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Systems of charged particles on anisotropic three-dimensional lattices are investigated theoretically
using Debye–Hu¨ckel theory. It is found that the thermodynamics of these systems strongly depends
on the degree of anisotropy. For weakly anisotropic simple cubic lattices, the results indicate the
existence of order–disorder phase transitions and a tricritical point, while the possibility of
low-density gas–liquid coexistence is suppressed. For strongly anisotropic lattices this picture
changes dramatically: The low-density gas–liquid phase separation reappears and the phase diagram
exhibits critical, tricritical, and triple points. For body-centered lattices, the low-density gas–liquid
phase coexistence is suppressed for all degrees of anisotropy. These results show that the effect of
anisotropy in lattice models of electrolytes amounts to reduction of spatial dimensionality. ©2002
American Institute of Physics.@DOI: 10.1063/1.1516215#

I. INTRODUCTION

Understanding thermodynamic properties of electrolyte
systems is a long-standing problem1–3 which, in recent years,
has attracted increased attention due to controversial results
on the nature of criticality in Coulomb systems.2,3 Experi-
ments4 suggest that the critical region of solutions of some
organic salts can be well described by classical behavior,
while for other electrolyte systems the Ising-type description
with nonclassical behavior is more appropriate.5 This di-
chotomy has greatly stimulated theoretical attempts to under-
stand the thermodynamics of ionic systems.

Criticality in simple nonionic fluids can be successfully
described and analyzed by the renormalization group~RG!
method, and it is reasonable to suggest that this method
could also be used to investigate Coulomb systems as well.
However, in order to proceed with RG calculations, a physi-
cally meaningful and well based mean-field theory should be
developed.2 Most theoretical studies of ionic systems con-
centrate on the simplest model of electrolytes, the so-called
restricted primitive model~RPM!, in which ions are viewed
as equal size particles of positive and negative charges of
equal magnitude. Currently, there are two theoretical direc-
tions in the development of the mean-field description of
ionic fluids. The first approach is based on integral equations
for correlation functions,6–10 while the second approach ex-
tends the original Debye–Hu¨ckel ~DH! theory.2,11–14 Com-
prehensive theoretical analysis,11–13 which utilizes for ex-
ample thermodynamic energy bounds, and comparison with
current Monte Carlo simulations,15,16 indicate that theories
based on DH theory may provide a better description of the
thermodynamics of electrolytes in critical regions.

So far most of the theoretical efforts in the investigation
of charged systems have been devoted to continuum models.
However, lattice models are also important for understanding
the criticality in Coulomb systems, since the Ising model,
which is a lattice gas model, has been crucial for the descrip-

tion of critical phenomena in nonionic systems.2,3 There are
few numerical17,18and analytical8,10,14results for lattice ionic
systems which show that the phase diagram differs signifi-
cantly from continuum models. The structures of simple cu-
bic ~sc! and body-centered cubic~bcc! lattices allow for
charge distribution with the appearance of a long-range order
phase at low temperatures similar to that of an ionic crystal.
However, this ordering decreases entropy and for high tem-
peratures the disordered phase is thermodynamically more
stable. As a result, there is an order–disorder phase transition
line which ends up at the tricritical point,10,14,17,18while for
continuum RPM systems only a gas–liquid coexistence can
be found.

Recently, a systematic investigation of lattice models
of electrolytes has been presented.14 In this investigation
the lattice restricted primitive model, with charged particles
occupying sites on a generald-dimensional lattice, has
been considered using Debye–Hu¨ckel theory. By solving
exactly the lattice version of the Debye–Hu¨ckel equation,
closed expressions for thermodynamic properties of general
d-dimensional ionic systems have been obtained. For three-
dimensional lattice Coulombic systems specific calculations,
which included pairing and dipole–ion solvation, yielded a
gas–liquid phase separation at low densities. However, by
taking into account the lattice symmetry, it has been shown
that for sc and bcc lattices this gas–liquid phase separation
is thermodynamically unfavorable, and the order–disorder
phase transitions with the tricritical point will dominate, in
agreement with Monte Carlo simulation results.17,18

The thermodynamics of lattice anisotropic ionic systems
have not been studied yet, although they may provide impor-
tant information on thermodynamics of real electrolytes. In
addition, the lattice stretching, which leads to anisotropy, can
be viewed as analogous to lowering the spatial dimensional-
ity of the system. However, DH-based calculations for the
continuum11 and lattice14 models of electrolytes predict an
increaseof gas–liquid critical temperatures for lower dimen-
sions. Thus, for lattice anisotropic models, gas–liquid phase
separation may reappear along with distinct order–disordera!Electronic mail: tolya@rice.edu
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phase transitions. This possibility raises the question of the
precise determination of phase diagrams for ionic systems on
anisotropic lattices.

In this article, we present a theoretical investigation of
anisotropic lattice models of electrolytes using the Debye–
Hückel method,14 which has the advantage that it accounts
for both electrostatic screening and sublattice ordering in a
unified framework. We investigate the ionic systems on
three-dimensional lattices obtained by anisotropic stretching
of simple cubic and body-centered cubic lattices. The paper
is organized as follows. In Sec. II we provide a combined
DH and mean-field ordering description of ions on simple
tetragonal lattices. The similar analysis for stretched body-
centered lattices is given in Sec. III. A discussion and con-
clusions are presented in Secs. IV and V.

II. DEBYE–HÜCKEL THEORY FOR SIMPLE
TETRAGONAL LATTICES

A. Pure DH theory

Our derivation for anisotropic lattice electrolytes follows
closely the Debye–Hu¨ckel approach for isotropic lattice
ionic systems.14 We consider a system of equal numbers of
positive and negative ions with the total densityr5r2

1r1 on a tetragonal lattice, which is obtained by stretching
the simple cubic lattice, with unit cell dimensionsa3a3b
with an anisotropy factor defined as the ratio of lattice pa-
rameters,a5a/b. The casea51 corresponds to the isotro-
pic simple cubic lattice electrolytes which have been studied
in detail earlier.14 The Debye–Hu¨ckel approach implies that
we can construct the total free energy of the system by sum-
ming consecutively the terms which describe interactions be-
tween different species. Charged particles interact through
the lattice Coulomb potential, otherwise they behave as ideal
particles with additional hard-core on-site exclusions. Thus
the total free energy density is given byf 5 f Id1 f DH. The
ideal lattice gas contribution can be written as

f̄ Id52
F

kBTV
52

r*

v0
ln r* 2

~12r* !

v0
ln~12r* !, ~1!

where r* 5rv0 is the reduced dimensionless density and
v05a2b is the unit lattice cell volume.

The other term inf comes from the Coulombic interac-
tions of the free ions and includes the effect of screening. In
order to find an expression for the Debye–Hu¨ckel contribu-
tion to the free energy density, we need the electric potential
felt by an ion due to all other ions. This potential can be
found by fixing an arbitrary ion at the origin and solving the
linearized Poisson–Boltzmann equation

Dw~r !5k2w~r !2~Cdq/Dv0!d~r !, ~2!

wherek25Cdbrq2/D is the inverse squared Debye screen-
ing length, with b51/kBT and Cd54p for three-
dimensional lattices. The lattice Laplacian used in Eq.~2!
can be presented in the form which incorporates the geom-
etry of the lattice,

Dw5Dxw1Dyw1Dzw, ~3!

with

D iw~r !51/ai
2@w~r2aiei !22w~r !1w~r1aiei !#, ~4!

wherei 5x,y,z; ax5ay5a, az5b, andei are the unit vec-
tors along the corresponding lattice directions. Then Eq.~2!
can be easily solved by Fourier transformation to yield for
r .0,

w~r !5
2pqa2

3Dv0
E

k

eikr

~x21412a2!/62J~k,a2!
, ~5!

where we introduced the anisotropic lattice function

J~k,g!5
1

c0
(
nn

eik"a5
1

3
~cosk11cosk21g cosk3!,

~6!

c056 is the number of nearest neighbors, and*k

[(2p)23*2p
p d3k and x5ka. Note that the vectorsk

5(k1 /a,k2 /a,k3 /b) describe the reciprocal lattice.
To compute the electric potential at the origin due to the

surrounding ions, it is recalled that no other ion can be
placed at that site, and hence the appropriate equation is the
Laplace’s equation,

Dw~r50!50. ~7!

This enables us to write

Dxw~r50!5Dyw~r50!5Dzw~r50!50, ~8!

which yields

w~0!5~w~r2aex!1w~r1aex!!/2

5~w~r2aey!1w~r1aey!!/2

5~w~r2aez!1w~r1aez!!/2. ~9!

Then from Eqs.~5! and ~9! it follows that

w~0!5
2pqa2

Dv0~21a2!
E

k

J~k,a2!

~x21412a2!/62J~k,a2!
.

~10!

Following the DH approach for isotropic lattices,14 we intro-
duce the integrated anisotropic lattice Green’s function

P~z,a!5E
k

1

12zJ~k,a2!
, ~11!

which has been evaluated exactly in terms of a product of
two complete elliptic integrals of the first kind by Joyce.19

Then the total potential at the origin due to the surrounding
ions,c(0)5w(0)2w(0)ux50 , takes the form

c5
2pq

Db~21a2! FPS 6

x21412a2 ,a D
2PS 6

412a2 ,a D G . ~12!

By using the Debye charging procedure, the reduced
electrostatic free energy density can be calculated explicitly,
yielding
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f̄ DH5
1

4~21a2!v0
Fx2PS 6

41a2 ,a D
2E

0

x2

PS 6

x2141a2 ,a Dd~x2!G . ~13!

The chemical potential,m̄5m/kBT52] f̄ /]r, is then given
by

m̄5 ln r* 2 ln~12r* !2
p

~21a2!T* FPS 6

41a2 ,a D
2PS 6

x2141a2 ,a D G , ~14!

where, following the continuum DH theory12 and the DH
theory for isotropic cubic lattices,14 the reduced temperature
is defined as

T* 5
DkBTv0

q2a2 5
Db

q2b
5

Da

q2ba
, ~15!

and for the reduced density we obtain

r* 5
x2T*

4p
. ~16!

Knowing the free energy density and the chemical potential
allows us to calculate the pressure,p̄5p/kBT5maxr @ f̄
1m̄r#, yielding

p̄v052 ln~12r* !1
1

4~21a2! Fx2PS 6

x21412a2 ,a D
2E

0

x2

PS 6

x21412a2 ,a Dd~x2!G . ~17!

Equations~1!, ~13!, ~14!, and~17! provide a full thermo-
dynamic description of the simple tetragonal lattice model of
electrolytes. The thermodynamics at the critical region can
be investigated by analyzing the spinodal, which is deter-
mined by the conditionr(]m̄/]r)50. Using Eq.~14! we
obtain

Ts* 5
2p

~21a2!

z~12z!]P~z!/]z

21~12z!2]P~z!/]z
, ~18!

with z56/(x21412a2).
The phase transitions and the gas–liquid coexistence can

be studied by analyzing the pressure and the chemical poten-
tial in different phases. The predicted gas–liquid coexistence
curves for simple tetragonal lattices are shown in Fig. 1. The
critical temperature increases monotonically as the anisot-
ropy parameter decreases and reaches the value ofTc* 51/2
at a50: see Fig. 2~a!. At the same time, the critical density
shows a nonmonotonic behavior with two maxima and a
minimum, and finally approaches the valuerc* 50 at a50,
as shown in Fig. 2~b!. Lowering the anisotropy parameter
can be visualized as stretching the lattice along one direction,
and the limit of a→0 corresponds to an infinite distance
between the layers. Thus the anisotropic lattice model ata
50 is equivalent to the two-dimensional~2D! Coulomb sys-
tem on square lattice, for which the pure DH theory14 pre-

dicts the critical parameters to beTc* 51/4 andrc* 50. The
apparent discrepancy between our results for the critical tem-
perature and the results for two-dimensional lattice
electrolytes14 can be easily explained by analyzing the lin-
earized Poisson–Boltzmann equation~2!. In our calculations
we used the three-dimensional coefficientCd54p, while in
two dimensions this coefficient is equal to 2p, which ex-
plains the factor 2 in the difference in the corresponding
values of the critical temperatures.

At the limit of largea the lattice is stretched along two
directions, and thus the anisotropic lattice witha5` corre-
sponds to the one-dimensional~1D! lattice Coulomb system.
Our predictions for critical parameters in this case areTc*
50 and rc* 50, while for one-dimensional lattice electro-
lytes the DH-based calculations giveTc* 5` and rc* 50. In
this case, the difference in critical temperatures can be attrib-
uted to our definition of the reduced temperature in Eq.~15!.
Note, however, that the DH method is incorrect in describing
one-dimensional ionic systems.14 The overall agreement be-
tween our estimates of critical parameters of strongly aniso-
tropic lattice models of electrolytes and the results for 1D
and 2D ionic lattice systems supports our arguments that
anisotropic stretching is analogous to lowering of spatial di-
mensionality for simple cubic lattices.

A surprising feature of the predicted coexistence curves
is the critical density dependence on the lattice anisotropy as
exhibited in Fig. 2~b!. It shows two maxima~at a50.4 and
4.175! and one minimum~at a51!; this picture is probably
the result of geometric and packing effects.

B. Sublattice ordering

The above-presented Debye–Hu¨ckel approach describes
only the low-density behavior of the system. To obtain the
full thermodynamic description of simple tetragonal lattices
we have to take into account the lattice symmetry. A simple
tetragonal lattice, similar to a simple cubic lattice, can be
viewed as consisting of two intercalated sublattices. Ions of
opposite signs can be distributed unequally between these
sublattices, thus reducing the electrostatic contribution to the
free energy. At the same time, unequal distribution of
charged particles lowers the entropy which leads to an in-

FIG. 1. Gas–liquid coexistence curves for simple tetragonal cubic lattices
predicted by pure DH theory for different values of lattice anisotropy pa-
rametera.
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crease in the total free energy. The competition between
these factors determine the thermodynamics and phase be-
havior of the system.

We consider again a simple tetragonal cubic lattice with
N charged particles. The overall system is neutral, and there
areNA

1 (NA
2) positive~negative! particles in sublatticeA, and

NB
1 (NB

2) positive ~negative! particles in sublatticeB. As-
suming that sublatticeA has an excess of positive ions, the
corresponding order parameter can be defined as

y5
NA

12NA
2

NA
11NA

2 52
NB

12NB
2

NB
11NB

2 . ~19!

This order parameter has a positive value in the ordered
phase, while it equals to zero in the disordered phase.

The nonzero charge density on each sublattice produces
an additional ‘‘background’’ potentialF~r ! which, however,

does not change the correlation functions.14 This potential
can be found using the linearized Poisson–Boltzmann equa-
tion

DF~rA!52~4p/D !ryq. ~20!

Because of the symmetry between sublattices, we have
F(rA)52F(rB). By using the definition of the lattice La-
placian~3!–~4!, and following the approach outlined for iso-
tropic lattice electrolytes,14 we obtain for the potentialc due
to all ions except the one fixed at the origin:

c~rA!52
p

21a2

r* yq

Db
1cDH, ~21!

wherecDH is given in Eq.~12!. The electrostatic part of the
total free energy then follows again from the Debye charging
process, while the entropic contribution can be calculated as
for isotropic lattices,14,18 yielding f̄ 5 f̄ Id1 f̄ DH1 f̄ Ord with

f̄ Ord5
p

2~21a2!

r* y2

v0T*
2

r*

2v0
@~11y!ln~11y!

1~12y!ln~12y!22 ln 2#, ~22!

where f̄ Id and f̄ DH are given by Eqs.~1! and ~13!.
The knowledge of the total free energy allows us to in-

vestigate the possibility of sublattice ordering. It can be done
by looking for minima off̄ Ord for nonzero values of the order
parametery. This procedure leads us to the equation describ-
ing the l line, along which second-order phase transitions
occur,

rl* 5
21a2

p
T* . ~23!

The anticipated tricritical point can be found by calculating
the intersection of thel line with the spinodal] p̄/]r* 50,
and this analysis yields the equation for the tricritical
point,14,18

4~21a2!

r tri* F]Ps@6/~x21412a2!,a#

]~x2! GU
x254~21a2!

1
1

12r tri*
2

3

2
50. ~24!

The resulting tricritical densities and temperatures for
different values of the anisotropic parametera are presented
in Figs. 2~a! and 2~c!. The tricritical temperature is a decreas-
ing function of the anisotropy parameter, and it reaches its
maximal value ofTtri50.5960 ata50, which is exactly
twice the value of the tricritical temperature for the ionic
system on the two-dimensional square lattice@see Eq.~70! of
Ref. 14#. This deviation is again the result of using different
dimension-dependent coefficientsCd , as was argued previ-
ously. Both critical and tricritical temperatures vanish at
large anisotropies, however,Ttri becomes smaller thanTc for
a.4.25. The behavior of the tricritical density is different. It
has a minimal value for the isotropic lattice~a51!, and it
reaches the maximal values ofrc50.3794 andrc50.416 for
a50 anda5`, respectively.

FIG. 2. Critical parameters as a function of degree of anisotropy:~a! critical
and tricritical temperatures;~b! critical density;~c! tricritical density.
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The phase diagrams for simple tetragonal lattices are
presented in Fig. 3. For weakly anisotropic lattices there are
only order–disorder phase transitions, while for strongly an-
isotropic lattices the gas–liquid phase separation reappears at
low densities.

III. THEORY FOR BODY-CENTERED TETRAGONAL
LATTICE

Consider a system of equal numbers of positive and
negative ions on the body-centered tetragonal lattice with
2a32a32b unit lattice cell. Using the symmetry of the
lattice and applying Eqs.~3! and~4! the lattice Laplacian for
tetragonal body-centered lattice is given by

Dw~r !5
2~21a2!

3c0a2 (
ann

@w~r1ann!2w~r !#, ~25!

wherea5a/b and the summation runs over allc058 neigh-
bors in a cell. Whena5b this reduces to the well-known
lattice Laplacian for the body-centered cubic lattice.14,20 Be-
cause of the special symmetry of body-centered lattice, the
lattice function

Jb~k!5
1

c0
(
nn

eik"a5cosk1 cosk2 cosk3 , ~26!

in contrast to the simple tetragonal lattice, is independent of
the anisotropy parametera. Thus the isotropic bcc lattice
Green’s function

Pb~z!5E
k

1

12zJb~k!

can be used for calculation of the thermodynamic properties.
Then the potential at the origin due to the surrounding ions
takes the form

c5
2pq

Dv0

3a2

~21a2! FPbS 412a2

x21412a2D2Pb~1!G , ~27!

and the electrostatic free energy is given by

f̄ DH5
1

4~21a2!v0
Fx2Pb~1!

2E
0

x2

PbS 412a2

x21412a2Dd~x2!G . ~28!

Furthermore, the ordering free energy does not depend on the
type of lattice14 and is the same both for the simple and
body-centered lattices. Therefore we can use the correspond-
ing expression from Eq.~22! and estimate the tricritical point
from Eq. ~24! by using

PbS 412a2

x21412a2D
instead of the simple tetragonal Green’s functionP@6/(x2

1412a2),a#. Phase diagrams for electrolytes on the te-
tragonal body-centered lattices are shown in Fig. 4.

Analysis of phase diagrams for the body-centered lattice
models of ionic systems indicate that both critical and tric-
ritical densities are independent of the degree of lattice
stretching, whileTc* and Ttri* are decreasing functions ofa.
These relations can be understood by analyzing the corre-
sponding equation for the spinodal,

Ts* 5
2p

~21a2!

z~12z!]Pb~z!/]z

21~12z!2]Pb~z!/]z
, ~29!

where z5(412a2)/(x21412a2). Since the lattice
Green’s functionPb(z) is independent of the anisotropy pa-
rametera, the critical point can be described by the param-
eter xc

252(21a2)(12zc)/zc with zc being independentof
a, while Tc* }1/(21a2). Then, utilizing Eq.~16! the critical

FIG. 3. Phase diagrams of electrolytes on simple tetragonal lattices with
sublattice ordering for different degrees of anisotropy:~a! for a51 anda
50.1; ~b! for a515. Dashed lines show the metastable gas–liquid coexist-
ence curves predicted by pure DH theory.

FIG. 4. Phase diagram for ionic systems on body-centered tetragonal lattices
with sublattice ordering. The gas–liquid coexistence curves predicted by
pure DH theory are shown by dashed lines.
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densityrc5xc
2Tc* /4p is also independent ofa. Similar argu-

ments can now be applied for the analysis of the tricritical
point. The thermodynamic behavior of the tetragonal body-
centered lattice electrolytes is then different from that of the
simple tetragonal lattice ionic systems. Since critical and tri-
critical temperature decay at the same rate as functions of the
anisotropy parametera, while rc* and r tri* are constant, the
possible low-density gas–liquid coexistence is suppressed by
order–disorder phase transitions with a tricritical point at any
degree of anisotropy, as shown in Fig. 4.

IV. DISCUSSION

Our analysis of simple tetragonal lattice models of elec-
trolytes based on the DH approach indicates that, similar to
isotropic sc ionic lattice systems, at weak anisotropies
(0.385,a,2.113) the possible low-density gas–liquid
phase separation is metastable, and the sublattice ordering is
always thermodynamically more favorable. However, for
strongly anisotropic simple lattices (a,0.385 ora.2.113)
the gas–liquid coexistence reappears and the phase diagram
becomes more complex, with critical, tricritical, and triple
points, as shown in Fig. 3. The explanation of this phenom-
enon is the following. For weakly anisotropic lattices the
ordering of ions of opposite signs on different sublattices
decreases significantly the total free energy, and order–
disorder phase transitions with a tricritical point determines
the phase diagram of the system. For strongly anisotropic
lattices this ordering is less significant at low densities and
the gas–liquid phase separation is restored. Another way of
looking at this phenomenon, as discussed previously, is the
analogy between lattice stretching and lowering of the space
dimensionality. As was shown before,14 at low dimensions
the critical temperature is increasing and thus gas–liquid co-
existence occurs again at low densities.

However, the thermodynamic behavior of Coulomb sys-
tems on body-centered tetragonal lattices is very different. At
all degrees of anisotropy, the sublattice ordering is thermo-
dynamically more stable, and gas–liquid phase separation is
always suppressed. This is the result of the special symmetry
of body-centered lattices.

Our pure Debye–Hu¨ckel treatment of anisotropic lattice
electrolytes assumed that there are only free ions and empty
sites in the system. However, at low temperatures the forma-
tion of strongly bound neutral dimers, or Bjerrum
pairs,12,14,21 is a highly favorable process. Such pairing can
be viewed as a reversible chemical reaction,2,12,14 and this
process can be treated in a systematic way. Another impor-
tant contribution to the free energy of electrolytes is the ion–
dipole solvation energy.2,12,14The formation of ion pairs and
their interactions with single ions have a strong effect on
the thermodynamic properties and phase diagrams of electro-
lytes.12,14 Our theoretical method can be extended to include
these effects, although, due to anisotropy of the lattice sys-
tem, there will be more than one type of bound neutral
dimers. Based on the comparison with the continuum and
isotropic lattice electrolytes,12,14 we predict that, if we take
these effects into account, both critical and tricritical tem-
peratures will decrease, while critical and tricritical densities

will increase. However, this means that our qualitative con-
clusions on thermodynamics and phase diagrams of aniso-
tropic cubic lattices will not change.

It is interesting to note that similar phase diagrams of
lattice electrolytes have been obtained by Ciach and Stell.8

They considered a mean-field theory of electrolytes with
single-ion lattice potential on the isotropic sc lattice and ad-
ditional short-range interactions. Note that this treatment ne-
glects the cooperative screening, which is thermodynami-
cally important and which is included in our DH-based
theory. However, the origins of similar complex phase dia-
grams in both models are different. In the model of Ciach
and Stell the gas–liquid phase coexistence is driven by short-
range interactions, while in our model the lattice stretching
makes the sublattice ordering less thermodynamically favor-
able at low densities and, as a result, gas–liquid phase sepa-
ration is restored.

V. CONCLUSIONS

We have extended the Debye–Hu¨ckel method to treat
three-dimensional anisotropic lattice models of electrolytes.
Phase diagrams for different degrees of anisotropy have been
obtained. For weakly anisotropic simple tetragonal lattices,
the order–disorder phase transitions with a tricritical point
suppress the possibility of low-density gas–liquid phase tran-
sitions. However, for strongly anisotropic lattices gas–liquid
phase coexistence is restored. Thus the lattice anisotropy for
simple tetragonal lattices mimics the lowering of the spatial
dimensionality. However, the thermodynamics of the body-
centered tetragonal lattice ionic systems is very different.
There is no gas–liquid separation and the phase diagram has
only order–disorder phase transitions for all degrees of an-
isotropy. This is the consequence of the special symmetry of
body-centered lattices.

The relevance of our results for understanding the ther-
modynamics of real ionic fluids remains unclear. However,
our method may be more useful for description of the ther-
modynamics of real ionic crystals with defects.22 Further-
more, numerical simulations of the anisotropic lattice ionic
models with lattice Coulombic potentials are clearly needed
in order to check the validity of our theoretical predictions.

ACKNOWLEDGMENTS

Acknowledgment is made to the Donors of the American
Chemical Society Petroleum Research Fund~Grant No.
37867-G6! for support of this research. The authors also ac-
knowledge the support of the Camille and Henry Dreyfus
New Faculty Awards Program~under Grant No. NF-00-056!.
The authors would like to thank Professor M. E. Fisher, Pro-
fessor A. Z. Panagiotopoulos, and Professor M. Robert for
critical comments and useful suggestions.

1P. W. Debye and E. Hu¨ckel, Phys. Z.24, 185 ~1923!.
2M. E. Fisher, J. Stat. Phys.75, 1 ~1994!; J. Phys.: Condens. Matter8, 9103
~1996!.
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