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The thermodynamics of a charge-asymmetric lattice gas of positive ions carrying chargeq and
negative ions with charge2zq is investigated using Debye–Hu¨ckel theory. Explicit analytic and
numerical calculations, which take into account the formation of neutral and charged clusters and
cluster solvation by the residual ions, are performed forz52, 3, and 4. As charge asymmetry
increases, the predicted critical point shifts to lower temperatures and higher densities. This trend
agrees well with the results from recent Monte Carlo simulations for continuum charge-asymmetric
hard-sphere ionic fluids and with the corresponding predictions from continuum Debye–Hu¨ckel
theory. © 2003 American Institute of Physics.@DOI: 10.1063/1.1558311#

I. INTRODUCTION

The nature of critical phenomena in ionic systems has
been a subject of numerous theoretical studies in recent
years.1–4 Due to the long-range nature of Coulombic interac-
tions, construction of a full renormalization group treatment,
which was so successful in describing the critical behavior of
nonionic fluids, meets both conceptual and technical
difficulties.1 However, in recent years some progress has
been achieved in obtaining physically reasonable, well-based
mean-field theories for ionic systems.1–5 These theoretical
studies have been supported and, sometimes in substantial
part, initiated by intensive Monte Carlo simulations6–11 of
charged systems.

To investigate the thermodynamics of ionic fluids, two
main mean-field approaches have been developed. The first
one1,3 extends the pioneering work of Debye and Hu¨ckel12

~DH! on dilute solutions of strong electrolytes, while the
second approach2 relies on integral equations for correlation
functions. Analysis of thermodynamic energy bounds and
comparison with the best Monte Carlo estimates for the criti-
cal parameters suggests that the DH-based theory gives a
better description of the thermodynamics of electrolytes, at
least in the critical region.3,13

The simplest model of ionic fluids, the so-called restric-
tive primitive model~RPM!, considers a system of spherical
equisized charged particles, half of them carrying a chargeq
and the other half with charge2q. The charge symmetry of
this model plays a crucial role in the determination of its
universality class and in the ability to obtain analytic solu-
tions. This raises the question of how the breaking of the
symmetry will affect the thermodynamics and critical prop-
erties of electrolyte systems. An important extension of the
RPM is the charge-asymmetric primitive model, where the
sizes of negative and positive particles are the same while
absolute values of charges for positive and negative ions are
different. Recent Monte Carlo simulations8,10 have revealed
that, as charge asymmetry increases, the critical temperature
Tc of the gas–liquid transition decreases, while the critical

densityrc grows. However, most of the current theories give
different predictions. Simple DH theory and the mean-
spherical approximation~MSA! both predict no dependence
on the asymmetry parameterz.3,14 In symmetric Poisson–
Boltzmann and modified Poisson–Boltzmann integral equa-
tion methods15 the charge asymmetry hardly changesTc ,
while rc increases. However, the absolute values of the criti-
cal parameters are very different from Monte Carlo esti-
mates. A field theoretical approach by Netz and Orland16

predicts large increases in critical temperatures and, simi-
larly, a large decrease in critical densities, in sharp contrast
with computer simulations trends. The only theory that pro-
duces reasonable results for the effect of charge asymmetry
on thermodynamics and criticality of ionic systems, as
judged by comparison with Monte Carlo computer simula-
tions, is the DH approach augmented by Bjerrum cluster for-
mation and cluster–ion interactions~DHBjCI!.17

Lattice models, such as the Ising model, have played an
important role in understanding criticality in nonionic sys-
tems. In recent years, lattice models have also attracted the
attention of researchers as a tool for investigating thermody-
namics and criticality in Coulomb systems.1,18–22A system-
atic study of electrolytes on lattices, which utilizes the
Debye–Hu¨ckel approach, has been presented recently.20 In
this work the thermodynamics of ad-dimensional system of
equal numbers of positive and negative ions, i.e., a charge-
symmetric lattice RPM, has been investigated. Specific cal-
culations for Coulomb systems on three-dimensional lattices,
which included ion pairing and ion–dipole interactions, pre-
dicted a gas–liquid phase separation at low densities. How-
ever, taking into account the lattice symmetry yielded a dif-
ferent scenario—the phase diagrams of electrolytes on
simple cubic and body-centered-cubic lattices show order-
disorder phase transitions with a tricritical point, while gas-
liquid phase separation is suppressed. The introduction of
charge asymmetry in lattice models of ionic fluids tends to
suppress the possibility of order–disorder phase transitions,

JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 14 8 APRIL 2003

63940021-9606/2003/118(14)/6394/9/$20.00 © 2003 American Institute of Physics



and gas–liquid phase coexistence reappears, although the po-
sition of critical point may change.

In this paper, we present a thermodynamic investigation
of charge-asymmetric lattice models of electrolytes. By ex-
plicitly including the clustering of oppositely charged par-
ticles and ion–cluster interactions, we obtain phase diagrams
for 2:1 and 3:1 lattice electrolytes, and we locate the critical
point for the 4:1 ionic system. Our results accord well with
the trend obtained in recent Monte Carlo simulations and the
continuum DHBjCI theory.17 The paper is organized as fol-
lows: In Sec. II we present an overview of our thermody-
namic approach to multicomponent charged species mixtures
and we outline the pure Debye–Hu¨ckel theory. The full
theory, which accounts for charged and neutral cluster for-
mation and their interactions with the residual ions, for a 2:1
system is presented in detail in Sec. III. Section IV describes
the general scheme of thermodynamic calculations for 3:1
and 4:1 lattice electrolytes. Finally, the results are discussed
in Sec. V and our conclusions are given in Sec. VI.

II. LATTICE DEBYE–HÜ CKEL THEORY
OF CHARGE-ASYMMETRIC ELECTROLYTES

A. Thermodynamic overview

Consider a system of charged particles on a three-
dimensional simple cubic lattice with a unit cell lengtha,
which initially hasN0 ions carrying a charge2zq andzN0

ions with a chargeq: i.e., the total number of ions isN5(z
11)N0 . Because of the electrostatic interactions, ions with
opposite charges tend to form clusters. As a result, there will
be many species present in the system: dimers, trimers, etc.,
with respective charges (2z11)q,(2z12)q,...,0. If the
number of particles of typei is given byNi , then we define
r i5Ni /V and r i* 5r iv0 to be the number density and the
reduced density of thei th species, with v05a3 being the unit
lattice cell volume.

The Helmholtz free energy is central for the determina-
tion of the thermodynamic behavior of charge-asymmetric
lattice electrolytes. It can be approximated by summing con-
secutively the free energies describing the interactions be-
tween different species,

F5F Id1(
i

Fi , ~1!

whereF Id is the ideal lattice gas~entropic! term andFi is the
electrostatic energy of thei th species. Once the reduced free
energy densityf̄ [2F/kBTV is known, the reduced chemi-
cal potentials for every componentm̄ i[m/kBT can be com-
puted via

m̄ i52] f̄ /]r i . ~2!

Finally, the reduced pressure is given by

p̄[p/kBT5 f̄ 1(
i

r im̄ i . ~3!

Then the possible phase equilibria are defined by matching
pressures and chemical potentials for each component in dif-
ferent phases.

In multicomponent systems with charged particles it is
the electrochemical potential that must be equal in coexisting
vapor (v) and liquid ~l! phases,17 namely,

m i ,v1qifv5m i ,l1qif l , ~4!

wherefv( l ) is the electrostatic potential in the corresponding
phase, where, in general, there is a nonzero Galvani potential
differenceDf5fv2f l between the phases.24 However, for
calculating phase equilibria in multicomponent systems of
charged particles, it is more convenient to use the single-
component thermodynamic picture.17 Since every thermody-
namic phase is electroneutral, the multicomponent system
with N5(z11)N0 ions can be viewed as a single-
component system ofN0 molecules, each of them consisting
of one negative ion andz positive ions. Then phase equilib-
rium between the liquid and vapor at temperatureT is en-
sured by

P~T,rv!5P~T,r l !, m~T,rv!5m~T,r l !, ~5!

whererv andr l are the overall particle densities in gas and
liquid phases, respectively, whilem5m21zm1 . The pres-
sure in each phase can still be calculated using Eq.~3!. This
approach accounts for the electroneutrality of each phase and
utilizes only one chemical potential, which significantly sim-
plifies calculations of phase diagrams.

B. Pure DH theory of charge-asymmetric lattice
electrolytes

As a first approximation, assume that there is no cluster-
ing between oppositely charged particles and that only free
ions are present in the system. The free energy density can be
written as f̄ 5 f̄ Id1 f̄ DH, where the first term is the entropic
ideal gas contribution, which is given by

f̄ Id52
r1*

v0
ln r1* 2

r2*

v0
ln r2* 2

12r*

v0
ln~12r* !. ~6!

The subscripts ‘‘1’’ and ‘‘ 2’’ denote positive and negative
ions, respectively. Owing to overall electroneutrality in the
system, the densities of free ions are related to each other by

r1* 5zr* /~11z!, r2* 5r* /~11z!. ~7!

The second term in the free energy density is the elec-
trostatic contributionf̄ DH5 f̄ 1(r1)1 f̄ 2(r2), which is the
result of ion–ion Coulombic interactions. By solving the lat-
tice version of the linearized Poisson–Boltzmann equation
for the electrostatic potential and subsequently applying the
Debye charging procedure, as was done for the charge-
symmetric lattice model of electrolytes,20 it can be easily
shown that

f̄ DH5
1

12v0
E

0

x2FP~1!2PS 6

x216D Gd~x2!, ~8!

where

P~z!5
1

~2p!3 E
2p

p E
2p

p E
2p

p dk

12
z

3
~cosk11cosk21cosk3!

~9!
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‘is the integrated lattice Green’s function for the simple cubic
lattice25,26 and x25k2a2 with the reciprocal squared Debye
screening length given by

k25
4p

DkBT
~r1q11r2q2

2 !5
4pzq2r

DkBT
. ~10!

Now the chemical potential for each type of ion can be easily
calculated through Eq.~2!, which yields

m̄ i5 lnS r i*

12r* D 1
p

3T* FPS 6

x216D2P~1!G , ~11!

where we have defined the reduced temperature by

T* 5
DkBTa

zq2 , ~12!

which is related to the reduced density asr* 5x2T* /4p.
Then for the chemical potential of the neutral ‘‘molecule,’’
consisting of one negative andz positive ions, we obtain

m̄5~11z!lnS r*

12r* D1~11z!
p

3T*

3FPS 6

x216D2P~1!G1C~z!, ~13!

where the density-independent constant isC(z)5@z ln z2(1
1z)ln(11z)#. Having the chemical potentials and free en-
ergy, we can calculate the pressure using Eq.~3! to obtain

p̄v052 ln~12r* !1
1

12Fx2PS 6

x216D
2E

0

x2

PS 6

x216Dd~x2!G . ~14!

Note that the expression for the pressure is independent of
the charge asymmetry and the chemical potential of the
‘‘molecule’’ is (11z)/2 times the value for the 1:1 electro-
lytes @if we neglect the constantC(z), which does not affect
the thermodynamics of the system#. Then the predicted phase
separation and critical point

Tc* 50.1018, rc* 50.0996 ~15!

are the same as for the charge-symmetric lattice electrolytes.
This result fully agrees with the pure DH theory in con-
tinuum space,17 which also predicts no change in the critical
parameters for charge-asymmetric electrolytes.

III. LATTICE DEBYE–HÜ CKEL THEORY
WITH CLUSTERING AND CLUSTER-IONS
INTERACTIONS FOR 2:1 ELECTROLYTES

A. Bjerrum clustering

One of the main deficiencies of the pure DH theory,
which describes the system of free positive and negative
ions, is the total neglect of the ion clustering. Oppositely
charged particles attract each other and form clusters in order
to reduce the free energy. This process significantly de-
creases the number of free ions. In charge-symmetric lattice
electrolytes in the critical region the number of neutral ion
pairs is 2–3 times larger than the number of free ions,20 and

one can expect that for charge-asymmetric ionic systems this
ratio should be even larger because of the larger free energy
gain for clusters with the increase of the parameterz.

The importance of ion pairing in charged particles sys-
tems was first recognized by Bjerrum.23,27 In his original
approach a cutoff distance between two oppositely charged
ions was introduced to define a bound pair. Later, the defini-
tion of a pair became a subject of many discussions.1,3 How-
ever, as was shown in a careful analysis by Levin and
Fisher,3 the precise value of this cutoff distance has little
influence on the critical parameters and coexistence curves
~less than 0.5%!. Meanwhile, the further problem of calcula-
tion of the electrostatic energy of the dipole particle poses
another, new technical difficulty, since the ion pair does not
possess spherical symmetry and the problem cannot be
solved exactly analytically or numerically. By approximating
the ideal bispherical exclusion zone by a symmetrically
centered sphere, Levin and Fisher3 succeeded in obtaining
a precise, numerically tractable solution. For three- or four-
particle clusters in charge-asymmetric continuum ionic flu-
ids, the same strategy also yields reasonable results,17 al-
though the technical complexity of computations increases
significantly.

In lattice systems the situation is intrinsically simpler
because of the discrete rather than continuous symmetry. In
1:1 electrolytes it allows one to define clearly an ion pair as
two oppositely charged particles sitting on neighboring lat-
tice sites.20 Similarly, for charge-asymmetric lattice electro-
lytes we can easily define different cluster configurations.
These particles may be viewed as independent chemical spe-
cies, and the processes of clustering can be considered as a
set of chemical reactions between them.

To illustrate our approach, consider a 2:1 lattice ionic
fluid in which clusters are allowed to form. Then, following
Ref. 17, in addition to the free positive particles with charge
1q and free negative ions with charge22q, we suppose it
suffices to consider three basic types of clusters: specifically
we include dimers carrying a charge2q ~with the number
densityr2* ) and two possible configurations of neutral trim-
ers, linear and angular, with number densitiesr3a* andr3b* ,
respectively~see Fig. 1!.

In the spirit of Bjerrum’s approach, we assume first that
neutral clusters do not interact with charged particles. Then
these neutral particles contribute only to the ideal free en-
ergy, and the total free energy density is given by

FIG. 1. Different charged and neutral particles and chemical reactions in 2:1
lattice electrolyte systems.
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f̄ 5 f̄ Id~r1 ,r2 ,r2 ,r3a ,r3b!1 f̄ 1
El 1 f̄ 2

El 1 f̄ 2
El . ~16!

To calculate the free energy of the charged dimersf 2
El , we

adopt a view of them as a combination of neutral symmetric
~1,2! dipoles, which occupy two neighboring sites, and
single-site particles~with the charge2q) which sit on the
top of negative part of the dipoles, i.e., (1,22)5(1,2)
1(2). Then the electrostatic free energy densities for the
free ions and charged dimers are given by the corresponding
expressions from the pure DH theory, although with a differ-
ent inverse squared Debye screening length, namely,

k25
4p

DkBT
~r1q214r2q21r2q2!. ~17!

To determine the ideal gas~entropic! contribution to the
free energy one needs to know the corresponding densities
and chemical potentials. As shown in Fig. 1, we identify five
different species in the 2:1 lattice Coulombic system. Let us
definea as a set of free positive and negative ions,b as a set
of negatively charged dimers and free positive ions, 3a as
the linear neutral trimers, and 3b as the neutral angular tri-
mers. Then the clustering in these system can be described
by three chemical reactions

a

K1

b, ~18!

b

K2a

3a, ~19!

b

K2b

3b, ~20!

with the corresponding equilibrium constantsK1 , K2a, and
K2b . The chemical equilibrium in the system is described by
the following relations between chemical potentials

2m11m25m11m25m3a5m3b . ~21!

The chemical potential for each particle can be com-
puted by first separating the entropic and electrostatic parts,
i.e., m̄ i5m̄ i

Id1m̄ i
El , where the latter is determined simply by

m̄ i
El52] f̄ El/]r i . For the ideal-gas parts of the chemical po-

tentials the situation is more complex. For free single-site
ions the chemical potentials can be easily found applying the
potential distribution theorem28 or, from simple entropic con-
siderations,

m̄1
Id5 ln r1* 2 ln~12r1* 2r2* 22r2* 23r3a* 23r3b* !, ~22!

m̄2
Id5 ln r2* 2 ln~12r1* 2r2* 22r2* 23r3a* 23r3b* !. ~23!

However, for dimers and trimers there are no similar exact
expressions. Nevertheless, these entropic contributions to the
chemical potentials can be estimated by applying the Bethe
approximation,29 which has been successful in the DH theory
of 1:1 lattice electrolytes.20 Note that in lattice electrolyte
systems phase transitions predominantly take place in the
low-density regimes, and thus the error in using the Bethe
approximation is expected to be small.

Defining the activities of the particles viazi , for every
species we have

zi5z i /L i
3nem i, ~24!

wheren is the number of sites occupied by the particle,z i is
the corresponding internal partition function, andL i is the de
Broglie wavelength~see Ref. 3!. For the latter the equality
L15L25L25L3a5L3b holds. We refer to the Appendix
for a detailed calculation of the dimer and trimer activity
using the Bethe approximation method, and we give here
only the final expressions for activities:

z25
r2* ~12 1

3r2* !

~12r1* 2r2* 22r2* 23r3a* 23r3b* !2 em̄2
El
, ~25!

z3a5
r3a* ~12 1

2r2* !2

~12r1* 2r2* 22r2* 23r3a* 23r3b* !3 e21/~22r3a!em̄3a
El

,

~26!

z3b5
r3b* ~12 1

2r2* !2

64~12r1* 2r2* 22r2* 23r3a* 23r3b* !3 e21/~22r3b!em̄3b
El

.

~27!

Once the activities are known, the chemical potentials are
derived by utilizing Eq.~24! for each species, and the free
energy is obtained by integrating the chemical potentials.
Finally, we arrive at the chemical potential of ana ‘‘mol-
ecule’’ ~which consists of two positive and one negative ions!
in the form

m̄a
DHBj52lnr1* 1 ln r2* 23 ln~12r1* 2r2* 22r2* 23r3a*

23r3b* !1m̄El ~28!

and the reduced pressure

p̄DHBjv052 ln~12r1* 2r2* 22r2* 23r3a* 23r3b* !

13 ln~12r2* /3!13 ln~12r3a* /2!

13 ln~12r3b* /2!2
r3a*

22r3a*
2

r3b*

22r3b*
1 p̄Elv0 .

~29!

The electrostatic part of the chemical potential and the pres-
sure have the same form as in the pure DH theory~14!,
namely,

m̄El5
p

3T* FPS 6

x216D2P~1!G , ~30!

p̄El5
1

12Fx2PS 6

x216D2E
0

x2

PS 6

x216Dd~x2!G , ~31!

wherex25k2a2 with k2 given by Eq.~17!.
In terms of activities, the chemical equilibrium condi-

tions ~21! can be presented in the form of laws of mass
action

z1
2 z2K15z2z1 , ~32!

z2z1K2a5z3a , ~33!

z2z1K2b5z3b . ~34!

As can be seen from the chemical equilibrium conditions
~21! and the definition of activities~24!, the association con-
stants in Eqs.~32!–~34! are relaxed to the internal partition
functions of dimers and trimers:
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K15z1~T!, K1K2a5z3a~T!, K1K2b5z3b~T!. ~35!

The above definitions of the association constants lead to the
expressions

z i5v0ci (
j 51

n

e2uji /kBT, ~36!

whereuji 5qjw j is the electrostatic energy of thej th ion of a
cluster particlei in the potentialw j , which is due to the other
ions entering the multimer cluster. The coefficientci in Eq.
~36! is an entropic factor which takes into account all allow-
able configurations of the cluster. The electrostatic potentials
w j can be determined by solving the lattice version of the
linearized Poisson–Boltzmann equation

Dw j52
4p

Dv0
(
kÞ j

qkd~r k!, ~37!

in which qk andr k are the charge and the position of thekth
ion entering the multimer cluster. Since lattice Coulomb po-
tentials can be calculated exactly in numerical terms,20 we
obtain the following expressions for association constants:

K156v0 expF1.08152

T* G , ~38!

K2a5v0 expF0.812033

T* G , ~39!

K2b54v0 expF0.734737

T* G . ~40!

Substituting Eqs.~38!–~40! and the expressions for ac-
tivities ~25!–~27! into the expressions for chemical equilib-
rium ~32!–~34! yields a set of equations, which define im-
plicitly the dimer and trimer densitiesr2* , r3a* , andr3b* in
terms of the monomer densitiesr1* andr2* . The electroneu-
trality of the system requires thatr1* 52r2* 1r2* . Then the
chemical potential and the pressure can be expressed in
terms of only one variable, the total reduced densityr*
5r1* 1r2* 12r2* 13r3a* 13r3b* , which allows for the con-
struction of the coexistence curve~see Fig. 2!.

As in the case of charge-symmetric continuum3 and
lattice20 electrolytes, the coexistence curve in the DHBj ap-
proximation has an unphysical bananalike shape. This is re-
lated to the fact that, as the temperature is lowered, the num-

ber of neutral clusters quickly grows, and this depletes the
number of free charges present in the system. Since it is the
density of free charges that plays the role of the order param-
eter and governs the gas–liquid transition, the phase separa-
tion takes place at higher overall densities. At this level of
approximation, neutral clusters are electrically inactive and,
hence, contribute only to the hard-core part of the free en-
ergy, which is the same for both phases. Thus DHBj theory
simply superimposes the pressure of ideal gas of clusters on
the pure DH pressure, and both sides of the coexistence
curve shift to higher densities by equal amounts. The critical
density is now substantially higher,rc* '0.0807, while the
critical temperature slightly decreases,Tc* '0.099.

B. Cluster-ion interactions

The predictions of DHBj theory for lattice ionic systems
are thermodynamically unreasonable and should be corrected
by taking into account the effects of interactions between
multimers in clusters and free ions.3,20 As shown earlier for
continuum and lattice electrolytes,3,20 these solvation effects
eliminate the unphysical banana-shape phase coexistence
curves. It is reasonable to expect that these cluster–ion inter-
actions are even more important in charge-asymmetric ionic
systems due to a larger fraction of neutral clusters in equi-
librium with free ions.

The exact calculations of interactions between the mul-
timers and free ions are very complicated. Instead, we use a
reasonable assumption to obtain closed analytic expressions.
We approximate the neutral clusters as a set of overlapping
noninteracting symmetric dipoles. For example, the neutral
trimers can be viewed as a combination of two dipoles, i.e.,
~1, 22, 1! 5 ~1, 2! 1 ~2, 1!. The charged clusters, as we
discussed above, are approximated as symmetric dipoles
overlapping with free ions, i.e.,~1, 22! 5 ~1, 2! 1 ~2!.
We expect that differences between our approximation and
the exact cluster–ion interaction contribution to the free en-
ergy to be small since the corrections correspond to higher-
order dipole–dipole interactions and thus can be neglected.

According to our approximation the reduced density of
dipoles from all cluster particles in the system is equalr2*
12r3a* 12r3b* . Since the energy of solvation of a single free
dipole in the lattice electrolyte system is known exactly,20 the
cluster–ion interactions contribute to the free energy density
as

f̄ CI5~r2* 12r3a* 12r3b* !
pq2a2

21DkBTv0
2

3F2
x2

2
1

1

x2 E
0

x2

G~x2!d~x2!G , ~41!

where

G~x2!5
x2~x217!

x216
PS 6

x216D . ~42!

Then the corresponding contributions to the chemical poten-
tials and pressure are given by

FIG. 2. Phase diagrams for 2:1 lattice electrolyte:~a! pure DH theory,~b!
DHBj approximation, and~c! DHBjCI theory.
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m̄a
CI5

2p2~r2* 12r3a* 12r3b* !

21~T* !2 F1

2
2

1

x2 G~x2!

1
1

x4 E
0

x2

G~x2!d~x2!G ~43!

and

p̄CIv05m̄a
CIx2T* /4p, ~44!

which must be added to the values provided by Eqs.~28! and
~29! in order to obtain the complete expressions for the
chemical potential and pressure.

The full DHBjCI theory predicts a phase separation as
exhibited in Fig. 2. As in the charge-symmetric lattice and
continuum electrolytes,3,20 taking into account the solvation
of clusters by the residual free ions eliminates the unphysical
bananalike shape of the coexistence curve. The critical pa-
rameters are now given by

Tc* 50.087 35, rc* 50.050 01,
~45!

Zc[pc /rckBT50.2431.

Comparison with the critical parameters of 1:1 lattice ionic
system indicates that the critical temperature is about 11%
lower, while the critical density is 1.67 times higher. These
trends—the decrease in the critical temperature and increase
in the critical density—are in agreement with the results of
continuum calculations for charge-asymmetric electrolytes.17

It is interesting to estimate the relative amounts of dif-
ferent species in the critical region. In terms of molar frac-
tions yi5nir i* /r* (ni is the size of the particle!, our theo-
retical approach predicts

y150.1002, y250.0388, y250.0452,
~46!

y3a50.0075, y3b50.8083.

As expected, the fraction of neutral trimers significantly ex-
ceeds the fraction of free charges. Also, the number of
charged dimers is very low, which can be attributed to their
propensity to combine with free ions to form energetically
more favorable neutral trimers. What is surprising, at first
glance, is that the ratio of linear trimers to angular trimers is
much less than unity. Indeed, because electrostatic interac-
tions favor a linear arrangement of the ions in a trimer clus-
ter, these clusters are more energetically stable and should
prevail over angular trimers. However, these naive argu-
ments do not take into account the entropic considerations.
First of all, the angular trimers have more different possible
configurations than the linear trimers. In addition, they are
more compact and can be packed more densely. As a conse-
quence, there are more ways to arrange angular trimers on
the lattice and they dominate trimer clusters.

IV. LATTICE DHB ÕCI THEORY
FOR 3:1 AND 4:1 ELECTROLYTES

The thermodynamic calculations forz53 asymmetric
lattice electrolytes can be performed following the method
presented in full detail in Sec. III. As shown in Fig. 3, there
are seven basic clusters to be considered in this system-
,namely, single-site positive and negative ions, dimers with

the charge22q, linear and angular trimers~with the charge
2q), and two types of neutral tetramers, which are con-
nected by the network of six chemical reactions. Note that
we do not consider clusters with bonds between the same
charges. For example, we assume that charged trimers have
the configurations~1, 32, 1!, but not~1, 1, 32!. Indeed,
these particles are less stable and their contributions to free
energies can be neglected.

In addition, as in the case of 2:1 lattice Coulombic sys-
tems, we view the clusters as combinations of noninteracting
~1, 2! symmetric dipoles and single-site charges. The ac-
tivities of multimers are calculated by applying the Bethe
approximation method outlined in the Appendix. These ap-
proximations allow us to calculate the free energy of the
system as a sum of the corresponding entropic, electrostatic,
and cluster solvation terms for each particle. The resulting
phase coexistence curve is given in Fig. 4. The critical pa-
rameters are

Tc* 50.0688, rc* 50.0847. ~47!

The molar fractions of different clusters in the critical region
are

FIG. 3. Different charged and neutral particles and chemical reactions in 3:1
lattice electrolyte.

FIG. 4. Phase diagrams of~a! 1:1, ~b! 2:1, and~c! 3:1 lattice electrolytes in
DHBjCI theory.
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y150.088 72, y250.003 47, y250.0088,

y3a50.0033, y3b50.2049, y4a50.3043, ~48!

y4b50.3864.

As expected, neutral clusters again dominate.
Analogous thermodynamic calculations can be done for

4:1 lattice electrolytes. However, the number of different
types of clusters and the number of chemical reactions be-
tween them become fairly large, and the full thermodynamic
analysis is difficult to complete. Instead, we focus on the
critical region of the system where calculations can be com-
pleted. The resulting critical parameters are

Tc* 50.060, rc* 50.148. ~49!

The relative density of all neutral clusters here is about 87%.
Full phase diagrams forz:1 lattice ionic systems (z

51, 2, or 3! calculated using DHBjCI approach are exhibited
in Fig. 4.

V. DISCUSSION

Our analysis of charge-asymmetric lattice electrolytes
using Debye–Hu¨ckel theory with Bjerrum clustering and
cluster–ion interactions indicates that charge asymmetry
strongly influences the thermodynamics, especially in the
critical region. It is found that critical temperatures decrease
while critical densities increase with charge asymmetry. Our
theoretical predictions for critical parameters are compared

in Fig. 5 with the results of continuum Monte Carlo
simulations8,10,11 and with the predictions of the continuum
DHBjCI theory.17

Clearly, the overall consistency between the lattice and
continuum DHBjCI approaches and computer simulations
results indicates that the Debye–Hu¨ckel method correctly
captures the physics of phase transitions in these ionic sys-
tems. In Coulomb systems with charge asymmetry the for-
mation of clusters is strongly favored. Clusters contribute to
electrostatic interactions much less than free ions, and the
effective electrostatic energy per particle decreases. How-
ever, the phase separation is driven by charged particles, and
the temperature is normalized by the strongest electrostatic
interaction between the positive and negative ions@see Eq.
~12!#. Therefore, the reduced critical temperature falls.

Cluster formation also significantly depletes the number
of free ions. At the critical point, the molar fractions of free
single-site positive and negative ions are 21.0%, 13.8%,
9.2%, and 4.2% for 1:1, 2:1, 3:1, and 4:1 lattice electrolyte
systems, respectively. As a consequence, larger overall den-
sities are required to achieve the phase separation, and the
reduced critical density increases.

At the same time, the relative numbers of neutral par-
ticles as a function of charge asymmetry shows a nonmono-
tonic behavior. The molar fractions of neutral clusters are
equal to 79% in 1:1 ionic system, 81% in 2:1 electrolytes,
69.1% in 3:1 ionic system, and about 88% in 4:1 electrolytes.
The decrease of the molar fraction of neutral clusters in the
critical region in the 3:1 system as compared to 2:1 electro-
lytes has also been found in continuum calculations.17 The
actual number of neutral clusters depends on two fac-
tors: the free energy gain of cluster formation and the tem-
perature~through the equilibrium constant!. It is possible that
in 3:1 electrolytes the lowering of the critical temperature is
not enough to overcome the repulsion between the positive
ions in neutral tetramers, while in 4:1 ionic systems the de-
crease in critical temperature is enough to favor more
strongly the formation of neutral clusters.

The absolute values of the critical temperature in our
charge-asymmetric lattice models is larger than the Monte
Carlo simulation data8,10 by a factor of 1.68–1.94, with
lesser factors corresponding to higherz. This agrees with the
general feature of lattice models to overestimate the values
of critical temperatures in comparison with continuum mod-
els. Note, however, that the simulations are performed with
the continuum potential, while our theory employs the lattice
Coulombic potentials. In addition, the reduced temperature
~12! is normalized by the energy of two ions interaction via
continuumor 1/r Coulombic potential. However, the lattice
potential differs from 1/r at short distances,20 and normaliz-
ing the temperature by the energy of lattice Coulombic inter-
actions of nearest neighbors would lower the temperatures
by an additional 8%.

The absolute values of the critical densities in our theo-
retical approach are only 38%–69% of the current Monte
Carlo estimates.8,10 This fact reflects the discrete nature of
the lattices and that not all possible clusters have been taken
into account.

FIG. 5. ~A! Critical temperaturesTc* and ~B! critical densitiesrc* as func-
tions of charge asymmetry:~a! our lattice DHBjCI predictions,~b! con-
tinuum DHBjCI predictions~Ref. 17!, and ~c! Monte Carlo simulations
~Refs. 8, 10, and 11!.
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VI. CONCLUSIONS

We have investigated the effects of charge asymmetry on
thermodynamics and critical properties of the lattice ionic
systems using Debye–Hu¨ckel theory with Bjerrum clustering
and cluster–ion interactions. Phase diagrams forz:1 lattice
electrolytes have been obtained forz52 and 3, while forz
54 the location of the critical point was determined. Our
results agree well with the Monte Carlo simulations and with
the continuum Debye–Hu¨ckel theory,17 predicting that the
increase in the charge asymmetry lowers the critical tempera-
ture and increases the critical density.

Our theoretical approach may be extended in several di-
rections. In this paper we investigated charge asymmetric
electrolyte systems on the simple cubic lattices. It is interest-
ing to consider the lattices with different symmetry such as
body-centered-cubic and face-centered-cubic lattices, for
which thermodynamic calculations for charge symmetric
systems are already performed.20 Another interesting ques-
tion is how the charge asymmetry will affect the ionic sys-
tems in two dimensions, where interesting phase transitions
may appear.
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APPENDIX: THE BETHE APPROXIMATION
FOR MULTIMERS

Consider a system ofNm multimers~each particle occu-
piesm lattice sites!, which interact with each other only via
on-site exclusion, on a simple cubic lattice with the total
number of sites,N. We can calculate the entropy of the mul-
timer distribution following a direct method of counting
probabilities in the Bethe approximation employed by
Nagle.29 ~For other methods of calculating the partition func-
tion for lattice systems see Refs. 30 and 31.! The Bethe
approximation does not take into account any correlations
around cycles, and thus it is exact for lattices with only tree-
like paths ~Bethe lattices!. However, for three-dimensional
cubic lattices this approximation gives fairly good results.

Consider, first, a system consisting only of dimers. Then
the number of ways to arrangeN25Nr2* dimers on the
simple cubic lattice can be approximated by29

W2~r2* !5F S N
2Nr2*

D62Nr2* GF S 2r2*

6 D 1/2S 12
2r2*

6 D 5/2G2Nr2*

3F S 12
2r2*

6 D 6/2GN~122r2* !

. ~A1!

Here the first set of square brackets represents the total num-
ber of ways to arrangeNr2* dimer vertices on the lattice,

taking into account six possible orientations for each dimer,
provided one its vertex is fixed. The second set of brackets
gives the probability that a dimer vertex configuration is
compatible with all its nearest-neighbor vertex configura-
tions. Here 2r2* /6 is the probability of finding dimer’s edge
along certain lattice direction starting from a given point, and
(122r2* /6)5 ensures there is only one dimer at this point.
The third set of square brackets is the probability that no
dimers occupyN(122r2* ) empty lattice sites. The square
roots are taken in order not to compute the probabilities
twice. The Bethe approximation for dimer’s activity on the
simple cubic lattice then yields

z5expS 2
1

N

d

dr2*
ln W2~r2* ! D 5

r2* /3~12r2* /3!

~122r2* !2 . ~A2!

Similar calculations can be performed for the systems
containing trimers, tetramers, or higher-order multimers.
However, since now not all multimer vertices are equivalent,
we have to account for each type of vertex separately.

In particular, consider the system withN35Nr3* trimers.
Then there are 3Nr3* trimer vertices, withNr3* ‘‘center’’ and
2Nr3* ‘‘end’’ vertices. For linear trimers the number of pos-
sible orientations is 3 if we fix a ‘‘center’’ vertex and 6 if we
fix an ‘‘end’’ vertex. Then the number of ways to arrange
linear trimers on the lattice is given by

W3~r3* !5F S N
3Nr3*

D62Nr3* 3Nr3* GF S 3r3*

6 D 1/2

3S 12
3r3*

6 D 5/2G2Nr3* F S 3r3*

6 D 2/2S 12
3r3*

6 D 4/2GNr3*

3F S 12
3r3*

6 D 6/2GN~123r3* !

. ~A3!

Again the first set of square brackets gives the maximum
possible number of distinct trimer vertices configurations,
the second set of square brackets accounts for the probability
that all ‘‘end’’ vertex configurations are compatible with their
nearest-neighbor configurations, the third set of brackets cor-
responds to the ‘‘center’’ vertices’ compatibility, and the last
factor ensures that there areN(123r3* ) lattice sites free of
trimers. Then the activity of linear trimers is given by

z3a5
r3a* ~123r3a* /6!2

~123r3a* !3 e21/~22r3a* !. ~A4!

For angular trimers, the only difference is that now there are
24 distinct trimer orientations if we start from the ‘‘end’’
vertices and 12 orientations if we start from the ‘‘center’’
vertex. This yields

z3b5
1

64

r3b* ~123r3b* /6!2

~123r3b* !3 e21/~22r3b* !. ~A5!

Similarly, the activity of tetramers is given by

z45C
r4* ~122r4* /3!3

~124r4* !4 e21/~122r4* /3!, ~A6!
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where the coefficientC equals 1/96 for planar tetramers and
C51/128 for nonplanar tetramers.
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