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A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The
thermodynamics is developed using Debye–Hu¨ckel theory with ion-pairing and dipole–ion
solvation, specific calculations being performed for three-dimensional lattices. As for continuum
electrolytes, low-density results for simple cubic~sc!, body-centered cubic~bcc!, and face-centered
cubic ~fcc! lattices indicate the existence of gas–liquid phase separation. The predicted critical
densities have values comparable to those of continuum ionic systems, while the critical
temperatures are 60%–70% higher. However, when the possibility of sublattice ordering as well as
Debye screening is taken into account systematically, order–disorder transitions and a tricritical
point are found on sc and bcc lattices, and gas–liquid coexistence is suppressed. Our results agree
with recent Monte Carlo simulations of lattice electrolytes. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1464827#

I. INTRODUCTION

It is well known that criticality in simple fluids with
short-range potentials can be described by the Ising univer-
sality class with critical exponents accessible via renormal-
ization group calculations.1 However, for Coulomb systems,
where particles interact through long-range potentials, the
nature of criticality remains open to question.2 Numerous
theoretical, experimental, and computational investigations
of electrolyte systems have not yet produced a clear picture
of the thermodynamics in the critical region. Early experi-
ments on criticality in electrolytes suggested a strong di-
chotomy: namely, some electrolytes,3,4 termed solvophobic
and typically having large solvent dielectric constant, are sat-
isfactorily characterized by Ising critical exponents. This
suggests that the principal interactions driving the phase
separation in such systems are of short-range character. On
the other hand, a number of organic salts in appropriate sol-
vents, typically of low dielectric constant, were found to ex-
hibit classical or close-to-classical behavior,5 and have been
called Coulombic, stressing the importance of the dominant
electrostatic interactions. Moreover, in sodium–ammonia
solutions6 ~and some other systems: see Refs. 7 and 8, and
references therein!, crossover from classical to Ising behav-
ior had been observed, but at a reduced temperaturet[(T
2Tc)/Tc.0.631022, unusually close to the critical point.
This led to the idea2 that the true asymptotic critical behavior
of ionic fluids is always of Ising character but that crossover
from nonasymptotic, close-to-classical behavior occurs at
scales that may sometimes be experimentally inaccessible.2,7

Monte Carlo computer simulations provide another use-
ful method of investigating the properties of ionic systems.
In the last decade substantial progress has been achieved in
this field, with primary effort focused on the coexistence

curves.9–11 However, some special attention has also been
devoted to the heat capacity which is significant for elucidat-
ing the critical region.2,12,13 Nevertheless, because of the
long-range character of the interactions and the low values of
the critical temperatures, which lead to many strongly bound
ion pairs,11,14 computer simulations for finite systems so far
fail to clearly determine critical exponents and hence to iden-
tify the nature of the criticality.

The success of the renormalization group~RG! approach
in describing nonionic fluids1 suggests that it might also be
applied to Coulombic criticality. However, to implement a
RG treatment, the existence of a physically well based mean-
field theory turns out to be crucial.2 The simplest model for
theoretical investigations of ionic systems is the so called
restricted primitive model~RPM!, which considers particles
of equal sizes and positive and negative charges of equal
magnitude. Two main theoretical approaches have emerged.
The first employs an extension2,15–17 of the basic Debye–
Hückel ~DH! theory,18 developed in the early 20th century
for dilute solutions of strong electrolytes. The second ap-
proach rests on integral equations for correlation functions,
typically employing the Ornstein–Zernike equations in com-
bination with some truncation, as in the mean spherical ap-
proximation~MSA!.16,19–21Neither of these two approaches
has any known independent basis, such as an overall varia-
tional principle for the ionic free energy, that might help
justify its reliability. However, compared to the values pre-
dicted by DH-based treatments, MSA-based theories yield
relatively poor agreement with the critical parameters found
by current Monte Carlo simulations, namely, in reduced
units,2,7 Tc* .0.049 and rc* 50.06– 0.085. Careful
analysis,2,16,22 utilizing thermodynamic energy bounds, etc.,
also suggests that DH-based theories promise a better de-
scription of the critical region of model electrolytes.

Since the Ising model, which is equivalent to a latticea!Electronic mail: tolya@rice.edu
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gas, has played a crucial role in understanding critical phe-
nomena in nonionic systems, lattice models of electrolytes
deserve attention. Although clearly artificial as regards the
description of real ionic solutions, which possess continuous
rather than discrete spatial symmetry, they are attractive for
various reasons. First, by virtue of the lattice character one
can incorporate the behavior of dense phases, at least one of
which should be an ordered ionic crystal. Lattice models
may also be effective for describing defects in real crystals.23

Second, even finely discretized lattice systems present a
computational advantage over their continuous-space coun-
terparts in Monte Carlo simulations.11 Last but not the least,
discrete-state lattice models facilitate the derivation of
equivalent field-theoretical descriptions and, thereby, the
study of the significance of various terms in the effective
Hamiltonian. Moreover, Coulomb interactions can be exactly
represented in terms of a nearest-neighbor Hamiltonian via
the sine-Gordon transformation that yields both low fugacity
and high-temperature expansions of the equation of state.
~For a recent overview and results see Ref. 24, and refer-
ences therein.!

Despite their distinct theoretical advantages, lattice mod-
els of electrolytes have not been studied systematically. The
aim of the work reported in the following has been to repair
this omission.

Most of the previous analytical21,25 and
numerical11,21,25–27 work on lattice ionic systems has ad-
dressed the question of tricriticality and of order–disorder
transitions. While the overall density is the order parameter
which suffices to reveal gas–liquid critical behavior in ionic
solution, the presence of an underlying lattice allows natu-
rally for the appearance of another order parameter. In bipar-
tite lattices, such as the simple cubic~sc! and body-centered
cubic ~bcc! lattices, ions of opposite charges can distribute
unequally between the sublattices, thereby reducing the elec-
trostatic part of the free energy. At the same time, the entropy
is also reduced, which increases the free energy. This com-
petition leads to the appearance of a phase with long-range
order resembling an ionic crystal; second-order phase transi-
tions are then a likely consequence. In the continuum case
analogous oscillations appear in the charge–charge correla-
tion functions17 at certain values of density–temperature ra-
tio. However, such ordered phases may turn out to be ther-
modynamically so stable, that a gas–liquid phase transition
predicted by a continuum theory may not survive in a lattice
model: the lattice system tends to ‘‘solidify’’ before forming
a ‘‘proper’’ liquid. Indeed, this scenario has been observed in
numerical studies. On the other hand, the possible presence
of both gas–liquid and tricritical points has been predicted
theoretically by Ciach and Stell for a model with additional
short-range interactions added to the lattice Coulomb
forces.21

As indicated, we present in this article a study of the
simplest, single-site hard core model of a lattice ionic system
with chargesq656q. In Sec. II we describe the basic DH
theory on general,d-dimensional Bravais lattices. Our analy-
sis focuses ond53 in Sec. III. After presenting the results
for pure DH theory, the crucial phenomenon of Bjerrum ion
pairing is introduced in Sec. III B; but, following Fisher and

Levin,16 this must be supplemented by explicit dipole–ion
solvation effects: see Sec. III C. Then, in Sec. IV the possi-
bility of sublattice charge ordering is discussed. Unlike pre-
vious treatments,21,25 we account for both electrostatic
screening and sublattice ordering in a unified framework.
Our conclusions are summarized briefly in Sec. V.

II. LATTICE DEBYE–HÜ CKEL THEORY IN GENERAL
DIMENSIONS

Our derivation for generald-dimensional lattices follows
closely the Debye–Hu¨ckel approach.28 We confine ourselves
to the lattice restricted primitive model~LRPM!, which con-
sists of oppositely charged ions with chargesq and 2q
which occupy single lattice sites of ad-dimensional Bravais
lattice. In this simplest model the ions interact only through
the electrostatic field and otherwise behave as ideal particles,
subject only to on-site exclusion. Thus the total free energy
density, which plays the central role in the thermodynamics
of the system, can be writtenf 5 f Id1 f DH. As the overall
system must be neutral, the average densities of the positive
and negative ions are equal:r15r25 1

2r1 . Correspond-
ingly, for the reduced chemical potential and pressure16 we
have

m̄15m̄25m̄1 , p̄5max
r1

@ f̄ 1m̄1r1#, ~1!

wherem̄5m/kBT and p̄5p/kBT. The ideal lattice gas con-
tribution to the free energy is, up to a constant term, given by

f̄ Id52
F

kBTV
52

r1*

v0
ln r1* 2

12r1*

v0
ln~12r1* !, ~2!

with the corresponding chemical potential

m̄1
Id52] f̄ Id/]r15 ln r1* 2 ln~12r1* !, ~3!

whereV is the total lattice volume whiler1* 5r1v0 is the
reduced dimensionless density of~free! ions andv0 is the
volume per site of the lattice.

Next we determine the contribution to the free energy
arising from the Coulombic interactions. However, the lattice
form of the potential, which takes into account the discrete-
ness of the space, should be used. This lattice Coulomb po-
tential will approach the continuous 1/r potential asymptoti-
cally at large distances, but it differs significantly at small
distances. We start with the linearized lattice Poisson–
Boltzmann equation, which determines the average electro-
static potential at pointr . Following the standard DH
approach,28 we easily find

Dw~r !5k2w~r !2~qCd /Dv0!d~r !, ~4!

where k25Cdbr1q2/D is the inverse Debye screening
length, with b51/kBT. The constant factor Cd

52pd/2/G(d/2) is determined by the dimensionality of the
lattice system.15 In this equation we use the lattice Laplacian
defined through

Dw~r !5
2d

c0a2 (nn
@w~r1a!2w~r !#, ~5!
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wherea is a nearest-neighbor vector and the summation runs
over allc0 nearest neighbors. The DH equation, Eq.~4!, can
be easily solved by Fourier transformation yielding

w~r !5
Cdq

Dv0

a2

2dEk

eik"r

~x212d!/2d2J~k!
, ~6!

with x5ka and *k[(2p)2d*2p
p ddk. The lattice function

J(k) is defined by

J~k!5
1

c0
(
nn

eik"a. ~7!

In the DH approach, we need only the potential felt by an ion
fixed at the origin due to all the surrounding ions. Because of
the Bravais symmetry, we can find the total potential at the
origin by averaging over the nearest-neighbor sites to obtain

w~r50!5
1

c0
(
nn

w~ann!. ~8!

Introducing the integrated lattice Green’s function via

P~z!5E
k

1

12zJ~k!
, ~9!

and using Eq.~6! we obtain

w~0!5
Cdq

Dv0

a2

2d F PS 2d

x212d
D 21G . ~10!

The potential due to a single ion in the absence of other ions
is obtained simply by settingx50 in Eq. ~6!, which yields

w0~0!5
Cdq

Dv0

a2

2d
@P~1!21#. ~11!

Subtracting this expression from the total potential~10! and
using Eq.~9! yields the potential felt by an ion of chargeqi

at r50 due to all the surrounding ions, namely,

c i5
Cdqi

Dv0

a2

2d F PS 2d

x212d
D 2P~1!G . ~12!

The electrostatic part of the free energy can be found by
using the Debye charging procedure,28 which yields

f̄ El52
1

kBTV ( F ion52r1bqi(
i
E

0

1

c i~lq!dl

5
1

4dv0
Fx2P~1!2E

0

x2

PS 2d

x212d
D d~x2!G . ~13!

Combining the ideal-gas and Debye–Hu¨ckel terms yields
f̄ DH5 f̄ Id1 f̄ El and

m̄15 ln r1* 2 ln~12r1* !2
Cdad

4dv0T*
F P~1!

2PS 2d

x212d
D G , ~14!

with reduced temperature defined by

T* 5kBTDad22/q2. ~15!

From this we find the pressure for an arbitraryd-dimensional
Bravais lattice to be

p̄v052 ln~12r1* !1
1

4d Fx2PS 2d

x212d
D

2E
0

x2

PS 2d

x212d
D d~x2!G . ~16!

Equations~2! and ~13!–~16! give full information about
the thermodynamic behavior of a lattice Coulomb system. In
particular, the possibility of phase transitions and criticality
can be investigated by analyzing the spinodals, and the phase
coexistence curves may be obtained by the matching pres-
sure and chemical potential in coexisting phases. Spinodals
are specified by setting the inverse isothermal compressibil-
ity KT

21 to zero, so that

1

r1kBTKT
5r1

]m̄

]r1
50, ~17!

which, on taking Eq.~14! into account, reduces to

Ts* 5
Cdad

2dv0

z~12z!]P~z!/]z

21~12z!2]P~z!/]z
, ~18!

with z52d/(x212d). One can show that whenr1* becomes
large ~which corresponds to z→0), one has Ts*
'c0Cdad(r1* )2/2dv0 . Equations~13!–~18! can be used to
investigate the phase behavior of electrolytes in any dimen-
sion.

We mention briefly here the critical parameters obtained
for d51 and 2. In the one-dimensional case the lattice
Green’s function gives

P~z!5
1

pE0

p dk

12z cosk
5

1

A12z2
, ~19!

which yields a spinodal of the form

Ts* 5
2

x@x1~x214!3/2#
, x5ka. ~20!

This specifies a critical point with parameters

rc* 50, Tc* 5`, ~21!

in accordance with the general principle that one-
dimensional systems do not display phase transitions. How-
ever, sincew(r )}ur u in a one-dimensional system, the DH
method fails and describing the one-dimensional ionic lattice
model demands a different approach: one may note the con-
tinuum analysis.29

For d52 dimensions the lattice Green’s functions are
given in Ref. 30. Then for both for triangular and square
lattices the predicted critical parameters are found to be

rc* 50, Tc* 51/4, ~22!

precisely, the same values as for the continuum model.15
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III. ELECTROLYTES IN THREE DIMENSIONS

A. Pure DH theory

Let us now examine three-dimensional cubic lattices in
more detail. We address three cases: simple cubic~sc!, body-
centered cubic~bcc!, and face-centered cubic~fcc!; for con-
venience their geometrical parameters are listed in Table I.
The basic lattice functionJ(k), defined in Eq.~7!, is then
given by

J~k!5 1
3~cosk11cosk21cosk3! ~sc!, ~23!

5cosk1 cosk2 cosk3 ~bcc!, ~24!

5 1
3~cosk1 cosk21cosk2 cosk3

1cosk1 cosk3! ~ fcc!, ~25!

with 2p<k1 ,k2 ,k3<p. The corresponding integrated lat-
tice Green’s functions can be explicitly calculated using their
representation in terms of complete elliptic integrals as
shown by Joyce.31 The self-potential of an ion~in the ab-
sence of any screening! is then given by

~Da/q!w0~0!5
Cd

v0

a3

2d
@P~1!21#.1.082, 1.070, 1.021,

~26!

for sc, bcc, and fcc lattices. This reduced value approaches
the exact continuum potential value 1 as the number of near-
est neighbors increases. At low densities the free energy as
given by Eq. ~13! can be expanded in powers ofx5ka,
which yields

f̄ El5
x3

12pa3
~120.282x10.025x21••• ! ~sc!, ~27!

5
x3

12pa3
~120.286x10.025x21••• ! ~bcc!, ~28!

5
x3

12pa3
~120.296x10.025x21••• ! ~ fcc!. ~29!

The leading term precisely reproduces the exact continuum
DH result, which, of course, is independent ofa. The mag-
nitude of the first correction term increases with increasing
coordination number; in the hard sphere continuum model it
becomes 0.75.

The predicted coexistence curves for the sc, bcc, and fcc
lattices are shown in Fig. 1, while the critical parameters are
listed in Table II. A surprising feature of these coexistence
curves is that the liquid density approaches a finite value,
r liq* (0), asT→0 that is substantially smaller than the maxi-
mum, close-packing densityr1* 51; see Table II.

For comparison, Fig. 1 also displays the predictions of
DH theory for the continuum RPM supplemented by hard-
core interactions in the free volume approximation with the
simple cubic packing limit.16 Although the critical tempera-
tures decrease slightly as the number of nearest neighbors
approaches realistic values of the coordination number, say,
12–14, as observed in simple liquids, its value for all three
lattices remains about 50% higher than the corresponding
continuum value. This is, indeed, a rather general feature of
lattice models, which tend to display higher critical tempera-
tures than their continuum-space counterparts. However, the
predicted critical densities are quite comparable, decreasing
from about 60% above the continuum value to only 3% or
4% higher: see Table III. Clearly, packing considerations
play a significant role in the value ofrc* .

B. Bjerrum ion pairing

Free ions alone are not adequate for treating the low
temperature critical region, since positive and negative ions
will often combine into strongly bound neutral dimers or
Bjerrum pairs.32 This process can be treated as a reversible

TABLE I. Lattice parameters.

Lattice
Unit cell

edge
Nearest-neighbor

distance (ann)
Number of nearest

neighbors (c0)
Volume per

site (v0)

sc a0 a0 6 a0
3

bcc 2a0 A3a0 8 4a0
3

fcc 2a0 A2a0 12 2a0
3

TABLE II. Coexistence curve parameters for 3D cubic lattices according to
pure DH theory; HC denotes the continuum hard sphere system, i.e., the
RPM.

Model Tc* rc* r liq* (0)

sc 0.101 767 0.007 869 0.0996
bcc 0.100 617 0.005 908 0.0759
fcc 0.096 637 0.004 755 0.0596
HC 0.061 912 0.004 582 1

TABLE III. Critical parameters predicted by the full DHBjDI theory. For
comparison, values for the RPM are also given.

Model Tc* rc*

sc lattice 0.096 66 0.030 41
bcc lattice 0.089 31 0.025 63
fcc lattice 0.080 64 0.027 08
RPM: DHBjDI 0.0554–0.0522 0.0244–0.0259
RPM: simulations 0.049 0.06–0.085

FIG. 1. Coexistence curves for the LRPM predicted by pure DH theory:~a!
sc,~b! bcc,~c! fcc, ~d! continuum RPM~Ref. 16! with hard-core interactions
corresponding to the simple cubic packing limit.
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chemical reaction, say, (1)1(2)
 (1,2), leading to
equilibrium densities of free ions and dipoles, varying withT
and r.1,16 In a continuum model, however, there arises a
serious question as to precisely what configurations are to be
considered as bound pairs.16,32,33In practice, this relates di-
rectly to the problem of determining the proper association
constantK(T). Bjerrum’s original approach32 was to intro-
duce a temperature-dependent cutoff distance that would rep-
resent, in some sense, the size of a dipolar pair. Later
Ebeling,33 using systematic cluster expansions, obtained a
more elaborate expression forK(T); it turns out, however,
that Bjerrum’s form is reproduced asymptotically to all or-
ders at low temperatures. But for a lattice system the situa-
tion is intrinsically simpler because a clear and acceptable
definition of a bound ion pair is two oppositively charged
ions occupying neighboring sites.~Pairs separated by further
distances, second nearest neighbors, etc., may be regarded as
distinct species and could be considered separately, if
necessary.15!

Following this convention, we introduce the densityr2

and chemical potentialm2 of Bjerrum pairs which we sup-
pose, initially, behave like ideal lattice particles. The condi-
tion of chemical equilibrium,m252m1 , ensures thatr1* and
r2* are interconnected via the law of mass action. To this end,
let

z15L1
3/~v0z1!em̄1, z25L2

6/~v0
2z2!em̄2 ~30!

denote activities of free ions and pairs, respectively, where
theL i denote the de Broglie wavelengths for which we have
L15L25L1 and L15L2 ~see Ref. 16! while z1 and z2

represent the corresponding internal configurational partition
functions. In terms of the activities, the law-of-mass action
statesz25 1

4Kz1
2, from which follows16

K~T!5
z2

L2
6 S L1

3

z1
D 2

5z2~T!. ~31!

This definition of K as the internal partition function of a
dipolar pair leads naturally to the basic expression

K~T!5v0(
nn

e2bqw(ann ;T)5v0c0e2bqw(0;T), ~32!

wherew(0;T) is given by Eq.~10!.
By using the potential-distribution theorem,34 we can

then write the free ion density as

r1* 5z1e2C/kT5v0z1e2m̄1
El
e2m̄12C/kT/L1

3 , ~33!

whereC is the potential of mean-field force andm̄1
El is given

by ~14! ~with d53) since neutral particles do not contribute
to the electrostatic interactions. The second exponential fac-
tor here accounts for all the non-Coulombic interactions,
since the ionic terms are already taken into account by the
factor with exponentm̄1

El . Hence, only a hard-core factor is
required: this may be taken as the probability that a given
lattice site is empty, namely, 12r1* 22r2* . In total the ionic
chemical potential may thus be expressed as

m̄15 lnS r1*

12r1* 22r2*
D 1 lnS L1

3

v0z1
D 1m̄1

El . ~34!

To obtain a complementary expression form̄2 we appeal
to the Bethe approximation.35 It corresponds to the zeroth-
order term in the series expansion of the grand-partition
function for dimers with no attractive interactions and yields

z2v05
~2r2* /c0!@12~2r2* /c0!#

~12r1* 22r2* !2
. ~35!

Thence we obtain

m̄2522 ln@12r1* 22r2* #1 ln~2r2* /c0!

1 ln@12~2r2* /c0!#2 ln~L2
6/z2v0!. ~36!

On using the law of mass action, the Bethe approximation
also yields an equation forr2* , namely,

~2r2* /c0!@12~2r2* /c0!#

~12r1* 22r2* !2
5S r1*

12r1* 22r2*
D 2

c0

4
e2m̄12bqw(0).

~37!

Taking into account that the dimer density should increase as
the free-ion density increases, we may solve to obtain

r2* 5
c0

4 F12S 12c0r1*
2

3expH 2pa3

3v0T*
F PS 6

x216
D 21G J D 1/2G . ~38!

Since the dimers are neutral, they do not add to the DH
interaction energy which retains the form~13!. For the total
free energy we then have

f̄ 5 f̄ Id1 f̄ El52 f̄ Id~ 1
2 r1!1 f̄ Id~r2!1 f̄ El~r1!, ~39!

in which we recall that

x5ka54pa3r1* /v0T* . ~40!

Now we may note that the free energy density can be found
by integration of Eq.~34! or ~36! with respect tor1 or r2 ,
respectively. Comparing the resulting expressions yields

2 f̄ 1
Id~ 1

2 r1!v052r1* ln r1* 2~12r1* 22r2* !

3 ln~12r1* 22r2* !2r1* ln~L1
3/v0!, ~41!

which can be obtained independently by noting that the free
volume available for an ion is proportional to 12r1* 22r2*
~see also Ref. 23!. In addition we get

f̄ 2
Idv052r2* ln~2r2* /c0!1~c0/2!ln@12~2r2* /c0!#

2r2* ln~122r2* /c0!2r2* ln~L1
6/z2v0!. ~42!

The equation of state for DH theory with ideal dimers
then follows from Eq.~1!. As in the continuum RPM,16 one
finds that the lattice DH Bjerrum~DHBj! theory merely su-
perimposes the pressure of an ideal lattice gas of Bjerrum
pairs on the DH pressure for the free ions. Additionally, the
ideal-gas term for the free ions is changed somewhat, since
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the hard-core interactions intrinsic to a lattice gas, appear in
the entropic contributions to the free energy via the fraction
of available lattice sites. However, this does not affect the
critical temperature of the liquid–gas transition, since it is
primarily the free ions’ density that governs the phase sepa-
ration.

One now finds, just as in the continuum model,16 that the
coexistence curves for all the lattices have a banana-like
shape: see Fig. 2. This is simply a consequence of the rapid
growth of the number of neutral dimers as the temperature
increases. Indeed, the overall critical density is predicted to
increase by a factor of 5.02 for the sc, 6.38 for the bcc, and
10.25 for the fcc lattice, taking the valuesrc* 50.039 82,
0.037 69, 0.048 78, respectively. Sincer1c* does not change
when adding ideal dimers, and decreases when the lattice
symmetry is enlarged, the fact that the overall critical density
for the fcc lattice is greater than for the bcc and sc lattices is
surprising; but, no doubt, the increased coordination number,
c0 , serves to enhance the formation of dimers.

C. Dipole–ion interactions

The banana-like shape of the DHBj coexistence curves is
clearly unphysical.16 Indeed, as noted by Fisher and Levin,16

the next terms in the expansion of the free energy with re-
spect to density take into account the effects of screening of
the bare dipole field of a Bjerrum dimer by the free ions. As
shown in Ref. 16, this solvation effect reduces the free en-
ergy of an ion pair in the electrolyte. It also eliminates the
unphysical banana form of the coexistence curve and pro-
duces better agreement between the critical point predictions
and the estimates from simulations.

Proceeding in this direction, the dipole solvation energy

f̄ DI can be calculated via the standard DH charging
procedure.16 Moreover, for the lattice case it turns out that
one can go substantially farther than for continuum-space
models. Indeed, under a few very reasonable approxima-
tions, we can obtain closed analytical expressions. Consider
the positive ion of a dipolar pair. Instead of Eq.~8! we now
have

w1~x!5
1

c0
S w2~x!1(

nn
8 w~ann! D , ~43!

where the prime on the summation means that the site with
the negative ion is excluded. Owing to the symmetry, the
potentials of the negative and positive ions differ only in
sign, the energies being equal. Hence we obtain

w1~x!5
1

c011 (
nn

8 w~ann!, ~44!

where the potentialsw(ann) can be calculated using the DH
expression~6! separately for the contributions arising from
the negative and positive ion of each pair. After some algebra
the results for the cubic lattices can be written in the general
form

c15w1~x!2w1~x50!

5
2pqa2

3Dv0

1

c011 H E
k

11~c021!J~k!2c0J2~k!

11x2/62J~k!
21J ,

~45!

with appropriate values ofc0 and J(k) for each of the lat-
tices: see Eq.~23!. Utilizing the definition ofP(z) in Eq. ~9!
enables us to rewrite this in the more convenient form

c15
2pqa2

3Dv0

1

c011
@ 1

6c0x22G~x2!#, ~46!

in which

G~x2!5
x2@c0x216~c011!#

6~x216!
PS 6

x216
D . ~47!

Then the DH charging process may be implemented straight-
forwardly to yield

f̄ DI5
pq2a2

3Dv0
2

1

c011
br2* F2

c0x2

12
1

1

x2E0

x2

G~x2!d~x2!G ,

~48!

with the corresponding chemical potentials

m̄1
DI5

4p2

3~c011!

a6

v0
2

r2*

T*
2 F c0

12
1

1

x4E0

x2

G~x2!d~x2!

2
1

x2 G~x2!G , ~49!

m̄2
DI5

p

3~c011!

a3

v0
2

1

T*
Fc0x2

12
2

1

x2E0

x2

G~x2!d~x2!G ,

~50!

and pressure

p̄DIv05 f̄ DIv01m̄1
DIr1* 1m̄2

DIr2* . ~51!

The only matter not yet taken into account is that, owing
to dipole–ion interactions, the excess chemical potential will
appear also in the law of mass-action. Since at the densities
of interest for criticality we suppose Bjerrum pairs interact
only with free ions—in the continuum-space RPM dipole–
dipole interactions appear in the next higher term in the se-

FIG. 2. Predicted phase diagrams of gas–liquid coexistence:~a! sc lattice
with inclusion of Bjerrum pairing alone; for bcc and fcc lattices the coex-
istence curves have a similar form. Coexistence curves for~b! sc, ~c! bcc,
~d! fcc lattices based on the full DHBjDI theory.
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ries expansion—the Bethe approximation for the dimer ac-
tivity remains adequate. Thus we obtain an equation,
defining implicitly the pair densityr2* as a function ofr1* ,
namely,

~2r2* /c0!@12~2r2* /c0!#

5 1
4c0~r1* !2expH 2pa3

3v0T*
F PS 6

x216
D 21G

12m̄1
DI~r1* ,r2* !2m̄2

DI~r1* ,r2* !.
~52!

This completes the principal task and allows the con-
struction of coexistence curves: these are shown in Fig. 2.
Clearly, in the lattice models the dipole–ion interactions are
also crucial to repair the unphysical banana-like form pro-
duced by Bjerrum association alone. The numerical estimates
are presented in Table III. For comparison, the predictions of
continuum-space DHBjDI theory and of the RPM simula-
tions are also listed. The predicted lattice critical tempera-
tures are now 1.5–1.65 times greater than the value given by
the simulations and the theoretical results of Levin and
Fisher.16 The critical densities, however, are quite close to
the continuum model predictions, but are significantly lower
than the simulations.9,10,13

IV. SUBLATTICE ORDERING

So far we have dealt only with an intrinsically low-
density picture of the system. Our description of the dense
phases, although partially represented by the liquid side of
the coexistence curve, has been seriously incomplete. On the
other hand, lattice theories provide a particularly natural first
approach to studying ordering in solid phases. Indeed, the
question of principal interest for us will be the possibility of
ordering similar to that observed in ionic crystals. We will, in
fact, find that a DH-based theory yields a phase diagram with
no gas-liquid criticality but, rather a tricritical point.10,21,25

A. DH mean field theory

Let us start by considering a generald-dimensional bi-
partite lattice, that can be divided into two sublattices of the
same form. Suppose,NA

1 , NA
2 andNB

1 , NB
2 are the numbers

of positive and negative ions on sublatticeA andB, respec-
tively, subject to the neutrality constraintNA

11NA
25NB

1

1NB
25N/2. Consider the sublattice with an excess of posi-

tive ions ~say, ‘‘A’’ for the definiteness!, and define the cor-
responding order parameter by

y5
NA

12NA
2

NA
11NA

2
. ~53!

This will have a vanishing mean value in a disordered phase
but will be positive in an appropriately ordered phase.

The entropic part of the free energy density corresponds
to ideal ions and is thus now given by

f Id52r1* ln r1* 2~12r* !ln~12r1* !2 1
2r1* @~11y!

3 ln~11y!1~12y!ln~12y!22 ln 2#. ~54!

To estimate the electrostatic part of the free energy, the ex-
tended DH approach17 suggests that we begin with an inho-
mogeneous version of Poisson’s equation for the potential at
a general siter due to all the ions when an ion of types is
fixed at the origin: this states

DDws~r !52Cd(
t

qtrt~r !gt,s~r !1Cdqsd~r !, ~55!

wherert(r )5rt* (r )/v0 is the bulk density of ions of species
t while gt,s(r ) is the ion–ion correlation function. Approxi-
mating the correlation functions by simple Boltzmann factors
and then linearizing provides a DH equation.

However, we must now allow for an overall nonzero
charge density on each sublattice given by

nA5
(tNA

t qt

N/2
5r1* yq, nB5

(tNB
t qt

N/2
52r1* yq. ~56!

These charge densities generate an additional ‘‘background’’
potential,F(r ), which does not contribute to the correlation
functions since it is independent of what type of charge is
placed at the origin. For sublatticeA we thus have a linear-
ized Poisson–Boltzmann or DH equation

DF~rA!52
Cd

D
r1* yq52

k2y

bq
. ~57!

Recalling the definition of the lattice Laplacian~5!, and tak-
ing into account the symmetry between the sublattices we
have

F~rA!52F~rB5rA1ann!, ~58!

and conclude that the background potentials are

F~rA!52F~rB!5
x2y

4dbq
. ~59!

If we now put w̃A5wA2F(rA) and accept the approxi-
mationgt,s(r ).exp(2bw̃) in Eq. ~55!, the equation for the
local induced potentialw̃A reduces to the lattice version of
pure DH theory~4!. This reflects the electrostatic superposi-
tion principle, i.e., the total potential is simply the sum of a
‘‘background’’ potential due to nonzero average charge den-
sity and the DH screening potential so that

w~r !5F~r !1
Cdq

Dv0

a2

2d E
k

eik"r

11x2/2d2J~k!
. ~60!

Now, following the DH approach combined with a mean-
field description of the ordering, we find the potentialc due
to all ions except the one fixed at the origin to be

wA~rA50!5
1

c0
(
nn

@F~ann!1wDH~ann!#, ~61!

cA5wA~0!2wA~0!ux50 , ~62!

which, on taking into acount Eqs.~58! and ~59!, yields

cA52
x2y

4dbq
1cDH, ~63!

with cDH given by the same expression asc i in Eq. ~12!.
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Finally, the DH charging process gives the total free en-
ergy density~of both sublattices! as f̄ 5 f̄ Ord1 f̄ DH where
f̄ DH5 f̄ Id1 f̄ El follows from Eqs.~2! and ~13!, while

f̄ Ord5
Cdad

8dv0
2

~r1* !2y2

T*
2

r1*

2v0
@~11y!ln~11y!

1~12y!ln~12y!22 ln 2#. ~64!

Note that this result implies that the electrostatic part of the
ordering energy is negative (f̄ 52F/kBTV) as it should be
since it describes the interactions between charges of oppo-
site signs. The ordering term also yields additions to the
chemical potential and pressure, namely,

m̄Ord52
Cdad

4dv0

r1* y2

T*
1 1

2@~11y!ln~11y!1~12y!

3 ln~12y!22 ln 2#, ~65!

p̄Ord5Cdadr1*
2
y2/8dv0

2T* . ~66!

Now the possibility of sublattice ordering is explored by
seeking minima off̄ Ord with yÞ0. This leads to

Cdadr1* y

2dv0
5 lnS 11y

12yD . ~67!

Expanding for smally in the standard way yields the solution

y'A3S r1*

rl*
21D 1/2

, ~68!

in which thel-line, along which second-order phase transi-
tions occur, is given by

rl* ~T!5~4dv0 /Cdad!T* . ~69!

The simplest way to find the anticipated tricritical point is to
consider the intersection of the spinodal with thel line.25

This can be found by computing] p̄(r1* ,y)/]r1* with y de-
fined by Eq.~68!, equating to zero, and settingr1* 5rl* (T)
after taking the derivative. A more readily justifiable, but also
somewhat more sophisticated procedure is to study the sta-
bility matrix for the free energy, which is now a function of
two order parameters, namely,y andr1* . Both methods lead
to the same equation for the tricritical point, which reads

4d

r tr i*

]P

]x2 S 2d

x212d
D U

x254d

1
1

12r tr i*
2

3

2
50, ~70!

whereP(z) is the lattice Green’s function~9!.

B. Results and discussion

In d53 dimensions simple cubic and body-centered-
cubic lattices are bipartite and sublattice ordering is possible.
Note that the calculations presented above did not use any
extra properties of lattice symmetry. Indeed, the electrostatic
interaction energy of the ‘‘charged’’ sublattices depends only

on the excess charge density, that is ony, and is thus the
same for both lattices. This is also true as regards the entropy
of sublattice ordering. We find that the tricritical point pa-
rameters are

Ttri* 50.3822~sc!, 0.4865~bcc!, ~71!

r tri* 50.3649~sc!, 0.3576~bcc!, ~72!

while thel lines may be written

Tl* /rl* 5 1
3p.1.047~sc!, 1

4pA3.1.360~bcc!. ~73!

The full predicted phase diagrams are presented in Fig. 3.
It is instructive to compare our results with previous

simulations for the sc lattice.11,25 These yield Ttr*
.0.14– 0.15, which is only about 40% of our theoretical
estimates~71!. On the other hand, for the tricritical density
the higher estimater tri* .0.48 of Ref. 11 is probably more
reliable thanr tri* .0.38 of Ref. 25~which compares rather
well with our theoretical values!, since the former simula-
tions used larger lattice sizes and computed more points on
the coexistence curve. It must also be noted, however, that
both these simulations employed the discretized continuum
or 1/r Coulombic potential in place of the lattice form we
have used.

Fitting a straight line at lowT to thel-line data of Stell
and Dickman25 yields a slopeTl* /rl* .0.6, which may be
compared with our value of 1.047.~For another comparison
one might note that the generalized DH theory for the con-
tinuum RPM17 predicts damped charge-density oscillations
setting in on a locusTK* /rK* .0.3 while undamped oscilla-
tions are predicted beyond the locusTX* /rX* .9.)

Also of interest is the value ofTl* (r* ) at close packing,
i.e., r* 51. For the sc lattice our treatment predictsTl* (1)
.1.047 which, by virtue of the mean-field character of the
theory, is likely to be a significant overestimate. Indeed, ex-
trapolation of the Dickman–Stell data suggestsTl* (1).0.6
while Almarza and Enciso27 obtain Tl* (1).0.515; but,
again, these simulations employ a discretized 1/r potential.
Our analysis indicates higher values ofTtri* andTl* (1) for the
bcc lattice than for the sc. But, perhaps, surprisingly, this is
just the opposite of what Almarza and Enciso find.27 In ad-

FIG. 3. Phase diagrams for ionic lattice systems with sublattice ordering:~a!
sc, ~b! bcc. Also shown by broken lines are the gas–liquid coexistence
curves predicted by pure DH theory for~c! the sc and~d! the bcc lattice.
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dition to using the lattice Coulomb potential, our treatment at
this point has neglected the formation of Bjerrum ion pairs.
In fact, it seems quite feasible to include pairing in the theory
along with allowance for sublattice ordering~since the ions
of a dimer pair will reside on complementary sublattices!. It
is possible that this improvement of the theory will result in
lower transition temperatures for the bcc lattice relative to
the sc lattice.

Previous theoretical discussions of the sc lattice RPM
have been presented by Stell and colleagues.21,25 In an initial
mean field approach,25 the long-range Coulomb potential
~taken in discretized 1/r form! was first reduced to an effec-
tive nearest-neighbor interaction. The value of the tricritical
temperature,Ttri* 52, obtained by direct mean-field lattice
calculations, was then scaled down by a factor derived by
comparing energy magnitudes. This approach suggestedTtri*
.0.3 and r tri* 5 1

3, the latter value being merely a conse-
quence of using a nearest-neighbor mean-field approxima-
tion. More recently, Ciach and Stell21 have adopted a single-
ion lattice potential, as, in fact, given by Eqs.~6! and ~10!.
This corresponds more closely to our treatment but they en-
tirely neglect the cooperative screening which must occur
and which is included in our DH-based treatment.~Note that
at higher densities the screening effectively takes place via
‘‘holes’’ in the ordered or close-to-ordered lattice charge con-
figurations!. The new treatment21 reproducesr tri* 5 1

3 ~for the
previous reasons! but givesTtri* .0.6, which is worse than
the previous result as compared with the simulations; how-
ever, no energy rescaling is now performed.

As we have seen, both by our own theoretical analysis
and through the simulations, the sc and bcc pure Coulomb
lattice systems displayno gas–liquid phase separation as
such. Indeed, in Fig. 3 we have plotted the coexistence
curves for the two lattices that are predicted by pure lattice
DH theory with no allowance for the possibility of sublattice
ordering. Evidently, these coexistence curves lie entirely
within the two-phase coexistence region of dilute disordered
vapor and the high density ordered ‘‘crystal.’’ Consequently,
the order–disorder transition entirely suppresses gas–liquid
criticality in the simplest discrete ionic system with only
single-sitehard cores. If, instead, the hard-core repulsions
extend over more lattice sites—or, equivalently, if a finer
level of spatial discretization is employed~as, of course, is
more-realistic for continuum systems!—then, as revealed by
simulations,10,11 a normal gas–liquid transition and critical
point is restored. At the same time, ordered, crystal-like
phases appear only at relatively higher densities as charac-
teristic of real solids.

While a DH ~or, even, a DHBjDI! theory might be at-
tempted for a more finely discretized model, the clearly evi-
dent complications donot make this a promising prospect.
On the other hand, by adding to a purely ionic lattice system
strong short-range attractive potentials~say, designed to rep-
resent neutral solvent properties21!, more elaborate phase
diagrams can be anticipated. Indeed, by approximations that
again neglect all screening effects, systems displayingbotha
tricritical point and a normal critical point have been
obtained.21 Our more complete treatment could readily be
extended in the same spirit.

V. CONCLUSIONS

By solving exactly lattice versions of the usual Debye–
Hückel equation, we have derived closed expressions for the
free energy of general,d-dimensional ionic lattice systems
with single-site hard core repulsions. Ford>3, gas–liquid
transitions are predicted at low temperatures and densities.
As in the corresponding DH-based theory for the continuum
restricted primitive model,16 improvement of the theory at
low temperatures demands both allowance for (1,2) ion
pairing, to form nearest-neighbor dipolar dimers,and the sol-
vation of the resulting dipolar pairs by the residual free ions.
The predicted critical temperatures for the sc, bcc, and fcc
lattices ind53 dimensions then lie 60%–70% higher than
given by continuum DH-based theories; but the critical den-
sities are relatively closer. These results accord with the gen-
eral tendency of lattice theories to overestimate the stability
of the corresponding low-temperature continuum phases.

At higher densities in a lattice theory it is imperative to
allow for sublattice ordering of the positive and negative
ions. By introducing an appropriate order parameter we have
extended the analysis to treat general,d-dimensional bipar-
tite lattices at acombinedDebye–Hu¨ckel and mean-field or-
dering level. Our unified theory yields, in an accord with
recent lattice simulations, a complete suppression of gas–
liquid phase separation and criticality by order–disorder
transitions that occur at higher temperatures. At high densi-
ties and temperatures a classical second-orderl line is pre-
dicted; but this terminates at atricritical point at a density,
for the sc and bcc lattices,r tri* /rmax* .0.36 and a temperature,
Ttri* /Tmax* .0.420.5. At lower temperatures the first-order
transition is from an exponentially dilute vapor to an almost
close-packed ordered ionic lattice.

Our treatment can be extended in various directions. In-
deed, there are preliminary indications that by considering
strongly anisotropic three-dimensional lattices, gas–liquid
separation may be restored, possibly, together with distinct
order-disorder transitions. It is relevant to note in this con-
nection that DH theory for continuum ionic systems predicts
increasingvalues of gas–liquid critical temperatures when
the dimensionality is decreased.15 Thus lattice anisotropy
might mimic lower dimensionality.

Although the direct applicability of our results to ionic
systems is clearly limited, we feel the approach developed in
Sec. IV may prove helpful in describing the behavior of de-
fects in ionic crystals.23 Furthermore, lattice simulations that
employ the true lattice Coulombic potential are desirable and
might cast some light on the role of short-range interactions
and geometric constraints in strongly coupled ionic systems.
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