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Exact results for parallel-chain kinetic models of biological transport

Anatoly B. Kolomeisky
Department of Chemistry, Rice University, Houston, Texas 77005-1892

(Received 4 June 2001; accepted 1 August 2001

In order to describe the observed behavior of single motor proteins moving along linear molecular
tracks, a class of stochastic models is studied which recognizes the possibility of parallel
biochemical pathways. Extending the theoretical analysis of Delididatat. Phys31, 433(1983],

exact results are derived for the velocity and dispersion of a discrete one-dimensional kinetic model
which consists of two parallel chains bf states andV states, respectively, with arbitrary forward

and backward rates. Generalizations of this approaclyfe? parallel chains models are briefly
sketched. These results and other properties of parallel-chain kinetic models are illustrated by
various examples. @001 American Institute of Physic§DOI: 10.1063/1.1405446

I. INTRODUCTION d
Vo=Vo({uj,wj}) = Iim&<x(t)>, 1)
Biological motor proteins such as kinesins, dyneins, tee
myosins, DNA and RNA polymerases have been shown tqnq for the dispersiofor effective diffusion constapt
play crucial roles in cell division, cellular transport, muscle
contraction, and genetic transcriptibhThese proteins, also e do )
known as molecular motors, operate in cells by consuming Po=Do({U;,w;})=3 “ma[@( (1) —(x(1))7], 2
energy provided by hydrolysis of ATRadenosine triphos- o
phatg or related compounds, and moving along polarizedwhere x(t) is the position of the motor protein along the
periodic linear tracks such as microtubules, actin filamentsiinear track at time.
or DNA molecules’ In most experiments on motor protein motility the tra-
The mechanical and biochemical propertiessiigle  jectories of beadgto which motor protein molecules are
motor proteins can now be studied experimentally with greathemically attachedare monitored° This fact stimulated
accuracy under varying conditiofs:® Experimental suc- Chen and co-worke?$%*to develop a formalism that takes
cesses have led to attempts to describe and understand ftingo consideration the interactions between the bead and the
mechanisms of functioning of molecular motor proteii€>  motor protein molecule. Although the hydrodynamic relax-
Most theoretical research on molecular motors followsation and elastic properties of beads are important for trans-
one of two main directions. One approach is based on thport properties of molecular motors, the experiments sug-
“physical” concept ofthermal ratchet3*~**Here, the motor  gests that external force fluctuations due to these phenomena
protein molecule is viewed as a Brownian particle whichare minimaf In addition, this methot?* allows numerical
diffuses in periodic but asymmetric potentials, betweencalculations only for drift velocities in simplified two-state
which it switches stochastically. An alternative “chemical” models. Thus, the application of phenomenological simple
approach is based on a kinetic multistate description of thehemical kinetic modef8~22?5(which provide exact analytic
molecular motor transpott.2°It assumes that a sequence of expressions for velocities and dispersions for dvgtate
chemical transitions between consecutive spatially separatadode) for description of motor protein transport seems more
biochemical states or conformations leads to the motion opractical at current stage.
motor proteins. While the simple chemical kinetic model in Fig. 1 pro-
In the simplest chemical kinetic modédee Fig. 1, a vides a reasonable description of the motion of a normal
motor protein molecule moves along a linear periodic trackwo-headed kinesin walking on a microtubdlegertain ex-
and binds at specific sites=Id (1=0,£1,=2,...), whered  perimental observations on kinesins and other classes of mo-
is the distance between neighboring binding sites. There ar®r proteins demand more elaborate theoretical treatments.
N discrete stateq§,=0,1,...N—1, on a biochemical pathway To take into consideration the complexity of real biochemical
between two consecutive binding sites. The motor proteirpathways and to account for the irreversible dissociation of
molecule in statg, (at sitel) can jump forward to statej( molecular motors from the linear track, extensions of the
+ 1), with rateu;, or it can step backward to state{1), at  basicN-state periodic sequential kinetic model were recently
ratew;, as schematically pictured in Fig.?4?*In this rep-  presented? In addition, the significance of deviations from
resentation, the model can easily be mapped onto a discretdemical kinetics in the motion of motor proteins was dis-
biased random walk on a periodic one-dimensional latticecussed in detail using generalized kinetic models with
This observatiof? allows one to use the method of Derffla  waiting-time distributiong® Moreover, recent experiments
to obtain exact and explicit formulas for the asymptdlimg  on the processivity of single-headed kinesins and dyneins
time) drift velocity reveal the existence of a second, ATP-independent biochemi-
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FIG. 1. General scheme for the simplééistate chemical kinetic model
with forward ratesu; and backward rates;(j=0,1,...N—1).

cal pathway®—%° Finally, the possibility of parallel bio-
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with periodicity aj..y = a; and Bj.y=g; -

In parallel-chain chemical kinetic model, as shown in
Fig. 2, two chains form a loop. If the free energy changes
along each chain are equal, then from the principle of de-
tailed balanc& we have

{0 =T1{1)1 (5

However, our analysis is valid for more general situations
where detailed balance is not holding. For example, for mov-
ing motor proteins, one pathway may correspond to ATP-
dependent biochemical cycle, while the second pathway is

chemical pathways have been demonstrated experimentallyst simple diffusional slippage of the protein molecule from
for translocating RNA polymerasés. These observations One site to the other as was discussed by Chen and*an.
call for an extension of the basic chemical kinetic models,
which incorporate the existence of parallel biochemical path-
ways. _ . Il.RESULTS FOR THE PARALLEL-CHAIN KINETIC

In this paper we consider the parallel-chain kinetic\jopgL
model that is illustrated in Fig. 2: The motor protein mol-

ecule can be found on the upper biochemical path{gagin
0), which consists oN discrete states, or it can diffuse along
the lower pathway(chain 1, which hasM states. The mo-
lecular motor in statg, on chain 0 can make one step for-
ward at rateu;, or one step backward at ratg (j=0,...N

We present here the explicit formulas for the drift veloc-
ity and the dispersion of the two-chain parallel chemical ki-
netic model. The derivations are outlined in the Appendix.

For the two-chain model, the formal expression for the
drift velocity is given as a sum of two terms corresponding to

—1). Similarly, the motor protein molecule in stateon transport across chain 0 and chain 1, namely,

chain 1 can move forwarthbackward with rate «;(3;) for

i=0,...M— 1. Note that the extended chemical kinetic model V=Vot Vi, ©
with jumps considered in Ref. 22 corresponds to our parallelwith
chain model withM =1. Our method can be easily general- 1 1
ized for parallel-chain models with more than two chains. Vo= [1 1‘[(0)1]/ —o7Rut g Ru—1|, (7)
The analysis of different extended chemical kinetic ) o
model$??*revealed that the corresponding expression¥/for 5
and D depend on certain linear sequential products of rate )
ratios. The same is true for the parallel-chain chemical ki- —i[l—HM ]/ iR N iR 1 ®
netic model, where we define four types of product. Specifi- ~* (! 11 rO TN DM
cally, for chain 0 we have : . .
’ where, using the notations introduced above,
_ Wi Wit1 Wipr N-1 N—1
1:[ Ui and H(O)J Il_[J Ui wp O RNZE rﬁo), rJ(O) 1"’2 H(0)1+1 , €)
) j=0
with periodicity uj.y=u; and wj.y=w;. Similarly, for and
chain 1 we have M-1 M-1
S Bi1 B Rm= Z a1 I(Zl Mijea)- (10
EH and I, =]1 == 1y,
=] =l Bi Taking into the consideration the detailed balafisee Eq.
(4) (5)], we obtain
V=d (1) i
P J (1/rO +1hrg )1 I 0)1] 0 1 RM 1].
(11

For a general parallel-chain model wighchains(which sat-
isfy detailed balance conditionsthe drift velocity is given

by
g-1
( >[1 H(O)l]/{ (l RN 1}*

(12

whereith chain has\; discrete states, amji) and Ry, are
defined similarly to Eqs(9) and (10).

g-1

2 1

FIG. 2. Schematic illustration for the two chains chemical kinetic model.
The upper chain ha discrete states with forwargackward ratesu; (w;)

for j=0,1,...N—1, while there aréV discrete states in the lower chain with
ratese; and B;(i=0,1,...M —1) for forward and backward transitions, re-
spectively.
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The expressions for dispersion of the two-chain chemi- M-1 M-1
cal kinetic model are more complicated, and can be written ~ Sy= >, s}l)kz (k+1)b, 14,
as =0 =0
D=Dy+D;,+D,+D (13) < 29
=Dy+D;+D,+Dg,
0 1 2 3 Uy= Z ,—b}“S}l)
with the first term given by J
M—1 and, again recalling the definitiori8) and(4), we have for
1 V(N+2) the new function
Do=(d/N){ VN>, b¥— ——
i=1 2 M-1
d(N-2) " siV=a; 1+ Z 1] J"l} (24)
VR 2 (a;=BbV+ —x—1. (19
=0 1- H(O)l The third term in(13) can be written as
with VAR
N-1 M-1 D, _(d/M)l_HM , (25)
- PEERDS b+ Un+(V/d)S o
™M & S P (ai=Bi)b; n+(VId)Sy where
i "t & [T Pyl
_ (0); (1) J,= Ui —w:) b+
(Vi) 3, 5% 3, b, (15 2= 2 | Ny 2 (W WID .
N-1 N-1 VIT) N-1
(1 (0)
SN=2 5}0)2 (k+1)bf((2j+1’ * dag (2 (H_l)bH'H Z0 b ” 26
i=o k=0
N1 (16)  Finally, the last term ir(13) is given by
U= 3, bl -ty
j=0 D3—d2 JZO l) (1 H(l)l) JZ]_ O) (1 H(O)l)
where, using definition$3) and (4), the new functions are
given by x( J, J3 ) @7
N1 M(1-TIf))  N(1-If),))"
SOy 14 kzl H(T('))_j'il}, (17 where
- i (0) j
and Z <0>1 2 (i B)bi+ bj”'uj M)y
4 I
ri® 1 1 - o
b(o)—(—>/[—R + Ry —1 (18) M-1
() PO PN ML VI Vi1 ,
0 0 0 o .2 (i+Db%a—i 2, bV] | (28

(19 Note that whenM =1, the results for the drift velocity and
for the dispersion reduce to corresponding expressions for

Note that the chemical kinetic model with jump3.For a single-chain
model, the original results of Derritfaare recovered, as ex-
1 1 ected.
by =bi=1 /[WRNJF —5Ru—1]. 20 P
o o
The second term i13) has a similar structure, namely, IIl. ILLUSTRATIVE EXAMPLES
NE ) V(M+2) In order to illustrate these exact results and other prop-
D,=(d/M)) VM ;1 bi™ = 2 erties of parallel-chain kinetic models, we consider several

simple examples. First, we discuss a simple, although un-

d(M 2) ) physical, N=2 and M =2 model with only forward rates,

2 (uj—wj)bj™ + 1— H'V' (2 anduy= ay andu;= a;. The expression for the drift veloc-
ity can then be easily found:

with

B _ B 2UgU4
M-1 N-1 V=Vo+V;=2Vo=d5——, (29
1 1) 0 2Ug+ Uy
=1 2 sPi 2 (U= w)b{ ¥+ Uy +(Vid)Sy . o
N =0 i=0 and the expression for dispersion yields
M~1 N1 d? 2ugu,(us+4ud)

—(V/d)JZO 571 2 b7, (22) D= —Guru)® (30)
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For the model with only one chain with the same forward W——a— T

rates, the expression for the drift velocity is givertby b j
3 A
UoUy Vo -
V*=d , (31 (nmss) | )
Up+ Uy 0 ]
while the dispersion is equal to 40' ]
d? uguy(us+ud) | i
DF=— Lt O (32) I
2 (uptuy) 20 .
It is clear thatVy<V* <V. This example illustrates one of 10 -
the properties of general parallel-chains chemical models: . ) ) . L
with the addition of parallel chains with intermediate states 0 0.5 1 L5 2 25 3
(M>1), the transport in the positive directiagncreasesin Load F' (pN)

accord with intuition, however the current per chaie- FIG. 3. Force-velocity curves for single-chdsolid line) and parallel-chain

creases Similar behavior is found for dispersion. (dashed lingmodels. Parameters used for parallel-chain model calculations
Measurements of mechanical and biochemical propertiegre: u,=10s", u;=100s", wo=1s", w;=10s", a=15" By

of motor proteins as a function of external load are importane0-01s ", 65 =6, =6 =6, =05, 6,=6,=0.5, andd=8.2 nm. For the

tools in studying mechanisms of protein motiity. In the sec-J0e AR T a8 Be a8 e i our caiouiations

ond example, we will illustrate how external load affects thecorresponds to distance between binding sites in microtubules.

drift velocity in parallel-chain chemical kinetic model. Con-

sider N=2 and M=1 model with arbitrary forward and

backward rates which satisfy the detailed balance. Then theCKNOWLEDGMENTS

expression for the drift velocity is given by The author would like to thank Professor Michael E.
UgUy — WoWi + (arg— Bo) (Ug+Wy) Fisher for his interest, encouragement, and valuable discus-
V=gt 071 170 POATLT T (33)  sions. The critical reading of the manuscript by Professor M.
Ug+ Uy +Wo+Wy Robert is highly appreciated. The financial support of the
External loadF modifies the rate constants as discussed irf-@Mille and Henry Dreyfus New Faculty Awards Program
Refs. 20—22 (under Grant NF-00-056s gratefully acknowledged.
o EdkaT o FdkaT APPENDIX A: PARALLEL-CHAIN CHEMICAL KINETIC
uj(F)=u;(0)e” " "%, w;(F)=w;(0)e™ % "7, MODEL
(34) In order to derive the results presented in Sec. II, we

consider the two-chains kinetic model as shown in Fig. 2. We

ao(F)=ap(0)e /aFIkeT B (F)=By(0)e* lsFd/keT introduce the probabilit)PJ(k)(l ,t) of finding the motor pro-

tein particle at site in statej on chaink k(k=0,1) at timet,

which satisfies the master equations

whereSi_(0] + 0;) = 0,,+ 05=12°"**The resulting force-

velocity curves for the parallel-chain and for the single-chain  ~ (o) i (0) _ (0)

(ap=Bo=0) models are presented in Fig. 3. It shows that, dt’ (LD =0-1P= (L D+ W Py

although the addition of chains increases the drift velocity

and dispersion, the stalling foré&zhenV=0) remains un-

changed. This is due to the fact that stalling force for motor ¢

proteins is determined by free-energy change between two aP}DU,t)zaj—lpfl—)l(l,t)+,3j+1pﬁ)1(|,t)

binding states, say states @nd Q.,.?° The addition of

chains does not change free energy in the system because of —(aj+,8j)PJ(1>(I 1), (A2)

detailed balance conditions. This is similar to the action of, . o . .

catalyst in chemical reactions when it opens a new reactioFlOr 1#0, while | :O, is a special state, arﬂg?)(l = Pgl) .

channel but does not change an equilibrium constant. (1,t)=Po(l,1). In this case, the master equation can be writ-
To summarize, parallel-chain kinetic models are intro-€" @S

duced and explicit expressions are found for the drift veloc- d ©) _ ©)

ity and the dispersion. It is found that the velocity is given by g Po(lt) =Un-1Pn=a (I =150 +wi Py (1)

the sum of the currents across the corresponding chains.

However, the expression for the dispersion cannot be pre- +ay 1P (1= 10+ B8P (150 — (g

sented as a linear combination of chain terms. These results Wt et BOP (] 1 A3

together with some properties of the parallel-chain kinetic Wot ot Bo)Po(l.1). (A3)

models, are illustrated on simple examples. It is proposedollowing?>? we can assume that &0 the particle starts

that these results can be used to describe the complex mecha-the originx=1=0. Also, because of conservation of prob-

nism of the motion of several classes of motor proteins.  ability, we have

—(uj+w)) P21, 1), (A1)
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+o0 N—-1 M-1

> 20 PIO(1,t)+ _ZO PO(LY =1
1= I=

|=—o

(all t).
(A4)

Next Derrida’s approadfiis extended by defining four aux-

iliary functions for each statg, namely,

+ 00

B}O)(t)zlzz_x P%(1,1),

» (A5)
C(O) |—E— (j+N|)P<O)(| t),
BJ(l)(t)E|_Z Pj(l)(|,t),
. (AB)
cPm= 3 (+MDPa.D.
Note that
BE” () =BG (1) =Bo(t), CE(/N=CF(t)/M.
(A7)

The master equation#1) and (A2) then give forj#0

d (0) (0) (0)
dtB (t)=uj-1B; 1JrWJHBJ+1 (u; +W])B

(A8)

d (1) (1)
dtB (t) 01] 1B fl+ﬁ]+lBj+l (aJ-i-ﬂJ)B
(A9)

and forj=0 we obtain

Bo(t)=uyn_1B{ 1+ ayn_1Bi. 1 +w B+ B,BY

dt
_(U0+W0+ ao+IBo)Bo. (A].O)

Similarly, for j#0 we derive

0 0 0 0
3: G170 =;-1Ci2 + w1 CfF; — (u+w;)CJ

+U;-1Bj% —w;.1B{%), (A1D)

d
dt (t) @j— lC| 1+BJ+1CJ+1 (aj+ﬂj)cﬁl)
+aj1BY— BBy, (A12)

while for j=0 the results are

3:C O(t)=upn_1C & + w1 CLV = (ug+wy) CY

N
0 0 1
+uy- 1B —wiBY + M [am-1Ci 4

1 1 1
+B1C — (ot Bo) C + ay 1By

- 1B, (A13)

Kinetic models of biological transport 7257

d
at CHV(t) = ap—1CiL 1+ B1CH — (ag+ Bo)CHY

M
1 1 0
+ay 1By — BB+ W[UN—lcg\lll

+w;C¥ = (Uug+wg)C+uy_ B,

—w,B{?]. (A14)

Following Derrida’s argument€, we introduce the an-
satz

B;(hW—b™, ct)-at—T (k=0,D,

(A15)
which should be valid at large times. The parametlﬂ%
a and T are periodic

bi%=b", a%=a®, T=T", (A16)
biPy=b", aly=a, TP,=T". (AL7)

At steady statedB{/dt=0 and for j#0, Egs.(A9) and
(A10) yield

0=u;j_1b{%; +w;1b{%; — (u;+w;)b?, (A18)
0=a;j_1b{Y,+ B, 10}, — (a;+ ;)b (A19)
while for j=0, Eq.(A10) give us
0=uyn_1b{ ; + WbV + ay b |
+ B1biY — (Ug+Wo+ ag+ Bo)bg, (A20)

whereb{")=b{"=b,. Again following Derrida’s method®
the solutions of EqQ9A18)—(A20) can be written in the form

bi9=er!¥,  for k=0,1, (A21)

wherer ) are defined in Eqg9) and(10) and the unknown

constantse, can be determined using the conservation of

probability requiremenfsee(A4)],
N—-1 M-1

2 +Zb

(A22)

which yield the expressions fd* given in (18) and (19).

To find the coefficientaj(k) andTJ(k) , the ansatzA15) is
substituted into the asymptotic¢{) expressiongAll)—
(A14), yielding for the coefficientsa{*) (j+0)

0=u;_1a%; +w; ,al%; — (uj+wpa?, (A23)
0=a;_1aY,+ B, 1Y, — (a;+ B)al (A24)
while the coefficientsT{¥) (for j #0) then satisfy
al®=u; T +w T — (U +w) T
+uj_1b{% —w; . 4b{%; (A25)
ait=a; 1T+ BT — (o + ) T
Taj- 1b] 1 B]+1bj+1 (A26)
Similarly, for j=0 we obtain
0=u;_ja’;+wia” — (up+wpay”’, (A27)
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0=ay_1ay.;+Bial — (ap+ Bo)aj”, (A28)

and

N
0 1 0 0 0
ay) =158y =Un-1 TN 1+ Wi THY = (Uo+wo) T

N
0 0 1
+Un- bR 3 —w; b + M[aMfng\/l)—l

B1biM].
(A29)

Comparing(A23), (A24), (A27), and(A28) with expressions
(A18)—(A20), we conclude that

1 1 1
+ BT = (ot Bo) To! + an —1bja 1 —

al¥=Ab¥, k=01, (A30)

with the constantsA, related to each other byAy/N

=A;/M. These constants can be found by considering the

expression M3 fal®+ N3N alt) [using (A25) and
(A26) for summations ovea(ki] and recalling the normaliza-
tion Eq.(A22)

N-1 N M-1
_ 0 1
Ao= 2, & ”sz a?
j=0 j=1
N—-1 M-1

N
= ZO (U= w)bj%+ ZO (a;—B)bM.  (A31)

To determine the coefficientsT(*), we introduce,

following,?225:26
yJ(O)EWjJrlT}?r)l Uijo)a yJ(l)EBj+lTJ(£)l_ajT](1)'
(A32)
Now (A25) and(A26) can be rewritten as
Y=y 2 =al” = uj_bf% +wyb(%
yiM -yt =alt — o 1biY + B4 by (A33)
while expressionfA29) gives us
I TN N LR IO
— YLt av-1bil, —Bib{Y), (A34)

M
1)1 1 1 1 0
Yo' —yi1=ag" — am-1biil 1+ Bibi - W(yg :

— Y1+ uy_1bl) s —wybi?). (A35)

Anatoly B. Kolomeisky

N—-1 M-1
<1>—(J/N)Z (ui—wi)b{® + a;b{ P+ (A /M) Z (i
N—1
+1)b, =) > bV +cy, (A37)
=1

wherec, (k=0,1) are arbitrary constants which will be can-
celed in final expressions for the dispersidnThese expres-
sions allow us to find the formulas fai (see Refs. 22, 25,
and 26

=5 °>+E R 15(0)}/(1—11?(0))'
(A38)

T§1>=— yi+ 2 y}?kH}ii(l)}/ (1-T17'(1).
(A39)

It is now possible to calculate explicitly the drift veloc-
ity, V, and the dispersior), using the steady-state defini-
tions (1) and (2). The mean particle position can be written
as

(j+NDP{(1,1)
=0

d +0o M-1
Z_ Z (j+MDPE(LY
N 1 M 1
2 c<°>(t)+ 2 ciM(). (A40)

Using the master Eq$Al) and (A2), the following expres-
sion can be derived

N—-1 M-1

d
Ilmdt(x(t)> —A02 bi®+ — A E b

d d
_AOZ_A]_.

=S P01 (A41)

Using result(A31) and definitions(18) and (19), we obtain
the final results for the drift velocity, which are given in Egs.
(6)—(11). Note that the final explicit formula for the drift
velocity consists of two terms which correspond to transport
across each of the chains. This result can be easily general-
ized for a model with more than two parallel chajisse Eq.
(12)].

A similar method can be used to determine the disper-

Following the discussions in Refs. 22 and 25, these equatiorfons. Starting from

can be solved, yielding
M-1

yi9=(j/M) 2

N—-1 M-1

+(A/N)| 2 (i+D)bf%, =] 2, b

;= Bi)b{ +ujb®

+Cq,

(A36)

2 ® N-1

d
00) =z, 2 X (+NDPP(LD

d2 oo M-1
oz 2 2 (+MDPP(LY,  (A42)
I=—o j=1
and again appealing to the master EGsl) and (A2), we
obtain
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N—-1
220 (uj—w)(@2t+T(%)
=

d 2
. . 2 —
tl[r;dt<x (1) =Nz

N-1

+ 20 (UJ+W])bJ(O):|
i=

M-1

2 JZO (a;=B)(@Mt+TY)

d2

vz

M-1
+ 20 (ajwj)b}l)}. (A43)
=

By using Eq.(A41) and definition(2), we find

2 TN-1 N1
_ (0) (0)
D_WLZO (ujfwj)Tj +§j20 (uj+wj)bj

M-1

S o

N—1
0
_AOjZO T} )

2
w2

M-1

M-1
1
+5 2 (aj+Bb—A; >, T}l)}
j=0 ]=0

2

d (1)
+ Ao (A44)

By substituting the expressions () [using (A38), (A39)
and(A36), (A37)] into (A44), the constants, cancel and we
obtain the final expression€l3)—(28) for the dispersion.
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