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Anisotropic lattice models of electrolytes

Vladimir Kobelev and Anatoly B. Kolomeisky®
Department of Chemistry, Rice University, Houston, Texas 77005

(Received 2 August 2002; accepted 28 August 2002

Systems of charged particles on anisotropic three-dimensional lattices are investigated theoretically
using Debye—Hckel theory. It is found that the thermodynamics of these systems strongly depends
on the degree of anisotropy. For weakly anisotropic simple cubic lattices, the results indicate the
existence of order—disorder phase transitions and a tricritical point, while the possibility of
low-density gas—liquid coexistence is suppressed. For strongly anisotropic lattices this picture
changes dramatically: The low-density gas—liquid phase separation reappears and the phase diagram
exhibits critical, tricritical, and triple points. For body-centered lattices, the low-density gas—liquid
phase coexistence is suppressed for all degrees of anisotropy. These results show that the effect of
anisotropy in lattice models of electrolytes amounts to reduction of spatial dimensionalit00®
American Institute of Physics[DOI: 10.1063/1.151621)5

I. INTRODUCTION tion of critical phenomena in nonionic systeftsThere are
_ . . few numerical”*®and analytic&'%*results for lattice ionic
Understanding thermodynamic properties of electrolytesystems which show that the phase diagram differs signifi-
systems is a long-standing proplbrﬁwhlch, Inrecentyears, cantly from continuum models. The structures of simple cu-
has attracted increased attention due to controversial resulg. (s9 and body-centered cubitbco lattices allow for
on thg nature of criticality in Coulomb syster’r_%Experl- charge distribution with the appearance of a long-range order
ments suggest that the critical region of solutions of Somephase at low temperatures similar to that of an ionic crystal.
organic salts can be well described by_ classical beha‘('orl*{owever, this ordering decreases entropy and for high tem-
while for other electrolyte systems the Ising-type descriptioneratyres the disordered phase is thermodynamically more
with nonclassical behavior is more a_ppropn%@hls di-  stable. As a result, there is an order—disorder phase transition
chotomy has greatly stimulated theoretical attempts to undefi,e \which ends up at the tricritical poif;14"8while for

stand the thermodynamics of ionic systems. continuum RPM systems only a gas—liquid coexistence can
Criticality in simple nonionic fluids can be successfully pa tound.

described and analyzed by the renormalization gr(R() Recently, a systematic investigation of lattice models

method, and it is reasonable to suggest that this methogs glectrolytes has been presentédn this investigation
could also be used to investigate Coulomb systems as Wellq |attice restricted primitive model, with charged particles
However, in order to proceed with RG calculations, a phys"occupying sites on a generakdimensional lattice, has
cally meaningful and well based mean-field theory should b qan ‘considered using DebyeZdkel theory. By solving
developed. Most theoretical studies of ionic systems con- exactly the lattice version of the Debye ¢kel equation,
centrate on the simplest model of electrolytes, the so-called| geq expressions for thermodynamic properties of general

restricted primitive mode{RPM), in which ions are viewed 4 gimensional ionic systems have been obtained. For three-

as equal size particles of positive and negative charges Qfimensional lattice Coulombic systems specific calculations,

equal magnitude. Currently, there are two theoretical direcyhich included pairing and dipole—ion solvation, yielded a
tions in the development of the mean-field description Ofgas—liquid phase separation at low densities. However, by
ionic fluids._ The first_ appri)oach_is based on integral equationﬁ,iking into account the lattice symmetry, it has been shown
for correlation _funct|on§,‘ _while the second ‘i‘f_ﬂ&oa‘:h €X- that for sc and bcc lattices this gas—liquid phase separation
tends the original I_Debye—}dk(.el_ggH) _theowf' Com- s thermodynamically unfavorable, and the order—disorder
prehensive theoretical analysis,”® which utilizes for ex- hhase transitions with the tricritical point will dominate, in
ample thermodynamic energy bounds, and comparison wit greement with Monte Carlo simulation resdft€®

current Monte Carlo simulatior!s;*® indicate that theories The thermodynamics of lattice anisotropic ionic systems

based on DH theory may provide a better description of thg,, e not been studied yet, although they may provide impor-
thermodynamics of electrolytes in critical regions. ¢zt information on thermodynamics of real electrolytes. In
So far most of the theoretical efforts in the investigation o ygition, the lattice stretching, which leads to anisotropy, can

of charged systems have been devoted to continuum modelse \jiewed as analogous to lowering the spatial dimensional-

However, lattice models are also important for understandingay of the system. However, DH-based calculations for the
the criticality in Coulomb systems, since the Ising model, .gntinuunt® and latticé* models of electrolytes predict an

which is a lattice gas model, has been crucial for the descrippcreaseof gas—liquid critical temperatures for lower dimen-
sions. Thus, for lattice anisotropic models, gas—liquid phase
dElectronic mail: tolya@rice.edu separation may reappear along with distinct order—disorder
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phas_e transitio_ns. _This possibility raises the. qliestion of the Ajp(r)=1/a7 o(r—aje)—2¢(r)+o(r+ae)], (4
precise determination of phase diagrams for ionic systems on
anisotropic lattices. wherei=x,y,z; a,=ay=a, a,=b, ande are the unit vec-

In this article, we present a theoretical investigation oftors along the corresponding lattice directions. Then &p.
anisotropic lattice models of electrolytes using the Debye-can be easily solved by Fourier transformation to yield for
Huckel methodt* which has the advantage that it accountsr >0,
for both electrostatic screening and sublattice ordering in a
unified framework. We investigate the ionic systems on o(r)=
three-dimensional lattices obtained by anisotropic stretching 3Dvg
of simple cubic and body-centered cubic lattices. The paper . . . . .
is organized as follows. In Sec. Il we provide a combinegwhere we introduced the anisotropic lattice function
DH and mean-field ordering description of ions on simple 1 ' 1
tetragonal lattices. The similar analysis for stretched body- J(k,y)= C—E e""a=§(cosk1+cosk2+ v coskz),
centered lattices is given in Sec. lll. A discussion and con- 0 nn
clusions are presented in Secs. IV and V. ©®)

Ccp=6 is the number of nearest neighbors, arg
=(2m)3*[7_ dk and x=«a. Note that the vectork

2 q a2 ei kr
f ) )

(X°+4+2a°)/6—I(k,a?)’

Il. DEBYE—HUCKEL THEORY FOR SIMPLE

TETRAGONAL LATTICES =(kq/a,k,/a,ks/b) descri_be the rgciprocal Iaiti_ce.
To compute the electric potential at the origin due to the
A. Pure DH theory surrounding ions, it is recalled that no other ion can be

Our derivation for anisotropic lattice electrolytes follows Placed at that site, and hence the appropriate equation is the
closely the Debye—Fkel approach for isotropic lattice Laplace’s equation,
ionic systems? We consider a system of equal numbers of Ao(r=0)=0 7
positive and negative ions with the total densjiy=p_ ¢(r=0)=0. @)
+p, on a tetragonal lattice, which is obtained by stretchingThis enables us to write
the simple cubic lattice, with unit cell dimensioaskaxb
with an anisotropy factor defined as the ratio of lattice pa- Axe(r=0)=A,¢(r=0)=A4,¢(r=0)=0, (8)
rametersg=al/b. The casex=1 corresponds to the isotro-
pic simple cubic lattice electrolytes which have been studie
in detail earliet* The Debye—Huakel approach implies that 0(0)=(o(r—ae) + ¢(r +ae))/2
we can construct the total free energy of the system by sum-
ming consecutively the terms which describe interactions be- =(p(r—ag)+o(r+ae))/2
tween different species. Charged particles interact through _
the lattice Coulomb potential, otherwise they behave as ideal =(¢(r—ae)+¢(r+ae))/2. 9
particles with additional hard-core on-site exclusions. Thusrhen from Eqs(5) and (9) it follows that
the total free energy density is given By f'9+fPH. The
ideal lattice gas contribution can be written as 0)= 2mqa’ J(k,a?)
- = o (1—p*) e(0)= Dvg(2+a?) Jx (X3+4+2a?)16—J(k,a?)"
fld= * - In(1—p*), (1) (10

avhich yields

TkeTV wg P

where p* = pu, is the reduced dimensionless density andFollowing the DH approach for isotropic Iattic,é‘éwe intro-
vo=a2b is the unit lattice cell volume. duce the integrated anisotropic lattice Green'’s function

The other term irf comes from the Coulombic interac- 1
tions of the free ions and includes the effect of screening. In P(z,a):f 170k ad’
order to find an expression for the Debye-gHel contribu- K zJ(k, @)

tion to the iree energy density, we need _the eIeCtriC pmentia&’vhich has been evaluated exactly in terms of a product of
felt by an ion due to_all ot_her ons. Th'sf potential can betwo complete elliptic integrals of the first kind by Joyte.
found by fixing an arbitrary ion at the origin and solving the Then the total potential at the origin due to the surrounding
linearized Poisson—Boltzmann equation ions, 1(0)=¢(0)— ¢(0)|,_o, takes the form
H X=01

Ag(r)=r?¢(r)—(Cqa/Dug) &(r), 2 24
wherex?=CyBpg?/D is the inverse squared Debye screen-  ¢= Db(2+ a?) P
ing length, with B=1kgT and Cy=4m for three-
dimensional lattices. The lattice Laplacian used in E.
can be presented in the form which incorporates the geom-
etry of the lattice,

Ap=Avp+Ayp+Ap, ©)

(11)

6
X2+4+2a2’a)

(12

6
722" |

By using the Debye charging procedure, the reduced
electrostatic free energy density can be calculated explicitly,
with yielding
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_ 6 0.5 T T T T T T T
o= ———| X°P| ——, - (a) a=0
4(2+ a)vg 4+ a2 () 0=0.1
04R \® © a=04
X2 5 T* s (d) 0=0.7 |
_ [ (e) 0=1.0
fo P X2+4+a2,a)d(x) . (13 0.3k Dot
- (&) a=15
The chemical potentiale= u/kgT=—df/dp, is then given 02O -
by ~@ ]
0.1 1
=g —In(1—p*) = | P| s @ ©
p=mp P 2% )T | "\ a+ o o L
0 0.1 0.2 0.3 « 0.4
6 ) " ® P
- P O ’ 14
X2+ 4+a® FIG. 1. Gas-liquid coexistence curves for simple tetragonal cubic lattices

. . redicted by pure DH theory for different values of lattice anisotro a-
where, following the continuum DH thed?/and the DH yP Y Py P

. . ; . rametera.
theory for isotropic cubic lattice¥, the reduced temperature
is defined as
. DksTv, Db  Da dicts the critical parameters to B& =1/4 andp’ =0. The

(15  apparent discrepancy between our results for the critical tem-

T 2.7 T 25T 250
q-a 9B a°pa perature and the results for two-dimensional lattice

and for the reduced density we obtain electrolyted* can be easily explained by analyzing the lin-
27+ earized Poisson—Boltzmann equati@ In our calculations
p* = X4 _ (16)  We used the three-dimensional coeffici€ht= 4, while in
o

two dimensions this coefficient is equal tar2which ex-
Knowing the free energy density and the chemical potentiaP'a'”S the factor 2 in the difference in the corresponding

— - values of the critical temperatures.
allows us to calculate the pressurp=p/kgT=max,[f e T
+1p), yielding P P=PiKs %l At the limit of large « the lattice is stretched along two

directions, and thus the anisotropic lattice witk- > corre-
6 ) sponds to the one-dimensior{dD) lattice Coulomb system.

pvo=—In(1—p*)+ Zta+t2a2¢ Our predictions for critical parameters in this case &fe

=0 and p¥ =0, while for one-dimensional lattice electro-

B fxzp lytes the DH-based calculations gii€ =< and p; =0. In

0 this case, the difference in critical temperatures can be attrib-
) ) uted to our definition of the reduced temperature in @§).

Equationg(1), (13), (14), and(17) provide a full thermo-  Note, however, that the DH method is incorrect in describing
dynamic description of the 5|mp_le tetragonal_l_atnce m_odel ofone-dimensional ionic systeri&The overall agreement be-
electrolytes. The thermodynamics at the critical region canyeen our estimates of critical parameters of strongly aniso-
be investigated by analyzing the spinodal, which is deteryqgpic |attice models of electrolytes and the results for 1D
mined by the conditiorp(du/dp)=0. Using Eq.(14) we  ang 2D ionic lattice systems supports our arguments that

1 -
22+ |*

. (17)

2
m'“)‘“x)

obtain anisotropic stretching is analogous to lowering of spatial di-
. o L1-0)aP(O)Ia¢ mensionality for simple cubic lattices. _
TS =(2+ &%) 2+ (1= 0%0P (D)oL’ (18 A surprising feature of the predicted coexistence curves
is the critical density dependence on the lattice anisotropy as
with =6/(x>+4+2a?). exhibited in Fig. 2Zb). It shows two maximdat «=0.4 and

The phase transitions and the gas—liquid coexistence cah1795 and one minimumat e=1); this picture is probably
be studied by analyzing the pressure and the chemical potethe result of geometric and packing effects.
tial in different phases. The predicted gas—liquid coexistence
curves for simple tetragonal lattices are shown in Fig. 1. The
critical temperature increases monotonically as the anisotE-;'
ropy parameter decreases and reaches the vallig ofL/2 The above-presented Debye-dhel approach describes
at a=0: see Fig. Pa). At the same time, the critical density only the low-density behavior of the system. To obtain the
shows a nonmonotonic behavior with two maxima and &ull thermodynamic description of simple tetragonal lattices
minimum, and finally approaches the valpg=0 ata=0, we have to take into account the lattice symmetry. A simple
as shown in Fig. @). Lowering the anisotropy parameter tetragonal lattice, similar to a simple cubic lattice, can be
can be visualized as stretching the lattice along one directiorviewed as consisting of two intercalated sublattices. lons of
and the limit of «#—0 corresponds to an infinite distance opposite signs can be distributed unequally between these
between the layers. Thus the anisotropic lattice modet at sublattices, thus reducing the electrostatic contribution to the
=0 is equivalent to the two-dimension@D) Coulomb sys- free energy. At the same time, unequal distribution of
tem on square lattice, for which the pure DH thé8mgre-  charged particles lowers the entropy which leads to an in-

Sublattice ordering
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, 0.6 — T T T does not change the correlation functidhsrhis potential
T [ 1 can be found using the linearized Poisson—Boltzmann equa-
0.5F ] tion
0.4 7 Ad(rp)=—(4m/D)pyq. (20)
0.3 T . Because of the symmetry between sublattices, we have
I T ®(rp)=—P(rg). By using the definition of the lattice La-
0'2_" T “ placian(3)—(4), and following the approach outlined for iso-
o1k c | tropic lattice electrolyte$? we obtain for the potential due
1 to all ions except the one fixed at the origin:
0 L 1 " 1 L 1 A n
0 2 4 6 8 10 T p*yqQ
(a) o - DH
(/l(rA) 2+a2 Db +1/j ’ (21)
0.02 T T T

where ¢®" is given in Eq.(12). The electrostatic part of the
total free energy then follows again from the Debye charging
process, while the entropic contribution can be calculated as

for isotropic lattices**8yielding f = '+ fP"+ O with
Fjrd T P* y2 P*

=22+ a?) vgT* 200[(1+y)|n(1+y)

0.005F .
+(1-y)In(1-y)—21In2], (22
0 " 1 . L . ! L wheref'™ and fPH are given by Egs(1) and(13).
©) 0 3 10 15 o 20 The knowledge of the total free energy allows us to in-
vestigate the possibility of sublattice ordering. It can be done
0SS — T 1 by looking for minima off " for nonzero values of the order
ot parametey. This procedure leads us to the equation describ-
0.425k | ing the \ line, along which second-order phase transitions
occur,
0.4} . . 2+a®_
PN = = (23
0.375 . The anticipated tricritical point can be found by calculating
the intersection of thé line with the spinodabp/dp* =0,
and this analysis yields the equation for the tricritical
03st——t— L oint 1418
© 0 5 10 15 20 o 25 p )

4(2+ a®) [P 6/(x*+4+2a?),a]

FIG. 2. Critical parameters as a function of degree of anisotr@ritical * o'?(XZ)
and tricritical temperaturegb) critical density;(c) tricritical density. Pri x2=4(2+ a?)
1 3
+ 1% - E =0. (24)
crease in the total free energy. The competition between P

these factors determine the thermodynamics and phase be- rhe resulting tricritical densities and temperatures for

havior of the system. _ , ~_different values of the anisotropic parameteare presented
We consider again a simple tetragonal cubic lattice Withiy igs 2a) and 2c). The tricritical temperature is a decreas-
N cha+rged_ particles. The overall system is neutral, and therg,g fynction of the anisotropy parameter, and it reaches its
arfNA (N ) positive(negative particles in sublatticé, and  aximal value of T,;=0.5960 ata=0, which is exactly
Ng (Ng) positive (negativg particles in sublatticd. As-  yice the value of the tricritical temperature for the ionic
suming that sublatticé has an excess of positive ions, the system on the two-dimensional square latfisee Eq(70) of
corresponding order parameter can be defined as Ref. 14. This deviation is again the result of using different
N —Njy Ng —Ng dimension—depgndent coeffici.e_@%, as was argued p_revi—
= = — . (199  ously. Both critical and tricritical temperatures vanish at
Ni+Nx  Nj+Ng : ;
large anisotropies, however,; becomes smaller than, for
This order parameter has a positive value in the ordered>4.25. The behavior of the tricritical density is different. It
phase, while it equals to zero in the disordered phase. has a minimal value for the isotropic latti¢e=1), and it
The nonzero charge density on each sublattice producasaches the maximal values @f=0.3794 angh.= 0.416 for
an additional “background” potentiab(r) which, however, a=0 anda=, respectively.

y
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FIG. 4. Phase diagram for ionic systems on body-centered tetragonal lattices
with sublattice ordering. The gas—liquid coexistence curves predicted by
pure DH theory are shown by dashed lines.

B 1
Pb(z)‘fk 1-23(K)

can be used for calculation of the thermodynamic properties.
Then the potential at the origin due to the surrounding ions
takes the form

4+2a?
X2+ 4+2a?

27wq 3a’

~Du, (25ad)| P
FIG. 3. Phase diagrams of electrolytes on simple tetragonal lattices with 0 -

sublattice ordering for different degrees of anisotrof@):for a=1 anda and the electrostatic free energy is given by
=0.1; (b) for «=15. Dashed lines show the metastable gas—liquid coexist-

)—Pb(l)}, (27)

ence curves predicted by pure DH theory. —DH_ 1 [ 5
TP RN
The phase diagrams for simple tetragonal lattices are 2 A+ 22 )
presented in Fig. 3. For weakly anisotropic lattices there are f b 32721242 d(x9)|. (28

only order—disorder phase transitions, while for strongly an-

isotropic lattices the gas—liquid phase separation reappears fatirthermore, the ordering free energy does not depend on the

low densities. type of latticé* and is the same both for the simple and
body-centered lattices. Therefore we can use the correspond-

IIl. THEORY EOR BODY-CENTERED TETRAGONAL ing expression from Eq22) and estimate the tricritical point

LATTICE from Eg.(24) by using
2
Consider a system of equal numbers of positive and Py 24+2“ 2)
negative ions on the body-centered tetragonal lattice with X+4+2a

2a?< 2ax2b unit_ lattice cell. Using the symmetry of the instead of the simple tetragonal Green’s functiBp/(x>
lattice and applying Eq<3) and(4) the lattice Laplacian for +4+2a?),a]. Phase diagrams for electrolytes on the te-

tetragonal body-centered lattice is given by tragonal body-centered lattices are shown in Fig. 4.
2(2+a?) Analysis of phase diagrams for the body-centered lattice
Ap(r)= Toazg’ Lo(r+amn) —e(r)], (25  models of ionic systems indicate that both critical and tric-

ritical densities are independent of the degree of lattice

wherea=a/b and the summation runs over alj=8 neigh-  stretching, whileT; andT}; are decreasing functions of.

bors in a cell. Whera=b this reduces to the well-known These relations can be understood by analyzing the corre-

lattice Laplacian for the body-centered cubic lattité’Be-  sponding equation for the spinodal,

cause of the special symmetry of body-centered lattice, the

lattice function P ’ ’ ’ e 2™ (A= DIPy(E)Io¢
L ST (2+a®) 2+(1—-{)%IPy()1 L’

(k)= — > e'ka=cosk, cosk, cosks, (26)  where (=(4+2a%)/(x*+4+2a%). Since the lattice

onn Green’s functiorP,(¢) is independent of the anisotropy pa-

in contrast to the simple tetragonal lattice, is independent ofametere, the critical point can be described by the param-

the anisotropy parameter. Thus the isotropic bcc lattice eterx§=2(2+ a@?)(1—¢o)! ¢ with £, beingindependenbf

Green’s function a, while T¥ < 1/(2+ «?). Then, utilizing Eq.(16) the critical

(29
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densitypczng’c* /47 is also independent af. Similar argu-  will increase. However, this means that our qualitative con-
ments can now be applied for the analysis of the tricriticalclusions on thermodynamics and phase diagrams of aniso-
point. The thermodynamic behavior of the tetragonal body+ropic cubic lattices will not change.
centered lattice electrolytes is then different from that of the It is interesting to note that similar phase diagrams of
simple tetragonal lattice ionic systems. Since critical and tridattice electrolytes have been obtained by Ciach and %tell.
critical temperature decay at the same rate as functions of thEhey considered a mean-field theory of electrolytes with
anisotropy paramete#, while p; and pg; are constant, the single-ion lattice potential on the isotropic sc lattice and ad-
possible low-density gas—liquid coexistence is suppressed hyitional short-range interactions. Note that this treatment ne-
order—disorder phase transitions with a tricritical point at anyglects the cooperative screening, which is thermodynami-
degree of anisotropy, as shown in Fig. 4. cally important and which is included in our DH-based
theory. However, the origins of similar complex phase dia-
grams in both models are different. In the model of Ciach
IV. DISCUSSION and Stell the gas—liquid phase coexistence is driven by short-
range interactions, while in our model the lattice stretching

Our analysis of simple tetragonal lattice models of elec- kes th blatii dering | th d ically f
trolytes based on the DH approach indicates that, similar (NaKes e sublatlice ordering 1ess thermodynamically favor-

isotropic sc ionic lattice systems, at weak anisotropiesabl_e at_ low densities and, as a result, gas-liquid phase sepa-
(0.385<@w<2.113) the possible low-density gas-liquid ration is restored.
phase separation is metastable, and the sublattice ordering.is
always thermodynamically more favorable. However, forV' CONCLUSIONS
strongly anisotropic simple latticesr& 0.385 ora>2.113) We have extended the Debye—tkel method to treat
the gas—liquid coexistence reappears and the phase diagrahmee-dimensional anisotropic lattice models of electrolytes.
becomes more complex, with critical, tricritical, and triple Phase diagrams for different degrees of anisotropy have been
points, as shown in Fig. 3. The explanation of this phenomebtained. For weakly anisotropic simple tetragonal lattices,
enon is the following. For weakly anisotropic lattices thethe order—disorder phase transitions with a tricritical point
ordering of ions of opposite signs on different sublatticessuppress the possibility of low-density gas—liquid phase tran-
decreases significantly the total free energy, and ordersitions. However, for strongly anisotropic lattices gas—liquid
disorder phase transitions with a tricritical point determinegphase coexistence is restored. Thus the lattice anisotropy for
the phase diagram of the system. For strongly anisotropisimple tetragonal lattices mimics the lowering of the spatial
lattices this ordering is less significant at low densities andlimensionality. However, the thermodynamics of the body-
the gas—liquid phase separation is restored. Another way afentered tetragonal lattice ionic systems is very different.
looking at this phenomenon, as discussed previously, is th&here is no gas—liquid separation and the phase diagram has
analogy between lattice stretching and lowering of the spacenly order—disorder phase transitions for all degrees of an-
dimensionality. As was shown befotéat low dimensions isotropy. This is the consequence of the special symmetry of
the critical temperature is increasing and thus gas—liquid cobody-centered lattices.
existence occurs again at low densities. The relevance of our results for understanding the ther-
However, the thermodynamic behavior of Coulomb sys-modynamics of real ionic fluids remains unclear. However,
tems on body-centered tetragonal lattices is very different. Abur method may be more useful for description of the ther-
all degrees of anisotropy, the sublattice ordering is thermomodynamics of real ionic crystals with defeétsFurther-
dynamically more stable, and gas—liquid phase separation imore, numerical simulations of the anisotropic lattice ionic
always suppressed. This is the result of the special symmetiypodels with lattice Coulombic potentials are clearly needed
of body-centered lattices. in order to check the validity of our theoretical predictions.
Our pure Debye—Hekel treatment of anisotropic lattice
electrolytes assumed that there are only free ions and empCKNOWLEDGMENTS
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