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Lattice models of ionic systems with charge asymmetry
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The thermodynamics of a charge-asymmetric lattice gas of positive ions carrying aharyk
negative ions with charge zq is investigated using Debye—kkel theory. Explicit analytic and
numerical calculations, which take into account the formation of neutral and charged clusters and
cluster solvation by the residual ions, are performed#Zer2, 3, and 4. As charge asymmetry
increases, the predicted critical point shifts to lower temperatures and higher densities. This trend
agrees well with the results from recent Monte Carlo simulations for continuum charge-asymmetric
hard-sphere ionic fluids and with the corresponding predictions from continuum DebgkelHu
theory. © 2003 American Institute of Physic§DOI: 10.1063/1.1558311

I. INTRODUCTION densityp. grows. However, most of the current theories give

N o different predictions. Simple DH theory and the mean-

The nature of critical phenomena in ionic systems hagpherical approximatiofMSA) both predict no dependence
been a subject of numerous theoretical studies in recenf, ihe asymmetry parametef* In symmetric Poisson—

years.™ Due to the long-range nature of Coulombic interac'Boltzmann and modified Poisson—Boltzmann integral equa-
tions, construction of a full renormalization group treatment,

which was so successful in describing the critical behavior O%IOI’_] met_hod§5 the charge asymmetry hardly changgs, .
D . . hile p. increases. However, the absolute values of the criti-
nonionic fluids, meets both conceptual and technical . .
difficulties! However, in recent years some progress hascaI paramgters are vgry different from Monte Carlo est-
been achieved in obtaining physically reasonable, Well-baseﬁ‘ate_s' A field _theoretlcal_ apprpach by Netz and Or’rﬁn_d )
mean-field theories for ionic systerh® These theoretical Predicts large increases in critical temperatures and, simi-
studies have been supported and, sometimes in substantlally. a large decrease in critical densities, in sharp contrast
part, initiated by intensive Monte Carlo simulati6n¥ of with computer simulations trends. The only theory that pro-
charged systems. duces reasonable results for the effect of charge asymmetry
To investigate the thermodynamics of ionic fluids, two on thermodynamics and criticality of ionic systems, as
main mean-field approaches have been developed. The fifstdged by comparison with Monte Carlo computer simula-
one"® extends the pioneering work of Debye anddeft?  tions, is the DH approach augmented by Bjerrum cluster for-
(DH) on dilute solutions of strong electrolytes, while the mation and cluster—ion interactiof®HBjCI).’
second approaéhrelies on integral equations for correlation Lattice models, such as the Ising model, have played an
functions. Analysis of thermodynamic energy bounds andmportant role in understanding criticality in nonionic sys-
comparison with the best Monte Carlo estimates for the crititems. In recent years, lattice models have also attracted the
cal parameters suggests that the DH-based theory givesaiention of researchers as a tool for investigating thermody-
better. descrlp.tl_on of tr_]e tlr;ermodynamlcs of electrolytes, ahamics and criticality in Coulomb systerh®-22A system-
least in the critical regioft: S  atic study of electrolytes on lattices, which utilizes the
The simplest model of ionic fluids, the so-called reSt“C'Debye—H'uzkel approach, has been presented recéhtly.

tive'p'rimitive model(RPM), considers a system. of spherical this work the thermodynamics of dxdimensional system of
equisized charged particles, half of them carrying a chgrge equal numbers of positive and negative ions, i.e., a charge-

and the other half with charge . The charge symmetry of symmetric lattice RPM, has been investigated. Specific cal-

this model plays a crucial role in the determination of its lati for Coulomb svst three-di ional lati
universality class and in the ability to obtain analytic sojy-ct'ations for-oulomb systems on three-dimensional latlices,

tions. This raises the question of how the breaking of theVNich included ion pairing and ion—dipole interactions, pre-
symmetry will affect the thermodynamics and critical prop- dicted @ gas—liquid phase separation at low densities. How-
erties of electrolyte systems. An important extension of theeVer taking into account the lattice symmetry yielded a dit-
RPM is the charge-asymmetric primitive model, where theferent scenario—the phase diagrams of electrolytes on
sizes of negative and positive particles are the same whilgimple cubic and body-centered-cubic lattices show order-
absolute values of charges for positive and negative ions a@isorder phase transitions with a tricritical point, while gas-
different. Recent Monte Carlo simulatidt§ have revealed liquid phase separation is suppressed. The introduction of
that, as charge asymmetry increases, the critical temperatuediarge asymmetry in lattice models of ionic fluids tends to
T. of the gas—liquid transition decreases, while the criticalsuppress the possibility of order—disorder phase transitions,

0021-9606/2003/118(14)/6394/9/$20.00 6394 © 2003 American Institute of Physics



J. Chem. Phys., Vol. 118, No. 14, 8 April 2003 Lattice models of ionic systems 6395

and gas—liquid phase coexistence reappears, although the po- In multicomponent systems with charged particles it is

sition of critical point may change. the electrochemical potential that must be equal in coexisting
In this paper, we present a thermodynamic investigatiorvapor ) and liquid(l) phaseg; namely,

of charge-asymmetric lattice models of electrolytes. By ex- _

plicitly including the clustering of oppositely charged par- Hio T Gidy=pi +didr, @

ticles and ion—cluster interactions, we obtain phase diagramahered, is the electrostatic potential in the corresponding

for 2:1 and 3:1 lattice electrolytes, and we locate the criticaphase, where, in general, there is a nonzero Galvani potential

point for the 4:1 ionic system. Our results accord well with differenceA ¢= ¢, — ¢, between the phasé&However, for

the trend obtained in recent Monte Carlo simulations and thealculating phase equilibria in multicomponent systems of

continuum DHB]CI theory! The paper is organized as fol- charged particles, it is more convenient to use the single-

lows: In Sec. Il we present an overview of our thermody-component thermodynamic pictuteSince every thermody-

namic approach to multicomponent charged species mixturgsamic phase is electroneutral, the multicomponent system

and we outline the pure Debye—tkel theory. The full with N=(z+1)N, ions can be viewed as a single-

theory, which accounts for charged and neutral cluster forcomponent system df; molecules, each of them consisting

mation and their interactions with the residual ions, for a 2:10f one negative ion and positive ions. Then phase equilib-

system is presented in detail in Sec. Ill. Section IV describesium between the liquid and vapor at temperatiirés en-

the general scheme of thermodynamic calculations for 3:5ured by

and 4:1 lattice electrolytes. Finally, the results are discussed P(T,p,)=P(T,p),  w(T.p,)=pu(T.pr), )

in Sec. V and our conclusions are given in Sec. VI.
wherep, andp, are the overall particle densities in gas and
liquid phases, respectively, while=w_+zu, . The pres-
Il. LATTICE DEBYE—HU CKEL THEORY sure in each phase can still be calculated using(8q.This
OF CHARGE-ASYMMETRIC ELECTROLYTES approach accounts for the electroneutrality of each phase and
utilizes only one chemical potential, which significantly sim-
plifies calculations of phase diagrams.
Consider a system of charged particles on a three-
dimensional simple cubic lattice with a unit cell length . .
which initially hasN, ions carrying a charge-zq andzN, B- Pure DH theory of charge-asymmetric lattice
ions with a charge. i.e., the total number of ions N=(z  lectrolytes
+1)N,. Because of the electrostatic interactions, ions with  As a first approximation, assume that there is no cluster-
opposite charges tend to form clusters. As a result, there wiihg between oppositely charged particles and that only free
be many species present in the system: dimers, trimers, etéans are present in the system. The free energy density can be
with respective charges—(z+1)q,(—-z+2)q,...,0. If the  \yritten asf="f "9+ f PH where the first term is the entropic

number of particles of typeis given byN;, then we define jdeal gas contribution, which is given by
pi=N;/V and p{* = p;v, to be the number density and the

A. Thermodynamic overview

reduced density of thigh species, with y=a® being the unit Tid_ Pl In o* px In o* 1-p* *

. =——Inpi——Inp*— In(1—p*). (6)
lattice cell volume. Vo Vo

The Helmholtz free energy is central for the determlna--l-he subscripts %" and “ —" denote positive and negative

tion of the thermodynamic behavior of charge-asymmetnqons’ respectively. Owing to overall electroneutrality in the

Iattlce_ electrolytes. It can t.)e approx_mated by_ summing Con'system, the densities of free ions are related to each other by
secutively the free energies describing the interactions be-

tween different species, pi=2zp*I(1+2), p*=p*/(1+2). (7)

The second term in the free energy density is the elec-

trostatic contributionf °"=f_ (p)+f_(p_), which is the

d; ) . . . result of ion—ion Coulombic interactions. By solving the lat-
whereF "?’ the ideal Iattlpe gaeentroplo term andF; is the tice version of the linearized Poisson—Boltzmann equation
electrostatic energy of thieh species. Once the reduced free . 1o olectrostatic potential and subsequently applying the
energy densityf=—F/kgTV is known, the reduced chemi- pepye charging procedure, as was done for the charge-
cal potentials for every componepi=u/kgT can be com-  symmetric lattice model of electrolyté,it can be easily

F=F9+> F, (1)

puted via shown that

wi=—dflap;. ) 1 (e

- " - oo [ [P(l)—P( , ) d0e), ®)

Finally, the reduced pressure is given by 1204 Jo X“+6

P=p/keT=F+ >, pii 3 where

= =1+ T
pP=p/Kg i PiMi 1 o dk
| N o[

Then the possible phase equilibria are defined by matching (2m)° ) -7)-= STy 5 K. + coska+ cosk
pressures and chemical potentials for each component in dif- 3 (Cosky +cosk +Cosks)

ferent phases. 9
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‘is the integrated lattice Green’s function for the simple cubic
lattice?®2® and x?= «?a? with the reciprocal squared Debye
screening length given by

A 4mzelp
2__ 2y _
K _DkBT(P+q++P7Q—) DkBT . (10)

Now the chemical potential for each type of ion can be easily
calculated through Ed2), which yields

*
wi= |n( Pi + 7 P| — —P(1)], (11) FIG. 1. Different charged and neutral particles and chemical reactions in 2:1
1-p*) 3T* X“+6 lattice electrolyte systems.
where we have defined the reduced temperature by
. DkgTa
q

one can expect that for charge-asymmetric ionic systems this
which is related to the reduced density @s=x>T* /4. ratio should be even larger because of the larger free energy
Then for the chemical potential of the neutral “molecule,” gain for clusters with the increase of the parameter
consisting of one negative arpositive ions, we obtain The importance of ion pairing in charged particles sys-
tems was first recognized by Bjerrtih?’ In his original

*
ﬁ=(1+z)ln( P . +(1+z)i* approach a cutoff distance between two oppositely charged
1-p 3T ions was introduced to define a bound pair. Later, the defini-
tion of a pair became a subject of many discussiohidow-
X| P e b P(1)|+C(2), (13)  ever, as was shown in a careful analysis by Levin and

Fisher’ the precise value of this cutoff distance has little
where the density-independent constan€{g)=[zInz—(1 influence on the critical parameters and coexistence curves
+2)In(1+2)]. Having the chemical potentials and free en-(less than 0.5% Meanwhile, the further problem of calcula-
ergy, we can calculate the pressure using B}to obtain tion of the electrostatic energy of the dipole particle poses
another, new technical difficulty, since the ion pair does not

_ 1 .
PUo=—In(1—p*)+ —= | x?P| = possess spherical symmetry and the problem cannot be
12 x°+6 solved exactly analytically or numerically. By approximating
2 the ideal bispherical exclusion zone by a symmetrically
— Pl ——|d(x?)|. 14 centered sphere, Levin and Fisheucceeded in obtaining
)40 (14) : _ :
0 a precise, numerically tractable solution. For three- or four-

Note that the expression for the pressure is independent @rrticle clusters in charge-asymmetric continuum ionic flu-
the charge asymmetry and the chemical potential of thdds, the same strategy also yields reasonable reSui,
“molecule” is (1+Z7)/2 times the value for the 1:1 electro- though the technical complexity of computations increases
lytes[if we neglect the constai@(z), which does not affect Significantly.

the thermodynamics of the syst¢rthen the predicted phase In lattice systems the situation is intrinsically simpler
separation and critical point because of the discrete rather than continuous symmetry. In

. . 1:1 electrolytes it allows one to define clearly an ion pair as

T;=0.1018, p;=0.0996 (15  two oppositely charged particles sitting on neighboring lat-

. : ‘o aitec0 Girni : :
are the same as for the charge-symmetric lattice electrolytelice sites™’ Similarly, for charge-asymmetric lattice electro-
This result fully agrees with the pure DH theory in con- lytes we can easily define different cluster configurations.
tinuum space’ which also predicts no change in the critical These particles may be viewed as independent chemical spe-

parameters for charge-asymmetric electrolytes. cies, and the processes of clustering can be considered as a
set of chemical reactions between them.

lIl. LATTICE DEBYE—HU CKEL THEORY To illustrate our approach, consider a 2:1 lattice ionic

WITH CLUSTERING AND CLUSTER-IONS fluid in which clusters are allowed to form. Then, following

INTERACTIONS FOR 2:1 ELECTROLYTES Ref. 17, in addition to the free positive particles with charge

+q and free negative ions with charge2q, we suppose it
suffices to consider three basic types of clusters: specifically
One of the main deficiencies of the pure DH theory,we include dimers carrying a chargeq (with the number
which describes the system of free positive and negativelensityp) and two possible configurations of neutral trim-
ions, is the total neglect of the ion clustering. Oppositelyers, linear and angular, with number densitids and p3,,
charged patrticles attract each other and form clusters in ordeespectively(see Fig. 1L
to reduce the free energy. This process significantly de- In the spirit of Bjerrum’s approach, we assume first that
creases the number of free ions. In charge-symmetric latticeeutral clusters do not interact with charged particles. Then
electrolytes in the critical region the number of neutral ionthese neutral particles contribute only to the ideal free en-
pairs is 2—3 times larger than the number of free fend  ergy, and the total free energy density is given by

A. Bjerrum clustering
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| +TE;- (16) wheren is the number of sites occupied by the partidleis

the corresponding internal partition function, akdis the de
To calculate the free energy of the charged dimfgls we  Broglie wavelengthsee Ref. B For the latter the equality
adopt a view of them as a combination of neutral symmetricA , = A _=A,=A,,= A5, holds. We refer to the Appendix
(+,—) dipoles, which occupy two neighboring sites, andfor a detailed calculation of the dimer and trimer activity
single-site particlegwith the charge—q) which sit on the using the Bethe approximation method, and we give here

top of negative part of the dipoles, i.es+(2—)=(+,—)  only the final expressions for activities:
+(—). Then the electrostatic free energy densities for the

free ions and charged dimers are given by the correspondin p3(1-3p3)
expressions from the pure DH theory, although with a differ--2 (1 p*—p*—2p5—3p%.— 3p3b)Ze
ent inverse squared Debye screening length, namely,

=t"Y0p, p_,p2.p3a,pap) T

(25

p3a(1—3p3)?

4m 70 = o U2 p3a) ghs,
K DT (P 40T o). 17) 7 (1—p%—p* —2p3 —3p%,—3p%)° a('26)
To determine the ideal gdentropig contribution to the )
free energy one needs to know the corresponding densmes P3r(1—32p3) 1’(2*P3b>eﬁ§L
and chemical potentials. As shown in Fig. 1, we identify five Z3p= 64(1—p* —p* —2p% —3p3.—3p%.)° '
different species in the 2:1 lattice Coulombic system. Let us (27)

definea as a set of free positive and negative io8sis a set Once the activities are known, the chemical potentials are

tor: ”I? gatively f[:h?rtgg d dlmersc,bzgd tfrr]ee pofm:/e 'On?’af. derived by utilizing Eq.(24) for each species, and the free
€ lineéar neutral imers, an s he neutral anguiar tr- energy is obtained by integrating the chemical potentials.
mers. Then the clustering in these system can be descrlb%naIIy we arrive at the chemical potential of an*mol-

by three chemical reactions ecule” (which consists of two positive and one negative jons

Ky in the form
“ZB' "o AEMBI=2Inp* + Inp* =3 In(1—p* —p* —2p% —3p3,
B=3a, (19) —3p3p) + u® (28)
Kap and the reduced pressure
p=3b, (0 Py, = —In(1- pt — p* —2p% —3p3,— 3p3y)

with the corresponding equilibrium constaitsg, K,,, and

K, . The chemical equilibrium in the system is described by +3In(1=p3/3)+3In(1-p3,/2)

the following relations between chemical potentials *
P3a __Pap +DEL

2piF o= oyt o= [h3a= Map - (21 2—pk. 2—p% P~vo

The chemical potential for each particle can be com- (29

puted by first separating the entropic and electrostatic part%’he electrostatic part of the chemical potential and the pres-

|.e ni= ,ul +,u| , Where the latter is determined simply by sure have the same form as in the pure DH theds),
wH'=— ot B/gp; . For the ideal-gas parts of the chemical po- namely,

tentials the situation is more complex. For free single-site

+3In(1—pky/2) —

ions the chemical potentials can be easily found applying the —g__ 7 = —P(1) (30
potential distribution theoreffior, from simple entropic con- Y x>+ 6 '
siderations,
1 6 2
* * * * * * 5EI X P . P d(Xz) (31)
=Inp% —In(1—p%—p*—2p; —3p3,—3p3p), (22) 12 x2+6) Jo |\ x*+6 ’

w=Inp* —In(1—p* —p* —2p3 —3p%.—3p%y). (23 wherex?= «%a? with «2 given by Eq.(17).
In terms of activities, the chemical equilibrium condi-

However, for dimers and trimers there are no similar exact. .
ions (21) can be presented in the form of laws of mass

expressions. Nevertheless, these entropic contributions to tﬁ

chemical potentials can be estimated by applying the Beth&© ction

approximatior,’ which has been successful in the DH theory 2z K,;=27,z. , (32)
of 1:1 lattice electrolyte&’ Note that in lattice electrolyte

systems phase transitions predominantly take place in the Z2Z+Kza=Zza, (33

low-density regimes, and thus the error in using the Bethe

approximation is expected to be small. . I "
Defining the activities of the particles via, for every As can be seen from the chemical equilibrium conditions

species we have (21 anq the definition of activitie&24), the a}ssociation con-
an stants in Eqs(32)—(34) are relaxed to the internal partition
Zi={i /A7, (24 functions of dimers and trimers:

2,2, Kop=123p. (34)
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FIG. 2. Phase diagrams for 2:1 lattice electroly®:pure DH theory,(b)
DHBj approximation, andc) DHBJjCI theory.

Ki=241(T), KiKpa=03(T), KiKyp=05,(T). (35
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ber of neutral clusters quickly grows, and this depletes the
number of free charges present in the system. Since it is the
density of free charges that plays the role of the order param-
eter and governs the gas—liquid transition, the phase separa-
tion takes place at higher overall densities. At this level of
approximation, neutral clusters are electrically inactive and,
hence, contribute only to the hard-core part of the free en-
ergy, which is the same for both phases. Thus DHBj theory
simply superimposes the pressure of ideal gas of clusters on
the pure DH pressure, and both sides of the coexistence
curve shift to higher densities by equal amounts. The critical
density is now substantially highess ~0.0807, while the
critical temperature slightly decreasdg,~0.099.

B. Cluster-ion interactions

The above definitions of the association constants lead to the The predictions of DHBj theory for lattice ionic systems

expressions
n
{i=voCi 21 e ilkeT, (36)
=
whereu;; = q;¢; is the electrostatic energy of theh ion of a
cluster particlé in the potentiakp; , which is due to the other
ions entering the multimer cluster. The coefficientin Eq.

(36) is an entropic factor which takes into account all allow-
able configurations of the cluster. The electrostatic potential
¢; can be determined by solving the lattice version of the

linearized Poisson—Boltzmann equation

(37

in which g, andr, are the charge and the position of tkié

are thermodynamically unreasonable and should be corrected
by taking into account the effects of interactions between
multimers in clusters and free ioA€° As shown earlier for
continuum and lattice electrolyté<? these solvation effects
eliminate the unphysical banana-shape phase coexistence
curves. It is reasonable to expect that these cluster—ion inter-
actions are even more important in charge-asymmetric ionic
systems due to a larger fraction of neutral clusters in equi-
gbrium with free ions.

The exact calculations of interactions between the mul-
timers and free ions are very complicated. Instead, we use a
reasonable assumption to obtain closed analytic expressions.
We approximate the neutral clusters as a set of overlapping
noninteracting symmetric dipoles. For example, the neutral
trimers can be viewed as a combination of two dipoles, i.e.,
(+,2—, +) = (+, =) + (=, +). The charged clusters, as we

ion entering the multimer cluster. Since lattice Coulomb po-yiscussed above, are approximated as symmetric dipoles

tentials can be calculated exactly in numerical teffhae

overlapping with free ions, i.e(+, 2—) = (+, =) + (-).

obtain the following expressions for association constants: \e expect that differences between our approximation and

1.0815

Ki1=6vgex EETEb (38
0.81203

Koa=vg€ex Rk (39
0.73473

Kop=4vqex T—* (40)

the exact cluster—ion interaction contribution to the free en-
ergy to be small since the corrections correspond to higher-
order dipole—dipole interactions and thus can be neglected.

According to our approximation the reduced density of
dipoles from all cluster particles in the system is eqpil
+2p3,+2p%, . Since the energy of solvation of a single free
dipole in the lattice electrolyte system is known exatdlihe
cluster—ion interactions contribute to the free energy density
as

Substituting Eqs(38)—(40) and the expressions for ac-
tivities (25)—(27) into the expressions for chemical equilib-
rium (32)—(34) yields a set of equations, which define im-
plicitly the dimer and trimer densities; , p3,, andp3, in
terms of the monomer densitip§ andp* . The electroneu-
trality of the system requires thaf; =2p* +p3 . Then the X
chemical potential and the pressure can be expressed in
terms of only one variable, the total reduced dengity
=p’ +p*+2p5+3p3,+3p%,, Which allows for the con-
struction of the coexistence curysee Fig. 2

As in the case of charge-symmetric contintuand
lattice?® electrolytes, the coexistence curve in the DHBj ap-
proximation has an unphysical bananalike shape. This is réFhen the corresponding contributions to the chemical poten-
lated to the fact that, as the temperature is lowered, the nuntials and pressure are given by

mq?a’®

FO=(p +2p3,+2p%
(p3 +2p3, Psb)m

: (41)

X2 1fx2G 2d2
>t . (x9)d(x)

where

X2(X2+7)
G(x*)= X%+ 6

(42)

o6
x°+6/
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500 -0+ O+ O+ @
5 2
o =B+ D+®
w - OO+ @
8

—cl. _—Cl,2 -
P vo= g X T* /4, (44 4a= 4b="

which must be added to the values provided by E2g8). and

M 21(T*)2

1 (2
+Ff0 G(x?)d(x?)

and

(29) in order to obtain the complete expressions for the K. 4b
chemical potential and pressure. Ky § ’I/K
The full DHB|CI theory predicts a phase separation as Ky = 7
exhibited in Fig. 2. As in the charge-symmetric lattice and o = B N 4a
continuum electrolyte$2° taking into account the solvation Ko T 'k,

of clusters by the residual free ions eliminates the unphysical
bananalike shape of the coexistence curve. The critical p
rameters are now given by

T%=0.08735, ps=0.05001,

Z.=p./pcksgT=0.2431. 49 the charge-2q, linear and angular trimersvith the charge
. . . .. . —Q), and two types of neutral tetramers, which are con-
Comparison with the critical parameters of 1:1 lattice ioniCecteq py the network of six chemical reactions. Note that
system indicates that the critical temperature is about 11%, 4o not consider clusters with bonds between the same

lower, while the critical density is 1.67 times higher. Thesecharges. For example, we assume that charged trimers have
trends—the decrease in the critical temperature and increagg, configurationg+, 3—, +), but not(+, +, 3—). Indeed

in the critical density—are in agreement with the results of;
continuum calculations for charge-asymmetric electrolyfes. energies can be neglected.

It is interesting to estimate the relative amounts of dif- |, 5 4gition. as in the case of 2:1 lattice Coulombic sys-
ferent species in the critical region. In terms of molar frac-tmg we view the clusters as combinations of noninteracting
tionsy;=n;p/p* (n; is the size of the particleour theo- . " _) symmetric dipoles and single-site charges. The ac-
retical approach predicts tivities of multimers are calculated by applying the Bethe

-IG. 3. Different charged and neutral particles and chemical reactions in 3:1
attice electrolyte.

hese particles are less stable and their contributions to free

y,=0.1002, y_=0.0388, y,=0.0452, approximation method outlined in the Appendix. These ap-
(46)  Pproximations allow us to calculate the free energy of the
Y¥32=0.0075, y3,=0.8083. system as a sum of the corresponding entropic, electrostatic,

As expected, the fraction of neutral trimers significantly ex-and cluster solvation terms for each particle. The resulting
ceeds the fraction of free charges. Also, the number oPhase coexistence curve is given in Fig. 4. The critical pa-
charged dimers is very low, which can be attributed to theifameters are

propensity to combine with free ions to form energetically

more fa_vorable neutr_al trimers. What is surprising,. at fir§t T*=0.0688, p*=0.0847. (47)
glance, is that the ratio of linear trimers to angular trimers is

much less than unity. Indeed, because electrostatic interac-

tions favor a linear arrangement of the ions in a trimer clus-The molar fractions of different clusters in the critical region
ter, these clusters are more energetically stable and shou®#{€

prevail over angular trimers. However, these naive argu-

ments do not take into account the entropic considerations.

First of all, the angular trimers have more different possible 0.1
configurations than the linear trimers. In addition, they are
more compact and can be packed more densely. As a conse-
quence, there are more ways to arrange angular trimers on 0.08
the lattice and they dominate trimer clusters.

T* [ (a)

0.06 ]
IV. LATTICE DHB/CI THEORY T
FOR 3:1 AND 4:1 ELECTROLYTES

The thermodynamic calculations fa=3 asymmetric .
lattice electrolytes can be performed following the method 0 005~ 01 015 02 025
presented in full detail in Sec. Ill. As shown in Fig. 3, there p*
are seven ba5|c_ cluste_r§ to be cons@ere_d n thIS SYSIEMMG. 4. Phase diagrams 6 1:1, (b) 2:1, and(c) 3:1 lattice electrolytes in
,namely, single-site positive and negative ions, dimers wittDHB]CI theory.
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[ 7 T T ] in Fig. 5 with the results of continuum Monte Carlo
0.1F . simulation§1%! and with the predictions of the continuum
T [ \. ] DHB|CI theory’
0.08l ] Clearly, the overall consistency between the lattice and
- continuum DHB|CI approaches and computer simulations
I '\ ] results indicates that the Debye-¢kel method correctly
0.06f (b) LI captures the physics of phase transitions in these ionic sys-
00— 0 ] tems. In Coulomb systems with charge asymmetry the for-
mation of clusters is strongly favored. Clusters contribute to
electrostatic interactions much less than free ions, and the
1 3 4 effective electrostatic energy per particle decreases. How-
ever, the phase separation is driven by charged particles, and
the temperature is normalized by the strongest electrostatic
interaction between the positive and negative ifsee Eq.
| (12)]. Therefore, the reduced critical temperature falls.
/0 1 Cluster formation also significantly depletes the number

T
—
/
S

1

0.04 L ()

<
=
n
——
®
1

of free ions. At the critical point, the molar fractions of free
single-site positive and negative ions are 21.0%, 13.8%,
9.2%, and 4.2% for 1:1, 2:1, 3:1, and 4:1 lattice electrolyte
systems, respectively. As a consequence, larger overall den-
] sities are required to achieve the phase separation, and the
8 ] reduced critical density increases.
At the same time, the relative numbers of neutral par-
0 '1 é é 4'1 ticles as a function of charge asymmetry shows a nonmono-
B Z tonic behavior. The molar fractions of neutral clusters are
FIG. 5. (A) Critical temperature§; and(B) critical densitiesp; as func- equal t? 79% In_ 11 lonic system, 81% Ir! 21 electrolytes,
tions of charge asymmetry@ our lattice DHB]CI predictions(b) con-  69.1% in 3:1 ionic system, and about 88% in 4:1 electrolytes.
tinuum DHBICI predictions(Ref. 17, and (c) Monte Carlo simulations  The decrease of the molar fraction of neutral clusters in the
(Refs. 8, 10, and 11 critical region in the 3:1 system as compared to 2:1 electro-
lytes has also been found in continuum calculatibrishe
actual number of neutral clusters depends on two fac-
tors: the free energy gain of cluster formation and the tem-
Y3,=0.0033, y3,=0.2049, y,,=0.3043, (48 peraturgthrough the equilibrium constgnit is possible that
_ in 3:1 electrolytes the lowering of the critical temperature is
Yan=0.3864, not enough to overcome the repulsion between the positive
As expected, neutral clusters again dominate. ions in neutral tetramers, while in 4:1 ionic systems the de-
Analogous thermodynamic calculations can be done fotrease in critical temperature is enough to favor more
4:1 lattice electrolytes. However, the number of differentstrongly the formation of neutral clusters.
types of clusters and the number of chemical reactions be- The absolute values of the critical temperature in our
tween them become fairly large, and the full thermodynamiccharge-asymmetric lattice models is larger than the Monte
analysis is difficult to complete. Instead, we focus on thecarlo simulation daa® by a factor of 1.68—1.94, with
critical region of the system where calculations can be comiesser factors corresponding to higlzeThis agrees with the
pleted. The resulting critical parameters are general feature of lattice models to overestimate the values
T*=0.060, p*=0.148. (49)  of critical temperatures in comparison with continuum mod-
. . ) els. Note, however, that the simulations are performed with
The relative density of all neutral clusters here is about 87%e continuum potential, while our theory employs the lattice
Full phase diagrams foe:1 lattice ionic systemsZ  cqyjombic potentials. In addition, the reduced temperature
=1,2, or 3 calculated using DHBJCI approach are exhibited (15 s normalized by the energy of two ions interaction via
In Fig. 4. continuumor 1k Coulombic potential. However, the lattice
potential differs from 1/ at short distance® and normaliz-
V. DISCUSSION ing the temperature by the energy of lattice Coulombic inter-

Our analysis of charge-asymmetric lattice electrolytesactions of nearest neighbors would lower the temperatures
using Debye—Hckel theory with Bjerrum clustering and by an additional 8%.
cluster—ion interactions indicates that charge asymmetry The absolute values of the critical densities in our theo-
strongly influences the thermodynamics, especially in theetical approach are only 38%—-69% of the current Monte
critical region. It is found that critical temperatures decreaseCarlo estimate&!° This fact reflects the discrete nature of
while critical densities increase with charge asymmetry. Outhe lattices and that not all possible clusters have been taken
theoretical predictions for critical parameters are compareihto account.

(=1
—_
T
—_
o
~

0.05F ] -

y,.=0.08872, y_=0.00347, y,=0.0088,
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VI. CONCLUSIONS taking into account six possible orientations for each dimer,
Rrovided one its vertex is fixed. The second set of brackets
gives the probability that a dimer vertex configuration is
compatible with all its nearest-neighbor vertex configura-
tions. Here 23 /6 is the probability of finding dimer’s edge
along certain lattice direction starting from a given point, and
(1—2p%/6)° ensures there is only one dimer at this point.
The third set of square brackets is the probability that no
dimers occupyN(1—2p3) empty lattice sites. The square
a{_oots are taken in order not to compute the probabilities
twice. The Bethe approximation for dimer’s activity on the
imple cubic lattice then yields

We have investigated the effects of charge asymmetry o
thermodynamics and critical properties of the lattice ionic
systems using Debye-ldiel theory with Bjerrum clustering
and cluster—ion interactions. Phase diagramszfér lattice
electrolytes have been obtained for 2 and 3, while forz
=4 the location of the critical point was determined. Our
results agree well with the Monte Carlo simulations and with
the continuum Debye—Hikel theory!’” predicting that the
increase in the charge asymmetry lowers the critical temper
ture and increases the critical density.

Our theoretical approach may be extended in several di
rections. In this paper we investigated charge asymmetric 1 d
electrolyte systems on the simple cubic lattices. It is interest- z=ex;{ N d—*ln W,(p3) | =
ing to consider the lattices with different symmetry such as P2
body-centered-cubic and face-centered-cubic lattices, for gimilar calculations can be performed for the systems
which thermodynamic calculations for charge symmetriccontaining trimers, tetramers, or higher-order multimers.
systems are already perform&dAnother interesting ques- However, since now not all multimer vertices are equivalent,

tion is how the charge asymmetry will affect the ionic sys-\ye nave to account for each type of vertex separately.
tems in two dimensions, where interesting phase transitions |, particular, consider the system witty=Np? trimers.

may appear. Then there are8p3 trimer vertices, witftNp3 “center” and

2Np3 “end” vertices. For linear trimers the number of pos-
ACKNOWLEDGMENTS sible orientations is 3 if we fix a “center” vertex and 6 if we
fix an “end” vertex. Then the number of ways to arrange
linear trimers on the lattice is given by

)"

p313(1=p313)
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3p* 6/2]N(1-3p3)
APPENDIX: THE BETHE APPROXIMATION X 1———3) (A3)
FOR MULTIMERS 6

Consider a system ofl,, multimers(each particle occu- Again the first set of square brackets gives the maximum
piesm lattice site$, which interact with each other only via possible number of distinct trimer vertices configurations,
on-site exclusion, on a simple cubic lattice with the totalthe second set of square brackets accounts for the probability
number of sitesN. We can calculate the entropy of the mul- that all “end” vertex configurations are compatible with their
timer distribution following a direct method of counting nearest-neighbor configurations, the third set of brackets cor-
probabilities in the Bethe approximation employed byresponds to the “center” vertices’ compatibility, and the last
Nagle?® (For other methods of calculating the partition func- factor ensures that there aki1—3p3) lattice sites free of
tion for lattice systems see Refs. 30 and)31The Bethe trimers. Then the activity of linear trimers is given by
approximation does not take into account any correlations . * 12
around cycles, and thus it is exact for lattices with only tree- _P3a(1~3p3./6) o U2 phy) (A4)
like paths(Bethe lattices However, for three-dimensional s (1—3P§a)3 '

cubic lattices this approximation gives fairly good results.

Consider, first, a system consisting only of dimers. Therf ©" angular trimers, the only difference is that now there are
the number of ways to arrangd,=Np% dimers on the 24 distinct trimer orientations if we start from the “end”

simple cubic lattice can be approximateoe?)y vertices and 12 orientations if we start from the “center

vertex. This yields
( 2p§ 1/2 . 2p3 ) 5/2
6 6

2Np3
1 pky(1—3p%,/6)2
e
2p% ) 6/2} N(1-2p3)

62Np§}

N
*\ —
w2<p2>—[(2Np; “uz ), (AS)

20764 (1-3p5)°
1_ %P2

6
. p3(1=2p;/3)° "
Here the first set of square brackets represents the total num- , —c™ = =747 -1/1-2p7/3) (AB)

ber of ways to arrang®lp dimer vertices on the lattice, (1-4p3)*

% (A1) Similarly, the activity of tetramers is given by
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where the coefficien€ equals 1/96 for planar tetramers and
C=1/128 for nonplanar tetramers.
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