ,t !, ~A1!

d

dt
Pj

~1!~ l ,t !5a j 21Pj 21
~1! ~ l ,t !1b j 11Pj 11

~1! ~ l ,t !

2~a j1b j !Pj
~1!~ l ,t !, ~A2!

for j Þ0, while j 50 is a special state, andP0
(0)( l ,t)5P0

(1)

( l ,t)5P0( l ,t). In this case, the master equation can be writ-
ten as

d

dt
P0~ l ,t !5uN21PN21

~0! ~ l 21;t !1w1P1
~0!~ l ,t !

1aM21PM21
~1! ~ l 21;t !1b1P1

~1!~ l ;t !2~u0

1w01a01b0!P0~ l ,t !. ~A3!

Following22,25 we can assume that att50 the particle starts
at the originx5 l 50. Also, because of conservation of prob-
ability, we have

FIG. 3. Force-velocity curves for single-chain~solid line! and parallel-chain
~dashed line! models. Parameters used for parallel-chain model calculations
are: u0510 s21, u15100 s21, w051 s21, w1510 s21, a051 s21, b0

50.01 s21, u0
15u0

25u1
15u1

250.5, ua5ub50.5, andd58.2 nm. For the
single-chain models we assumed thata05b050, and for other parameters
we used the same values as above. The step sized used in our calculations
corresponds to distance between binding sites in microtubules.
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(
l 52`

1` S (
j 50

N21

Pj
~0!~ l ,t !1 (

j 50

M21

Pj
~1!~ l ,t !D 51 ~all t !.

~A4!

Next Derrida’s approach26 is extended by defining four aux-
iliary functions for each state,j, namely,

Bj
~0!~ t ![ (

l 52`

1`

Pj
~0!~ l ,t !,

~A5!

Cj
~0!~ t ![ (

l 52`

1`

~ j 1Nl !Pj
~0!~ l ,t !,

Bj
~1!~ t ![ (

l 52`

1`

Pj
~1!~ l ,t !,

~A6!

Cj
~1!~ t ![ (

l 52`

1`

~ j 1Ml !Pj
~1!~ l ,t !.

Note that

B0
~0!~ t !5B0

~1!~ t !5B0~ t !, C0
~0!~ t !/N5C0

~1!~ t !/M .
~A7!

The master equations~A1! and ~A2! then give forj Þ0

d

dt
Bj

~0!~ t !5uj 21Bj 21
~0! 1wj 11Bj 11

~0! 2~uj1wj !Bj
~0! ,

~A8!

d

dt
Bj

~1!~ t !5a j 21Bj 21
~1! 1b j 11Bj 11

~1! 2~a j1b j !Bj
~1! ,

~A9!

and for j 50 we obtain

d

dt
B0~ t !5uN21BN21

~0! 1aM21BM21
~1! 1w1B1

~0!1b1B1
~1!

2~u01w01a01b0!B0 . ~A10!

Similarly, for j Þ0 we derive

d

dt
Cj

~0!~ t !5uj 21Cj 21
~0! 1wj 11Cj 11

~0! 2~uj1wj !Cj
~0!

1uj 21Bj 21
~0! 2wj 11Bj 11

~0! , ~A11!

d

dt
Cj

~1!~ t !5a j 21Cj 21
~1! 1b j 11Cj 11

~1! 2~a j1b j !Cj
~1!

1a j 21Bj 21
~1! 2b j 11Bj 11

~1! , ~A12!

while for j 50 the results are

d

dt
C0

~0!~ t !5uN21CN21
~0! 1w1C1

~0!2~u01w0!C0
~0!

1uN21BN21
~0! 2w1B1

~0!1
N

M
@aM21CM21

~1!

1b1C1
~1!2~a01b0!C0

~1!1aM21BM21
~1!

2b1B1
~1!#, ~A13!

d

dt
C0

~1!~ t !5aM21CM21
~1! 1b1C1

~1!2~a01b0!C0
~1!

1aM21BM21
~1! 2b1B1

~1!1
M

N
@uN21CN21

~0!

1w1C1
~0!2~u01w0!C0

~0!1uN21BN21
~0!

2w1B1
~0!#. ~A14!

Following Derrida’s arguments,26 we introduce the an-
satz

Bj~ t !~k!→bj
~k! , Cj

~k!~ t !2aj
~k!t→Tj

~k! ~k50,1!,
~A15!

which should be valid at large times. The parametersbj
(k) ,

aj
(k) andTj

(k) are periodic

bj 1N
~0! 5bj

~0! , aj 1N
~0! 5aj

~0! , Tj 1N
~0! 5Tj

~0! , ~A16!

bj 1M
~1! 5bj

~1! , aj 1M
~1! 5aj

~1! , Tj 1M
~1! 5Tj

~1! . ~A17!

At steady statedBj
(k)/dt50 and for j Þ0, Eqs. ~A9! and

~A10! yield

05uj 21bj 21
~0! 1wj 11bj 11

~0! 2~uj1wj !bj
~0! , ~A18!

05a j 21bj 21
~1! 1b j 11bj 11

~1! 2~a j1b j !bj
~1! , ~A19!

while for j 50, Eq. ~A10! give us

05uN21bN21
~0! 1w1b1

~0!1aM21bM21
~1!

1b1b1
~1!2~u01w01a01b0!b0 , ~A20!

whereb0
(0)5b0

(1)5b0 . Again following Derrida’s method,26

the solutions of Eqs.~A18!–~A20! can be written in the form

bj
~k!5ekr j

~k! , for k50,1, ~A21!

wherer j
(k) are defined in Eqs.~9! and~10! and the unknown

constantsek can be determined using the conservation of
probability requirement@see~A4!#,

(
j 50

N21

bj
~0!1 (

j 50

M21

bj
~1!51, ~A22!

which yield the expressions forbj
(k) given in ~18! and ~19!.

To find the coefficientsaj
(k) andTj

(k) , the ansatz~A15! is
substituted into the asymptotic (t→`) expressions~A11!–
~A14!, yielding for the coefficientsaj

(k) ( j Þ0)

05uj 21aj 21
~0! 1wj 11aj 11

~0! 2~uj1wj !aj
~0! , ~A23!

05a j 21aj 21
~1! 1b j 11aj 11

~1! 2~a j1b j !aj
~1! , ~A24!

while the coefficientsTj
(k) ~for j Þ0! then satisfy

aj
~0!5uj 21Tj 21

~0! 1wj 11Tj 11
~0! 2~uj1wj !Tj

~0!

1uj 21bj 21
~0! 2wj 11bj 11

~0! , ~A25!

aj
~1!5a j 21Tj 21

~1! 1b j 11Tj 11
~1! 2~a j1b j !Tj

~1!

1a j 21bj 21
~1! 2b j 11bj 11

~1! . ~A26!

Similarly, for j 50 we obtain

05uj 21aN21
~0! 1w1a1

~0!2~u01w0!a0
~0! , ~A27!
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05aM21aM21
~1! 1b1a1

~1!2~a01b0!aj
~1! , ~A28!

and

a0
~0!5

N

M
a0

~1!5uN21TN21
~0! 1w1T1

~0!2~u01w0!T0
~0!

1uN21bN21
~0! 2w1b1

~0!1
N

M
@aM21TM21

~1!

1b1T1
~1!2~a01b0!T0

~1!1aM21bM21
~1! 2b1b1

~1!#.

~A29!

Comparing~A23!, ~A24!, ~A27!, and~A28! with expressions
~A18!–~A20!, we conclude that

aj
~k!5Akbj

~k! , k50,1, ~A30!

with the constantsAk related to each other byA0 /N
5A1 /M . These constants can be found by considering the
expression MS j 50

N21aj
(0)1NS j 51

N21aj
(1) @using ~A25! and

~A26! for summations overaj
(k)# and recalling the normaliza-

tion Eq. ~A22!

A05 (
j 50

N21

aj
~0!1

N

M (
j 51

M21

aj
~1!

5 (
j 50

N21

~uj2wj !bj
~0!1

N

M (
j 50

M21

~a j2b j !bj
~1! . ~A31!

To determine the coefficientsTj
(k) , we introduce,

following,22,25,26

yj
~0![wj 11Tj 11

~0! 2ujTj
~0! , yj

~1![b j 11Tj 11
~1! 2a jTj

~1! .
~A32!

Now ~A25! and ~A26! can be rewritten as

yj
~0!2yj 21

~0! 5aj
~0!2uj 21bj 21

~0! 1wj 11bj 11
~0! ,

yj
~1!2yj 21

~1! 5aj
~1!2a j 21bj 21

~1! 1b j 11bj 11
~1! , ~A33!

while expression~A29! gives us

y0
~0!2yN21

~0! 5a0
~0!2uN21bN21

~0! 1w1b1
~0!2

N

M
~y0

~1!

2yM21
~1! 1aM21bM21

~1! 2b1b1
~1!!, ~A34!

y0
~1!2yM21

~1! 5a0
~1!2aM21bM21

~1! 1b1b1
~1!2

M

N
~y0

~0!

2yM21
~0! 1uN21bN21

~0! 2w1b1
~0!!. ~A35!

Following the discussions in Refs. 22 and 25, these equations
can be solved, yielding

yj
~0!5~ j /M ! (

i 50

M21

~a i2b i !bi
~1!1ujbj

~0!

1~A0 /N!F (
i 50

N21

~ i 11!bj 111 i
~0! 2 j (

i 51

M21

bi
~1!G1c0 ,

~A36!

yj
~1!5~ j /N! (

i 50

N21

~ui2wi !bi
~0!1a jbj

~1!1~A1 /M !F (
i 50

M21

~ i

11!bj 1 i 11
~1! 2 j (

i 51

N21

bi
~0!G1c1 , ~A37!

whereck (k50,1) are arbitrary constants which will be can-
celed in final expressions for the dispersionD. These expres-
sions allow us to find the formulas forTj

(k) ~see Refs. 22, 25,
and 26!

Tj
~0!52

1

uj
F yj

~0!1 (
k51

N21

yj 1k
~0! P j 11

j 1k~0!G Y ~12P1
N~0!!,

~A38!

Tj
~1!52

1

a j
F yj

~1!1 (
k51

M21

yj 1k
~1! P j 11

j 1k~1!G Y ~12P1
M~1!!.

~A39!

It is now possible to calculate explicitly the drift veloc-
ity, V, and the dispersion,D, using the steady-state defini-
tions ~1! and ~2!. The mean particle position can be written
as

^x~ t !&5
d

N (
l 52`

1`

(
j 50

N21

~ j 1Nl !Pj
~0!~ l ,t !

1
d

M (
l 52`

1`

(
j 51

M21

~ j 1Ml !Pj
~1!~ l ,t !

5
d

N (
j 50

N21

Cj
~0!~ t !1

d

M (
j 51

M21

Cj
~1!~ t !. ~A40!

Using the master Eqs.~A1! and ~A2!, the following expres-
sion can be derived

lim
t→`

d

dt
^x~ t !&5

d

N
A0 (

j 50

N21

bj
~0!1

d

M
A1 (

j 51

M21

bj
~1!

5
d

N
A05

d

M
A1 . ~A41!

Using result~A31! and definitions~18! and ~19!, we obtain
the final results for the drift velocity, which are given in Eqs.
~6!–~11!. Note that the final explicit formula for the drift
velocity consists of two terms which correspond to transport
across each of the chains. This result can be easily general-
ized for a model with more than two parallel chains@see Eq.
~12!#.

A similar method can be used to determine the disper-
sions. Starting from

^x2~ t !&5
d2

N2 (
l 52`

`

(
j 50

N21

~ j 1Nl !2Pj
~0!~ l ,t !

1
d2

M2 (
l 52`

`

(
j 51

M21

~ j 1Ml !2Pj
~1!~ l ,t !, ~A42!

and again appealing to the master Eqs.~A1! and ~A2!, we
obtain
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lim
t→`

d

dt
^x2~ t !&5

d2

N2 F2 (
j 50

N21

~uj2wj !~aj
~0!t1Tj

~0!!

1 (
j 50

N21

~uj1wj !bj
~0!G

1
d2

M2 F2 (
j 50

M21

~a j2b j !~aj
~1!t1Tj

~1!!

1 (
j 50

M21

~a j1b j !bj
~1!G . ~A43!

By using Eq.~A41! and definition~2!, we find

D5
d2

N2 F (
j 50

N21

~uj 2wj
!Tj

~0!1
1

2 (
j 50

N21

~uj1wj !bj
~0!

2A0 (
j 50

N21

Tj
~0!G1

d2

M2 F (
j 50

M21

~a j2b j !Tj
~1!

1
1

2 (
j 50

M21

~a j1b j !bj
~1!2A1 (

j 50

M21

Tj
~1!G

1
d2

M2 A1T0
~1! . ~A44!

By substituting the expressions forTj
(k) @using ~A38!, ~A39!

and~A36!, ~A37!# into ~A44!, the constantsck cancel and we
obtain the final expressions~13!–~28! for the dispersion.
Note that the dispersion has four contributions: two of them
@square brackets terms in~A44!# are due to transport along
the corresponding chains 0 and 1, the third contribution
@which is associated with the last term in~A44!# is due to
chain connectivity, and the last term arises from algebraic
equations relating the constantsc0 andc1 .
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