Lattice models of ionic systems

Cite as: J. Chem. Phys. 116, 7589 (2002); https://doi.org/10.1063/1.1464827
Submitted: 18 December 2001 « Accepted: 05 February 2002 « Published Online: 15 April 2002

Vladimir Kobelev, Anatoly B. Kolomeisky and Michael E. Fisher

ps
L
o
N

o/

View Online Export Citation

ARTICLES YOU MAY BE INTERESTED IN

Geometrical frustration
Physics Today 59, 24 (2006); https://doi.org/10.1063/1.2186278

Chemical Physics

Yo
o
©
c
p -
-
O
ﬁ
Q
e
=

Anisotropic lattice models of electrolytes
The Journal of Chemical Physics 117, 8879 (2002); https://doi.org/10.1063/1.1516215

Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations
The Journal of Chemical Physics 154, 124504 (2021); https://doi.org/10.1063/5.0039619

Learn More
The Journal

of Chemical Physics /Special Topics Open for Submissions

AlIP
é Publishing

J. Chem. Phys. 116, 7589 (2002); https://doi.org/10.1063/1.1464827 116, 7589

© 2002 American Institute of Physics.



https://images.scitation.org/redirect.spark?MID=176720&plid=1817977&setID=533015&channelID=0&CID=668198&banID=520703476&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6a06a51a28cd72ad43dfa364682722e3de2b7626&location=
https://doi.org/10.1063/1.1464827
https://doi.org/10.1063/1.1464827
https://aip.scitation.org/author/Kobelev%2C+Vladimir
https://aip.scitation.org/author/Kolomeisky%2C+Anatoly+B
https://aip.scitation.org/author/Fisher%2C+Michael+E
https://doi.org/10.1063/1.1464827
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1464827
https://aip.scitation.org/doi/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://aip.scitation.org/doi/10.1063/1.1516215
https://doi.org/10.1063/1.1516215
https://aip.scitation.org/doi/10.1063/5.0039619
https://doi.org/10.1063/5.0039619

JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 17 1 MAY 2002

Lattice models of ionic systems

Vladimir Kobelev and Anatoly B. Kolomeisky®
Department of Chemistry, Rice University, Houston, Texas 77005

Michael E. Fisher
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

(Received 18 December 2001; accepted 5 February)2002

A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The
thermodynamics is developed using Debyeekil theory with ion-pairing and dipole—ion
solvation, specific calculations being performed for three-dimensional lattices. As for continuum
electrolytes, low-density results for simple culc), body-centered cubitbco), and face-centered

cubic (fcc) lattices indicate the existence of gas—liquid phase separation. The predicted critical
densities have values comparable to those of continuum ionic systems, while the critical
temperatures are 60%—70% higher. However, when the possibility of sublattice ordering as well as
Debye screening is taken into account systematically, order—disorder transitions and a tricritical
point are found on sc and bcc lattices, and gas—liquid coexistence is suppressed. Our results agree
with recent Monte Carlo simulations of lattice electrolytes. 2602 American Institute of Physics.
[DOI: 10.1063/1.1464827

I. INTRODUCTION curves’ ! However, some special attention has also been

devoted to the heat capacity which is significant for elucidat-

It is well known that criticality in simple fluids with . - 51913
short-range potentials can be described by the Ising unive ng the critical regiort Nevertheless, because of the

sality class with critical exponents accessible via renormal-_"9-7ange character of the interactions and the low values of

ization group calculationsHowever, for Coulomb systems, the critical temperatures, which lead to many strongly bound

- 11,14 : - -
where particles interact through long-range potentials, th&°n Pairs, " computer simulations for finite systems so far

nature of criticality remains open to questi%)mxlumerous fgil to clearly determine-griti(-:al exponents and hence to iden-
theoretical, experimental, and computational investigationdYy the nature of the criticality.
of electrolyte systems have not yet produced a clear picture 1 he success of the renormalization grd&) approach
of the thermodynamics in the critical region. Early experi-n describing nonionic fluidssuggests that it might also be
ments on criticality in electrolytes suggested a strong di2Pplied to Coulombic criticality. However, to implement a
chotomy: namely, some electrolyt®$ termed solvophobic RG treatment, the existence of a physically well based mean-
and typically having large solvent dielectric constant, are satfield theory turns out to be crucilThe simplest model for
isfactorily characterized by Ising critical exponents. Thistheoretical investigations of ionic systems is the so called
suggests that the principal interactions driving the phaséestricted primitive mode(RPM), which considers particles
separation in such systems are of short-range character. ®f equal sizes and positive and negative charges of equal
the other hand, a number of organic salts in appropriate somagnitude. Two main theoretical approaches have emerged.
vents, typically of low dielectric constant, were found to ex- The first employs an extensiofr " of the basic Debye—
hibit classical or close-to-classical behaviand have been Hiickel (DH) theory!® developed in the early 20th century
called Coulombic, stressing the importance of the dominantor dilute solutions of strong electrolytes. The second ap-
electrostatic interactions. Moreover, in sodium—ammonigoroach rests on integral equations for correlation functions,
solution§ (and some other systems: see Refs. 7 and 8, angpically employing the Ornstein—Zernike equations in com-
references therejncrossover from classical to Ising behav- bination with some truncation, as in the mean spherical ap-
ior had been observed, but at a reduced temperata(@  proximation(MSA).161°-2INeither of these two approaches
—T.)/T.=0.6x10 2, unusually close to the critical point. has any known independent basis, such as an overall varia-
This led to the idethat the true asymptotic critical behavior tional principle for the ionic free energy, that might help
of ionic fluids is always of Ising character but that crossoveijustify its reliability. However, compared to the values pre-
from nonasymptotic, close-to-classical behavior occurs agicted by DH-based treatments, MSA-based theories vyield
scales that may sometimes be experimentally inaccessible. relatively poor agreement with the critical parameters found
Monte Carlo computer simulations provide another useqy current Monte Carlo simulations, namely, in reduced
ful method of investigating _the properties of ionic systems.njts 27 T¥=~0.049 and p*=0.06—0.085. Careful
In_thg last dgcadg substantial progress has been atheveddﬂa|ysis%,16,22 utilizing thermodynamic energy bounds, etc.,
this field, with primary effort focused on the coexistence 515, suggests that DH-based theories promise a better de-
scription of the critical region of model electrolytes.
dElectronic mail: tolya@rice.edu Since the Ising model, which is equivalent to a lattice
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gas, has played a crucial role in understanding critical phekevin,'® this must be supplemented by explicit dipole—ion
nomena in nonionic systems, lattice models of electrolytesolvation effects: see Sec. Il C. Then, in Sec. IV the possi-
deserve attention. Although clearly artificial as regards thevility of sublattice charge ordering is discussed. Unlike pre-
description of real ionic solutions, which possess continuousious treatment8:?> we account for both electrostatic
rather than discrete spatial symmetry, they are attractive fascreening and sublattice ordering in a unified framework.
various reasons. First, by virtue of the lattice character on®ur conclusions are summarized briefly in Sec. V.
can incorporate the behavior of dense phases, at least one of
which should be an ordered ionic crystal. Lattice models
may also be effe_ctive fo_r desgribing dgfects in real crystals. Il. LATTICE DEBYE—HU CKEL THEORY IN GENERAL
Second, even finely discretized lattice systems present g MENSIONS
computational advantage over their continuous-space coun-
terparts in Monte Carlo simulatiod$ Last but not the least, Our derivation for general-dimensional lattices follows
discrete-state lattice models facilitate the derivation ofclosely the Debye—Hkel approaci® We confine ourselves
equivalent field-theoretical descriptions and, thereby, thdo the lattice restricted primitive moddlRPM), which con-
study of the significance of various terms in the effectivesists of oppositely charged ions with charggsand —q
Hamiltonian. Moreover, Coulomb interactions can be exactlywhich occupy single lattice sites ofcadimensional Bravais
represented in terms of a nearest-neighbor Hamiltonian vitattice. In this simplest model the ions interact only through
the sine-Gordon transformation that yields both low fugacitythe electrostatic field and otherwise behave as ideal particles,
and high-temperature expansions of the equation of statéubject only to on-site exclusion. Thus the total free energy
(For a recent overview and results see Ref. 24, and refeglensity, which plays the central role in the thermodynamics
ences therei. of the system, can be writtefi=f'9+fP". As the overall
Despite their distinct theoretical advantages, lattice modsystem must be neutral, the average densities of the positive
els of electrolytes have not been studied systematically. Thand negative ions are equa, =p_=3p,. Correspond-
aim of the work reported in the following has been to repairingly, for the reduced chemical potential and pre

this omission. have
Most of the previous analyticdt®® and - = = = — —
. L =u_=uq, =maX f+ , 1
numerical*225-27work on lattice ionic systems has ad- Mt~ H-TH1 P T+ mapal @

p
dressed the question of tricriticality and of order—disorder '

transitions. While the overall density is the order parametekvhere u=u/kgT andp=p/kgT. The ideal lattice gas con-
which suffices to reveal gas—liquid critical behavior in ionic tribution to the free energy is, up to a constant term, given by
solution, the presence of an underlying lattice allows natu- =
rally for the appearance of another order parameter. In bipar- 4= — =——Inp} —
tite lattices, such as the simple culggr) and body-centered KgTV vo vo
cubic (bco lattices, ions of opposite charges can distributewith the corresponding chemical potential
unequally between the sublattices, thereby reducing the elec- — —d N N
trostatic part of the free energy. At the same time, the entropy 1~ 9t%9py=Inpy —In(1-p1), €
is also reduced, which increases the free energy. This comvhereV is the total lattice volume while} =p,v, is the
petition leads to the appearance of a phase with long-rangeduced dimensionless density @fee) ions andv,, is the
order resembling an ionic crystal; second-order phase transjolume per site of the lattice.
tions are then a likely consequence. In the continuum case Next we determine the contribution to the free energy
analogous oscillations appear in the charge—charge correlarising from the Coulombic interactions. However, the lattice
tion functiond’ at certain values of density—temperature ra-form of the potential, which takes into account the discrete-
tio. However, such ordered phases may turn out to be thehess of the space, should be used. This lattice Coulomb po-
modynamically so stable, that a gas—liquid phase transitiogential will approach the continuousripotential asymptoti-
predicted by a continuum theory may not survive in a latticecally at large distances, but it differs significantly at small
model: the lattice system tends to “solidify” before forming distances. We start with the linearized lattice Poisson—
a “proper” liquid. Indeed, this scenario has been observed irBoltzmann equation, which determines the average electro-
numerical studies. On the other hand, the possible presensgatic potential at pointr. Following the standard DH
of both gas-liquid and tricritical points has been predictedapproactf® we easily find
theoretically by Ciach and Stell for a model with additional o
short-range interactions added to the lattice Coulomb Ag(r)=r"e(r)=(qCq/Dvo) 5(r), @
forces?! where k?=CyB8p,1q°%/D is the inverse Debye screening
As indicated, we present in this article a study of thelength, with B=1/kgT. The constant factor Cy
simplest, single-site hard core model of a lattice ionic systen¥ 2792IT'(d/2) is determined by the dimensionality of the
with chargesg. = +q. In Sec. Il we describe the basic DH lattice systent® In this equation we use the lattice Laplacian
theory on generalj-dimensional Bravais lattices. Our analy- defined through
sis focuses ol=3 in Sec. lll. After presenting the results
for_ pure D_H theory, the crucial phenomenon_ of Bj_errum ion Ag(r)= Z_dzz [o(r+a)—e(r)], (5)
pairing is introduced in Sec. Il B; but, following Fisher and Coa“ nn

*

p1 1-p;

In(1-p7), (@
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wherea is a nearest-neighbor vector and the summation rungrom this we find the pressure for an arbitrargdimensional
over allcy nearest neighbors. The DH equation, E), can  Bravais lattice to be
be easily solved by Fourier transformation yielding

Cqq @° elkr puo=—In(1—p*)+ —| x2P 2d
o(n)==—— , (6) PAd]T kP ad
Duvg 2dJx (x242d)/2d—J(k)
with x= ka and [,=(2m) 97 _ d%. The lattice function _ foP . dx?)|. (16)
J(Kk) is defined by 0 x“+2d
I(k)= iE gika @ Equations(2) and(13)—(16) give full information about
Co ‘m ' the thermodynamic behavior of a lattice Coulomb system. In

nparticular, the possibility of phase transitions and criticality

fixed at the origin due to all the surrounding ions. Because o‘éan be investigated by analyzing the spinodals, and the phase

) . i oexistence curves may be obtained by the matching pres-
the Bravais symmetry, we can find the total potential at the y y gp

- X . . sure and chemical potential in coexisting phases. Spinodals
origin by averaging over the nearest-neighbor sites to obtai

In the DH approach, we need only the potential felt by an io

Bre specified by setting the inverse isothermal compressibil-

1 ity K7 to zero, so that
p(1=0)= =2 ¢(an). ® !
0 nn 1 {9;
, , , , o _=p,— =0, 1
Introducing the integrated lattice Green’s function via ke Ky P1 ip1 (17)
P(0)= f # 9) which, on taking Eq(14) into account, reduces to
k1—=23(k)
d
and using Eq(6) we obtain o Cod" L(1-0IP(DIIE 18
S 2dvg 24 (1—¢)2 '
cqaa| [ 2d 0 2+(1=)?P(H)ldg
0(0)= Duo 2d| | x2+2d) (10 \ith ¢=2d/(x2+2d). One can show that wheit becomes

) ) o _ large (which corresponds to{—0), one has TZ
The potential due to a single ion in the absence of other iong, CoCdad(p’l‘)Z/Zdvo. Equations(13)—(18) can be used to

is obtained simply by setting=0 in Eq.(6), which yields  jyyestigate the phase behavior of electrolytes in any dimen-
Cq4q a2 sion.
®o(0)= Do, >glP(M—1]. (11 We mention briefly here the critical parameters obtained

for d=1 and 2. In the one-dimensional case the lattice
Subtracting this expression from the total potentl€)) and  Green’s function gives

using Eq.(9) yields the potential felt by an ion of chargg

atr=0 due to all the surrounding ions, namely, 0 1fw dk 1 (19
Cqd ° V7)o Ttk ™ =7
=Dy 24| Pl 25| ~PD|. (12)
Vo x“+2d which yields a spinodal of the form

The electrostatic part of the free energy can be found by 5
using the Debye charging proceddfayhich yields T % y—a (20)
S X[x+(x2+4)%2
e oS o= pipq S flm yd\
f kg TV P1PYi ™ Jo ! q This specifies a critical point with parameters

ps=0, Ti=co, (21)

. (13

, X2 ( 2d ) ,
xP(1)— f P 5 d(x?)

0 x“+2d in accordance with the general principle that one-
Combining the ideal-gas and DebyeZdkel terms yields dimensional systems do not display phase transitions. How-
FOH_f1d4 FEl and ever, sincep(r)«|r| in a one-dimensional system, the DH
method fails and describing the one-dimensional ionic lattice

- 4dUQ

_ . . Cqa® model demands a different approach: one may note the con-
ma=Inpy—In(l—p7)— Ady T P(1) tinuum analysig®
0 For d=2 dimensions the lattice Green’s functions are
2d given in Ref. 30. Then for both for triangular and square
—Pl = , (14 lattices the predicted critical parameters are found to be
x“+2d
with reduced temperature defined by pc=0, Tg=1/4, (22)

T*=kgTDa" ?/q?. (15  precisely, the same values as for the continuum mbiel.
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TABLE |. Lattice parameters.

Unit cell Nearest-neighbor Number of nearest Volume per
Lattice edge distance &, neighbors €o) site (vo)
sc ag ag 6 a3
bce 22, J3a, 8 433
fee 2a, V2a, 12 2a3

Ill. ELECTROLYTES IN THREE DIMENSIONS
A. Pure DH theory

Let us now examine three-dimensional cubic lattices in

more detail. We address three cases: simple dsigicbody-
centered cubicbco), and face-centered cubitcc); for con-

venience their geometrical parameters are listed in Table I.

The basic lattice functiod(k), defined in Eq.(7), is then
given by

J(k)= %(cosk; + cosk,+ coskz) (so), (23
=cosk; cosk, cosk; (bco, (29
= 3(cosk, cosk,+ cosk, cosks

+ cosk, cosks) (fce), (25

W|th _ngl,kz,

tice Green’s functions can be explicitly calculated using their”liq
representation in terms of complete elliptic integrals agnum, ¢

shown by Joycé! The self-potential of an iorfin the ab-
sence of any screenipgs then given by

Cq a°
(Da/q) ¢o(0)= v—dE[P(l)—l]:l.OSZ, 1.070, 1.021,
0
(26)

Kobelev, Kolomeisky, and Fisher

TABLE Il. Coexistence curve parameters for 3D cubic lattices according to
pure DH theory; HC denotes the continuum hard sphere system, i.e., the
RPM.

Model T: ps pig(0)
sc 0.101 767 0.007 869 0.0996
bcc 0.100617 0.005 908 0.0759
fcc 0.096 637 0.004 755 0.0596
HC 0.061912 0.004 582 1
X3
= (1—0.286¢+0.025¢+ - ) (bco, (29
127a®
X3
= (1—0.296¢+0.025¢>+ - - ) (fcc). (29
127a®

The leading term precisely reproduces the exact continuum
DH result, which, of course, is independentafThe mag-
nitude of the first correction term increases with increasing
coordination number; in the hard sphere continuum model it
becomes 0.75.

The predicted coexistence curves for the sc, bcc, and fcc
lattices are shown in Fig. 1, while the critical parameters are
listed in Table II. A surprising feature of these coexistence

ky=. The corresponding integrated lat- curves is that the liquid density approaches a finite value,

*(0), asT—0 that is substantially smaller than the maxi-

lose-packing densify; =1; see Table II.

For comparison, Fig. 1 also displays the predictions of
DH theory for the continuum RPM supplemented by hard-
core interactions in the free volume approximation with the
simple cubic packing limit® Although the critical tempera-
tures decrease slightly as the number of nearest neighbors
approaches realistic values of the coordination number, say,
—14, as observed in simple liquids, its value for all three

for sc, bce, and fcc lattices. This reduced value approacherz, ’ ) -
the exact continuum potential value 1 as the number of neaf@tticeés remains about 50% higher than the corresponding

est neighbors increases. At low densities the free energy Zontinuum value. This is, indeed, a rather general feature of

given by EqQ.(13) can be expanded in powers rf «a,
which yields

3

fE= (1—-0.28%+0.025%+-+)

(s0,

(27)

127as

1 .
0.05 0.125

. ] )
0 0.025

0075 0.
P

FIG. 1. Coexistence curves for the LRPM predicted by pure DH thea)y:
sc,(b) bece,(c) fec, (d) continuum RPMRef. 16 with hard-core interactions
corresponding to the simple cubic packing limit.

lattice models, which tend to display higher critical tempera-
tures than their continuum-space counterparts. However, the
predicted critical densities are quite comparable, decreasing
from about 60% above the continuum value to only 3% or
4% higher: see Table Ill. Clearly, packing considerations
play a significant role in the value of} .

B. Bjerrum ion pairing

Free ions alone are not adequate for treating the low
temperature critical region, since positive and negative ions
will often combine into strongly bound neutral dimers or
Bjerrum pairs>? This process can be treated as a reversible

TABLE Ill. Critical parameters predicted by the full DHBjDI theory. For
comparison, values for the RPM are also given.

Model T P

sc lattice 0.096 66 0.03041
bcc lattice 0.089 31 0.025 63

fcc lattice 0.080 64 0.027 08
RPM: DHB|DI 0.0554-0.0522 0.0244-0.0259

RPM: simulations 0.049 0.06-0.085
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chemical reaction, say,H{)+(—)=(+,—), leading to . P
equilibrium densities of free ions and dipoles, varying with mi=1In " ! < | Fn
and p.2'% In a continuum model, however, there arises a 1-p1—2p;

serious question as to precisely what configurations are to be To obtain a complementary expression _ﬁogwe appeal

; 16,32,33 ; ; i
considered as bound paifs: I.n .practlce, this relates .d'. to the Bethe approximatiof. It corresponds to the zeroth-
rectly to the problem of determining the proper association

tantk(T). Bi 's original R o int order term in the series expansion of the grand-partition
constantk (T). Bjerrum’s origina approach was 10 Intro- - ¢,,tion for dimers with no attractive interactions and yields
duce a temperature-dependent cutoff distance that would rep-

resent, in some sense, the size of a dipolar pair. Later (2p31co)[1—(2p5/cy)]
Ebeling® using systematic cluster expansions, obtained a Z2V0~ (1—p* —2p%)? ' (39)
more elaborate expression f&(T); it turns out, however, P17 2Pz
that Bjerrum’s form is reproduced asymptotically to all or- Thence we obtain
ders at low temperatures. But for a lattice system the situa- — . . N
tion is intrinsically simpler because a clear and acceptable #2= — 2 IN[1=p1—2p3 J+In(2p3/co)
FJef|n|t|on of'a boqnd ion pair is tvyo oppositively charged +|n[1—(2p§/co)]—|n(Ag/§2vo). (36)
ions occupying neighboring site§airs separated by further _ _ o
distances, second nearest neighbors, etc., may be regarded{s using the law of mass action, the Bethe approximation
distinct species and could be considered separately, @lso yields an equation fqr; , namely,
necessary’) . N . 2

Following this convention, we introduce the density (2p31C0)[1=(2p3/C0)] — P1 @ezﬁrﬁqw(o)_
and chemical potentigk, of Bjerrum pairs which we sup- (1-pf—2p3)° 1-pi—2p3
pose, initially, behave like ideal lattice particles. The condi- (37)

i H ilihri — *
tlgn of chemical equilibriumpu,=2u,, ensures thap; and  14ing into account that the dimer density should increase as
p> are interconnected via the law of mass action. To this enty,» free-ion density increases, we may solve to obtain

Ad

vod1

*

+ut (34)

let
_ _ « Co %2
z=A{l(voln)e,  2=AYl(v5Lr)e" (30) p2=g 1™ ( 1= Copy
denote activities of free ions and pairs, respectively, where 2mrad 6 12
the A; denote the de Broglie wavelengths for which we have ><exp| 5 - 1] } ) . (39
A=A_=A, andA;=A, (see Ref. 1pwhile ¢; and ¢, BvoT*[ | x°+6

represent the corresponding internal configurational partitio’since the dimers are neutral, they do not add to the DH
functions. In terms of the activities, the law-of-mass actionjnteraction energy which retains the for¢h3). For the total

statesz,= 3K z3, from which follows*® free energy we then have
£ A3\ F=1194 F5=2FY%G p1) + % po) + T¥(py), (39)
K(T)= —26(—1 = 4,(T). @y
AS\ &a in which we recall that

This definition of K as the internal partition function of a x=ra=4ma’p}/voT*. (40)

dipolar pair leads naturally to the basic expression Now we may note that the free energy density can be found

by integration of Eq{(34) or (36) with respect tgp; or p,,

K(T):UOE e Aa¢@mN =y c e AaeCT), (32 respectively. Comparing the resulting expressions yields
nn
2f¥(3p1)vo=—p¥ Inp} —(1—p} —2p3)

where¢(0;T) is given by Eq.(10). . . . .
By using the potential-distribution theorethwe can XIn(1-p7 —2p3)—p7 IN(A7/vo), (41)

then write the free ion density as which can be obtained independently by noting that the free

volume available for an ion is proportional to-Jo; —2p3

_ B
pi=2z8" "T=vog,e #re VKT, (33 (see also Ref. 231n addition we get
whereV is the potential of mean-field force apd is given 9 0= —p% In(2p%/co) + (co/2)IN[1— (2p%/co) ]
by (14) (with d=3) since neutral particles do not contribute x| % x| 6/
to the electrostatic interactions. The second exponential fac- —p2 IN(1=2p31Co) = p2 IN(A/{500). (42)

tor here accounts for all the non-Coulombic interactions,  The equation of state for DH theory with ideal dimers
since the ionic terms are already taken into account by théhen follows from Eq.(1). As in the continuum RPM® one
factor with exponeny_ﬂf'. Hence, only a hard-core factor is finds that the lattice DH BjerrunfDHB;j) theory merely su-
required: this may be taken as the probability that a giverperimposes the pressure of an ideal lattice gas of Bjerrum
lattice site is empty, namely,-1p7 —2p3 . In total the ionic  pairs on the DH pressure for the free ions. Additionally, the
chemical potential may thus be expressed as ideal-gas term for the free ions is changed somewhat, since



7594 J. Chem. Phys., Vol. 116, No. 17, 1 May 2002 Kobelev, Kolomeisky, and Fisher

0.12 T T T T T T 1 ,
0L (0=—| -0+ (@ |, (43)
0 nn
0.09 where the prime on the summation means that the site with
T" the negative ion is excluded. Owing to the symmetry, the
0.06 potentials of the negative and positive ions differ only in
sign, the energies being equal. Hence we obtain
1
0.03 - !
¢ (0= =72 (@), (44)
05 S T e W AR e a—— where the potentialg(a,,) can be calculated using the DH

expression(6) separately for the contributions arising from
p the negative and positive ion of each pair. After some algebra
FIG. 2. Predicted phase diagrams of gas—liquid coexistefaesc lattice  the results for the cubic lattices can be written in the general

with inclusion of Bjerrum pairing alone; for bce and fec lattices the coex- form
istence curves have a similar form. Coexistence curveshbjosc, (c) bcc,
(d) fcc lattices based on the full DHBJDI theory. V=@ (X)— @ (x=0)

2mga? 1 “1+(c0—1)J(k)—coJ2(k)_
k

the hard-core interactions intrinsic to a lattice gas, appear in 3Dvg Cot+1 1+x2/6—J(k)
the entropic contributions to the free energy via the fraction (45)

of available lattice sites. However, this does not affect the )
critical temperature of the liquid—gas transition, since it isWith appropriate values o, and J(k) for each of the lat-

primarily the free ions’ density that governs the phase sepdices: see Eq23). Utilizing the definition ofP(¢) in Eq. (9)

ration. enables us to rewrite this in the more convenient form
One now finds, just as in the continuum motfahat the 2mqa? .
coexistence curves for all the lattices have a banana-like <ﬁ+=m CO+1[€C0X2—G(X2)], (46)

shape: see Fig. 2. This is simply a consequence of the rapid

growth of the number of neutral dimers as the temperaturé which

increases. Indeed, the overall critical density is predicted to X2[Cox?+ 6(Co+1)] 6

increase by a factor of 5.02 for the sc, 6.38 for the bcc, and G(x?)= 0 0 p( ) ) (47)

10.25 for the fcc lattice, taking the valugg =0.039 82, - 6(x*+6) x°+6

0.03769, 0.04878, respectively. Singf; does not change 11,1, the DH charging process may be implemented straight-
when adding ideal dimers, and decreases when the latt'CI%rwardly to yield
symmetry is enlarged, the fact that the overall critical density

for the fcc lattice is greater than for the bcc and sc lattices is mq?a? 1 .
surprising; but, no doubt, the increased coordination number, = 3Dy2 coTl’sz
Co, Serves to enhance the formation of dimers. 0

2
CoX 1fx2 ) )
12 +X2 . G(x9)d(x?)

(48)
with the corresponding chemical potentials
C. Dipole—ion interactions
_ _ _ oy AT a%pilce 1 (e,
The banana-like shape of the DHBj coexistence curvesis w1 =5+ —2|75+ — | G(Xx9)d(x9)
16 : 3(Cot+1) p2T*7[12 x*Jo
clearly unphysicat® Indeed, as noted by Fisher and Le¥in, 0
the next terms in the expansion of the free energy with re- 1
spect to density take into account the effects of screening of —PG(XZ) , (49

the bare dipole field of a Bjerrum dimer by the free ions. As

shown in Ref. 16, this solvation effect reduces the free en- - a1 lcx® 112

. L L ~DI 0 X 2 2
ergy of an ion pair in the electrolyte. It also eliminates the  u, :3(0—4—1)_2_* ETEE —Zf G(x9)d(x?) |,
unphysical banana form of the coexistence curve and pro- 0 vo T X=/0

duces better agreement between the critical point predictions (50
and the estimates from simulations. and pressure
Proceeding in this direction, the dipole solvation energy

fP! can be calculated via the standard DH charging
procedure® Moreover, for the lattice case it turns out that The only matter not yet taken into account is that, owing
one can go substantially farther than for continuum-spacéo dipole—ion interactions, the excess chemical potential will
models. Indeed, under a few very reasonable approximaappear also in the law of mass-action. Since at the densities
tions, we can obtain closed analytical expressions. Considef interest for criticality we suppose Bjerrum pairs interact
the positive ion of a dipolar pair. Instead of E§) we now  only with free ions—in the continuum-space RPM dipole—
have dipole interactions appear in the next higher term in the se-

HDlvo:FmUo"‘;?lpI"‘;glp; . (51)
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ries expansion—the Bethe approximation for the dimer acTo estimate the electrostatic part of the free energy, the ex-

tivity remains adequate. Thus we obtain an equationtended DH approach suggests that we begin with an inho-

defining implicitly the pair density3 as a function ofp7 , mogeneous version of Poisson’s equation for the potential at

namely, a general siteé due to all the ions when an ion of typeis
fixed at the origin: this states

(2p3/co)[1—(2p3/co)] J

oo(p?)? 2ma’
=7C ex
2Lolpy 30T

6
x°+6

_1] DAso,,(r>=—chT 4:0:1)8;4(r)+Cyq,8(r), (55

wherep (r)=p%*(r)/v, is the bulk density of ions of species
+ 2;&"(p’1‘ ’pg)_pgl(p*{ 03). 7 while g, ,(r) is the ion—ion correlation function. Approxi-
(52) mating the correlation functions by simple Boltzmann factors
and then linearizing provides a DH equation.
However, we must now allow for an overall nonzero
charge density on each sublattice given by

This completes the principal task and allows the con-
struction of coexistence curves: these are shown in Fig. 2
Clearly, in the lattice models the dipole—ion interactions are
also crucial to repair the unphysical banana-like form pro- = Njq, >,Nga, .
duced by Bjerrum association alone. The numerical estimate®= x5 = P1Y% Ne=—p = P14 (56)
are presented in Table Ill. For comparison, the predictions of
continuum-space DHBjDI theory and of the RPM simula- These charge densities generate an additional “background”
tions are also listed. The predicted lattice critical temperaPotential,®(r), which does not contribute to the correlation
tures are now 1.5—1.65 times greater than the value given binctions since it is independent of what type of charge is
the simulations and the theoretical results of Levin andPlaced at the origin. For sublatticewe thus have a linear-
Fisher*® The critical densities, however, are quite close toized Poisson—Boltzmann or DH equation
the continuum model predictions, but are significantly lower

C K

than the simulation$!%*3 AD(ry)=— 5 piya=— ,3; (57)
Recalling the definition of the lattice Laplaci@b), and tak-

IV. SUBLATTICE ORDERING ing into account the symmetry between the sublattices we
have

So far we have dealt only with an intrinsically low- B _

density picture of the system. Our description of the dense ~ P(Fa)=—P(rs=ra+amw), (58)

phases, although partially represented by the liquid side oind conclude that the background potentials are

the coexistence curve, has been seriously incomplete. On the )

other hand, lattice theories provide a particularly natural first D(ry)=—D(rg) = (59)

approach to studying ordering in solid phases. Indeed, the 4dgq°
guestion of principal interest for us will be the possibility of
ordering similar to that observed in ionic crystals. We will, in
fact, find that a DH-based theory yields a phase diagram withnationg ,(r)=exp(~ ) in Eq. (55), the equation for the

no gas-liquid criticality but, rather a tricritical poift:?2° local induced potentialp, reduces to the lattice version of
pure DH theory(4). This reflects the electrostatic superposi-

tion principle, i.e., the total potential is simply the sum of a

If we now putg,=¢a—P(r,) and accept the approxi-

A. DH mean field theory

Let us start by considering a genedhtlimensional bi-  “background” potential due to nonzero average charge den-
partite lattice, that can be divided into two sublattices of thesity and the DH screening potential so that
same form. Supposel;, Na andNg , Ng are the numbers Coq a2 ik
of positive and negative ions on sublattideand B, respec- o(N=0(r)+ —— dd f ) (60)
tively, subject to the neutrality constraimiy +N,=Ng Dug 2d Jk 1+ x2/2d— J(k)

+Ng =N/2. Consider the sublattice with an excess of posi-
tive ions(say, “A” for the definitenesy and define the cor-
responding order parameter by

Now, following the DH approach combined with a mean-
field description of the ordering, we find the potentfatiue
to all ions except the one fixed at the origin to be

Na—Na
y=—. (53 1 DH
N. N, PATA=0)= = 2 [P(am) +¢™ (), (61)
This will have a vanishing mean value in a disordered phase Ua=oa(0)— 0a(0)] o, 62)

but will be positive in an appropriately ordered phase.
The entropic part of the free energy density correspondwhich, on taking into acount Eq¢58) and (59), yields

to ideal ions and is thus now given by X2y

_ DH
fl9=—pT InpI —(1—p*)In(1-p7)—2p1[(1+Y) VA= dpg TV
XIn(1+y)+(1-y)In(1—y)—2In2]. (54)  with 4P given by the same expression @sin Eq. (12).

(63
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Finally, the DH charging process_givgs the_total free en-
ergy density(of both sublattices as f=f°"+{°" where ,
fPH=f1d+ f¥ follows from Egs.(2) and(13), while T

—o. Cad® (pT)%Y?  pi

fOrd=—— ——[(1+y)In(1+

sl T 2pL(LTY)IN(L+Y)
+(1-y)In(1-y)—21In2]. (64)

Note that this result implies that the electrostatic part of the ()]

ordering energy is negativef £ —F/kgTV) as it should be , . ,
since it describes the interactions between charges of oppo- 0 0.2 0.4 0.6 0.8 1
site signs. The ordering term also yields additions to the p

chemical potential and pressure, namely,

FIG. 3. Phase diagrams for ionic lattice systems with sublattice orddégnhg:
sc, (b) bece. Also shown by broken lines are the gas—liquid coexistence
dad P’{ y2 curves predicted by pure DH theory far) the sc andd) the bcc lattice.

—ord_ _ ——+ 3 (1+y)In(l+y)+(1-y)

K 4dUo T*
XIn(1-y)—21In2], (65  on the excess charge density, that isyprand is thus the
same for both lattices. This is also true as regards the entropy
pPrd=Cqadp? 2y2/8dv§T*. (66)  of sublattice ordering. We find that the tricritical point pa-
o ) o rameters are
Now the poss@llty of sublattice ordering is explored by .
seeking minima of ©@ with y+0. This leads to vi—0.3822(s0),  0.486%bco), (72)
+=0.3649(s0), 0.3576bco), 72
Cdadpylcy - 1+y 3 -ptrl | Aso 6( ) (72)
2dv, MiTy) (67)  while the\ lines may be written

Expanding for smaly in the standard way yields the solution ~ Tx/px = 3m=1.047(s0), Jm\3=1.360(bco. (73

. 12 The full predicted phase diagrams are presented in Fig. 3.

-3 P_l_l 68 It is instructive to compare our results with previous
y= * : 68 simulations for the sc lattick:?® These yield T

=0.14-0.15, which is only about 40% of our theoretical

in which the\-line, along which second-order phase transi-estimateg71). On the other hand, for the tricritical density

tions occur, is given by the higher estimate?,~=0.48 of Ref. 11 is probably more
. s reliable thanpg;=0.38 of Ref. 25(which compares rather
px (T)=(4dvy/Cqa”) T*. (69 well with our theoretical valugs since the former simula-

The simplest way to find the anticipated tricritical point is to tions used larger lattice sizes and computed more points on
consider the intersection of the spinodal with thdine?®>  the coexistence curve. It must also be noted, however, that

both these simulations employed the discretized continuum

This can be found by computingp(p? ,y)/dp* with y de- : I ;
! " y putind(p1 ,y)/dp1 with y or 1k Coulombic potential in place of the lattice form we

fined by Eq.(68), equating to zero, and setting = p} (T)
after taking the derivative. A more readily justifiable, but alsohave .u.sed. . . .

somewhat more sophisticated procedure is to study the sta- F|t_t|ng a sstra_lght line at IO\M,: to*the)\-llne d_ata of Stell

bility matrix for the free energy, which is now a function of and D|ckma|_2| yields a slopeT,/py =0.6, which may.be
two order parameters, namejyandp* . Both methods lead compared with our value of 1.04%or another comparison

to the same equation for the tricritical point, which reads one might no7te thaF the generalized DH theo_ry for t.he con-
tinuum RPM’ predicts damped charge-density oscillations

setting in on a locusTg/pg=0.3 while undamped oscilla-
1 gzo, (70)  tions are predicted beyond the locTi§/p%=9.)

1-pr. 2 Also of interest is the value 6F; (p*) at close packing,
i.e., p* =1. For the sc lattice our treatment predidts(1)
=1.047 which, by virtue of the mean-field character of the
theory, is likely to be a significant overestimate. Indeed, ex-
trapolation of the Dickman—Stell data sugges{q1)=0.6

In d=3 dimensions simple cubic and body-centered-while Almarza and Encisd obtain Tx(1)=0.515; but,
cubic lattices are bipartite and sublattice ordering is possibleagain, these simulations employ a discretized fddtential.
Note that the calculations presented above did not use ar@ur analysis indicates higher valuesTgf andT} (1) for the
extra properties of lattice symmetry. Indeed, the electrostatibcc lattice than for the sc. But, perhaps, surprisingly, this is
interaction energy of the “charged” sublattices depends onlyjust the opposite of what Almarza and Enciso fiidn ad-

4d JP

pri OX°

2d
x2+2d

x2=4d

whereP({) is the lattice Green’s functio(®).

B. Results and discussion
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dition to using the lattice Coulomb potential, our treatment atv. CONCLUSIONS

this point has neglected the formation of Bjerrum ion pairs.

In fact, it seems quite feasible to include pairing in the theory By solving exactly lattice versions of the usual Debye—

along with allowance for sublattice orderirigince the ions Huckel equation, we have derived closed expressions for the

of a dimer pair will reside on complementary sublatticés ~ free energy of general-dimensional ionic lattice systems

is possible that this improvement of the theory will result in With single-site hard core repulsions. Fo¥ 3, gas-liquid

lower transition temperatures for the bcc lattice relative tofransitions are predicted at low temperatures and densities.

the sc lattice. As in the corresponding DH-based theory for the continuum
Previous theoretical discussions of the sc lattice RPMestricted primitive model? improvement of the theory at

have been presented by Stell and collead@3In an initial  |ow temperatures demands both allowance fer,{) ion

mean field approach, the long-range Coulomb potential Pairing, to form nearest-neighbor dipolar dimeasdthe sol-

(taken in discretized 1/form) was first reduced to an effec- vation of the resulting dipolar pairs by the residual free ions.

tive nearest-neighbor interaction. The value of the tricriticalThe predicted critical temperatures for the sc, bcc, and fec

temperature T¥,=2, obtained by direct mean-field lattice lattices ind=3 dimensions then lie 60%—70% higher than

calculations, was then scaled down by a factor derived b@iven by continuum DH-based theories; but the critical den-

comparing energy magnitudes. This approach suggdgted sities are relatively closer. These results accord with the gen-
~0.3 andp?;=L, the latter value being merely a conse- eral tendency of lattice theories to overestimate the stability
) rn

57 . B
quence of using a nearest-neighbor mean-field approximé2f the corresponding low-temperature continuum phases.
At higher densities in a lattice theory it is imperative to

tion. More recently, Ciach and Stéllhave adopted a single- . ; " .

ion lattice potential, as, in fact, given by Eq§) and (10). gllow for. sublatt!ce ordering o_f the positive and negative
This corresponds more closely to our treatment but they erf®S- BY introducing an appropriate order parameter we have
tirely neglect the cooperative screening which must occufXt€nded the analysis to treat genechtimensional bipar-
and which is included in our DH-based treatmehiote that tite lattices at a:ombmt_adi)ebye—Hu_xkel and mean-field or-

at higher densities the screening effectively takes place vigeing level. Our unified theory yields, in an accord with

“holes” in the ordered or close-to-ordered lattice charge con.fecent lattice simulations, a complete suppression of gas—

figurations. The new treatmeft reproduces* = & (for the liquid phase separation and criticality by order—disorder
previous reasonsbut gives T*=0.6, which :’é worse than transitions that occur at higher temperatures. At high densi-
tri 9 ; ; R
the previous result as compared with the simulations; howi'f:“S and temp_eraturgs a classpa! .second.-oxdhme IS pre-
dicted; but this terminates atteacritical point at a density,

ever, no energy rescaling is now performed. AT
As we have seen, both by our own theoretical analysiégo*r the sc and bec latticepy/ pg,=0-36 and a temperature,

* _ 1 -

and through the simulations, the sc and bcc pure Coulom ”i/T.m.aX_Q'A' 0.5. At lower temperatures the first-order

lattice systems displayio gas—liquid phase separation as transition is from an exponentially dilute vapor to an almost
L . lose-packed ordered ionic lattice.

such. Indeed, in Fig. 3 we have plotted the coexistenc

curves for the two lattices that are predicted by pure Iatticedee(?u{h?:tgim r(zeallirr]r:i)neare)(tier}] r;(ij(:egi;)nn\s/irr:(;?sbdlrg};:r:gz(se.rilr?-
DH theory with no allowance for the possibility of sublattice ' . Pr Y . L oy ering
strongly anisotropic three-dimensional lattices, gas-liquid

ordering. Evidently, these coexistence curves lie entirelye aration mav be restored. possiblv. toaether with distinct
within the two-phase coexistence region of dilute disordered P y P Y. 109

vapor and the hiah densitv ordered “crvstal.” Consequentl order-disorder transitions. It is relevant to note in this con-
P g Y ystal. d Ynection that DH theory for continuum ionic systems predicts

the order—disorder transition entirely suppresses gas-liqui . A o
Y supp g g Increasingvalues of gas—liquid critical temperatures when

crltlcallty in the simplest .d|screte lonic system with °T"y the dimensionality is decreas&lThus lattice anisotropy
single-sitehard cores. If, instead, the hard-core repulsions

. ; ! . .~ “might mimic lower dimensionality.
extend over more lattice sites—or, equivalently, if a finer ; S o
o T : Although the direct applicability of our results to ionic
level of spatial discretization is employéds, of course, is

more-realistic for continuum systepsthen, as revealed b systems is clearly limited, we feel the approach developed in
. . 011 ystey " 2 0¥ gec. v may prove helpful in describing the behavior of de-
simulationst® a normal gas-liquid transition and critical

oint is restored. At the same time. ordered. cr stal-likefeCtS in ionic crystal$® Furthermore, lattice simulations that
P ' i S g, cry employ the true lattice Coulombic potential are desirable and
phases appear only at relatively higher densities as chara

i~ . ﬁiight cast some light on the role of short-range interactions
teristic of real solids. and geometric constraints in strongly coupled ionic systems
While a DH (or, even, a DHBJD) theory might be at- 9 gy P y '

tempted for a more finely discretized model, the clearly evi-

dent complications dmot make this a promising prospect.

On the other hand, by adding to a purely ionic lattice system

strong short-range attractive potentiéday, designed to rep- ACKNOWLEDGMENTS

resent neutral solvent properti®s more elaborate phase

diagrams can be anticipated. Indeed, by approximations that The support of the National Science Foundation
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