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The polymerization dynamics of double-stranded polymers, such as actin filaments, is investigated
theoretically using simple chemical kinetic models that explicitly take into account some
microscopic details of the polymer structure and the lateral interactions between the protofilaments.
By considering all possible molecular configurations, the exact analytical expressions for the growth
velocity and dispersion for two-stranded polymers are obtained in the case of the growing at only
one end, and for the growth from both polymer ends. Exact theoretical calculations are compared
with the predictions of approximate multilayer models that consider only a finite number of the most
relevant polymer configurations. Our theoretical approach is applied to analyze the experimental
data on the growth and fluctuations dynamics of individual single actin filaments. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1858859g

I. INTRODUCTION

Cytoskeletal proteins such as actin filaments, intermedi-
ate filaments, and microtubules are rigid multifilament poly-
mers that play a variety of roles in biological systems, in-
cluding organization of cell structures, transport of
organelles and vesicles, cell motility, and reproduction.1–3

Biological functions of these proteins are mostly determined
by the processes that take place during their polymerization.
However, our understanding of the coupling between these
biopolymer’s structure and functions and their growth pro-
cesses is still very limited.

In recent years the number of experimental investiga-
tions of the growth mechanisms and dynamic properties of
rigid multifilament biopolymers at a single-molecule level
increased significantly.4–11 Dynamic behavior of individual
microtubules has been characterized by a variety of experi-
mental techniques such as video and electron microscopy,
fluorescence spectroscopy, and optical trap spectrometry,4–9

whereas the studies of the single actin filaments have just
begun.10,11 Many unusual phenomena in the assembly dy-
namics of these biopolymers have been observed, such as
treadmilling for microtubules and actin filaments,10,12,13and
microtubule dynamic instability.12,14

Recent experimental investigations of the single actin
filament length fluctuations10 raised many questions about
the actin polymerization dynamics. A large discrepancy in
kinetic rate constants estimated by average length change in
the initial polymerization phase and from the analysis of
length fluctuations in the steady-state phasesa factor of 40d
has been observed. One of the possible explanations for this
discrepancy might be the oversimplified theoretical model,
used in analysis,10 that neglected the polymer structure and
lateral monomer-monomer interactions at the actin filament
tips. Similar problems have been found in the growth dy-
namics of individual microtubules under the influence of ex-
ternal forces.6,9,15 For example, the depolymerization rate
constants determined from a phenomenological description

of microtubule dynamics, which do not incorporate the
biopolymer’s structure and lateral interactions between the
filaments, contradict to values measured in some indepen-
dent bulk chemical kinetic experiments.15

A large volume of experimental results stimulated many
theoretical investigations of polymerization dynamics for
rigid multifilament proteins. In one approach, it was sug-
gested that the growth of rigid biopolymers is controlled by
thermal fluctuations.16–18This is a basic idea of the so-called
polymerization ratchet models. In a different approach,
more phenomenological chemical kineticsstochasticd models
have been used to describe the biopolymer’s growth
dynamics.19–22 In these simplified phenomenological models
it is assumed that the overall dynamics is a balance between
polymerization and depolymerization processes; however,
the microscopic details of the polymer structure and the
differences in lateral intersubunit interactions are not taken
into consideration. In addition, the microtubule assembly
dynamics has been studied extensively by computer
simulations.23–26

Recently, we introduced a set of simple stochastic mod-
els for the description of the growth of rigid biopolymers
consisting ofN protofilaments, that explicitly includes the
geometric structure and monomer-monomer lateral
interactions.27 According to this approach, only few polymer
configurations are relevant for the growth dynamics because
of inhomogeneity in lateral interactions that comes from the
geometry of polymer ends. These configurations are selected
using the criteria that the distances between the protofilament
tips in each configuration should be less thannd, wheren
=1,2, . . . andd is a polymer subunit length. Forn=1, in the
so-called “one-layer” approximation, the mean growth veloc-
ity and a dispersionsor a diffusion coefficientd of polymer’s
length have been calculated exactly for any number of
protofilaments and for the arbitrary geometry of biopoly-
mer’s growing end. The quality of the one-layer approxima-
tion has been discussed for the simple case of the growth of
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polymer made of two protofilaments, i.e.,N=2, which is
closely related to actin filaments. In this case, a full dynamic
description that includes all possible polymer configurations
provided exact expressions for the mean growth velocity. It
was found that the predictions of the approximate model are
approaching the exact results for large but realistic values of
the lateral interactions.

Although the approach presented in Ref. 27 provided a
very good description of experimental results of individual
microtubule growth under external forces, and it suggested a
reasonable way of coupling of the microscopic structure of
the biopolymers with their dynamic properties, there are sev-
eral theoretical problems with this method. First, the criteria
that helps to determine the finite number of the most relevant
configurations in “n-layer” approximations is introduced us-
ing an arbitrary cutoff distance, but it would be more desir-
able to derive it from more fundamental thermodynamic and
kinetic arguments. Second, the method used for calculating
exactly the full dynamic model of the growth of two-
stranded polymers allowed only the determination of the
mean growth velocity, and not the dispersion. However, the
simultaneous knowledge of the dispersion and the velocity is
crucial for understanding the growth mechanisms of rigid
biopolymers.1,15 The goal of this paper is to address these
theoretical issues by studying the growth dynamics of two-
stranded biopolymers with more detailed microscopic de-
scription. In addition, we will analyze the experimental ob-
servations on the growth of single actin filaments.

This article is organized as follows. The dynamics of the
two-stranded polymers that can grow only from one end is
discussed in Sec. II, while the description of the polymer
growth from both ends is given in Sec. III. The application of
the developed chemical kinetic models for the experiments
on single actin filaments is presented in Sec. IV. The results
are discussed and summarized in Sec. V. The mathematical
details of calculations of dynamic properties are given in the
Appendix.

II. GROWTH DYNAMICS OF ATTACHED
TWO-STRANDED POLYMERS

Consider a growing rigid polymer that consists of two
protofilaments. The polymer is attached to a nucleating site
on a surface and may polymerize or depolymerize only from
the free end, as shown in Fig. 1. This is the attached two-
stranded polymer.28 The building block of this polymer is a
monomer subunit of lengthd. The lateral offset between two
parallel protofilaments is equal toa and it can generally vary
between 0 andd. For actin filaments the monomer size isd
=5.4 nm and the lateral shift isa=d/2=2.7 nm.1,2

There are infinite number of possible polymer configu-
rations that differ from each other by the geometry of the
growing end and the total length of the polymer. For labeling
these configurations we use a pair of integers that count the
number of monomer subunits in each protofilament. Without
loss a generality, let us choose a firstsbottomd protofilament
as a leading one in a configurationsl , ld, where the distance
between protofilament tips equal toa: see Fig. 1. The second
stopd protofilament will be the leading one in the configura-

tion labeled assl , l +1d, where the distance between the tips
is equal tod−a. Generally, as illustrated in Fig. 1, for con-
figurations sl , l −kd, where k=0,1,2, . . ., thedistances be-
tween the parallel protofilaments are equal toa+kd and the
first protofilament is the leading one, while for configurations
sl −k, l +1d the distances between protofilament tips ared
−a+kd and the second protofilament is the leading one.

All dynamic transitions in the attached two-stranded
polymers may be characterized by a set of four pairs of tran-
sition rates that depend on the local geometry of the growing
end. As shown in Fig. 1, the attachment and detachment rates
from the leading protofilament for all polymer configurations
are given byu0 andw0, respectively. Transition ratesu1 and
w1 describe the polymerization and depolymerization events
when the overall length of the polymer does not change. For
example, as presented in Fig. 1, the transitions between the
configurationssl +1,ld and sl +1,l +1d are given by these
rates, while in both configurations the polymer length is
dsl +1d+a. A monomer can attach with the rateud to the
protofilament 2 of the configurationsl , ld, or it can detach
with the ratewd from the same protofilament of the configu-
ration sl , l +1d. Similarly, the monomer subunit can associate
with the rateu1−d to the protofilament 1 of the configuration
sl , l +1d, or it can dissociate with the ratew1−d from the same
protofilament of the configurationsl +1,l +1d: see Fig. 1.
Note that the subscript indexess0, 1, d, and 1−d, whered
=a/dd are equal to the fractions of the lateral bond between
the monomers on the parallel protofilaments created or bro-
ken in a given transition.

The overall kinetic scheme of the system, that includes
all possible states and transitions, is shown in Fig. 2sad. The
polymer growth dynamics can be described by a set of mas-
ter equations for each configuration. Solutions of these equa-
tions, that characterize the steady-state growth dynamics of
an attached two-stranded polymer, are outlined in a full de-
tail in the Appendix. Below we present only the final results
for the mean growth velocity and dispersion.

FIG. 1. Different configurations of the growing two-stranded polymer mol-
ecule. The molecule is attached at the left end and it can grow only from the
right end. The size of the monomer subunit isd, while a is a shift between
the parallel protofilaments. The rates and labels for different configurations
are explained in the text.
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Within the full dynamic description, the growth velocity
appears formally as a sum of two terms, namely,

V = V0s1 − bd + V1, s1d

where

V0 = d
udu1−d − wdw1−d

ud + wd + u1−d + w1−d

, s2d

and

V1 = dsu0 − w0bd. s3d

The parameterb s0,b,1d is given by

b =
u0 + w1

u1 + w0
. s4d

The expression for the diffusion coefficient is also con-
sists of two terms,

D = D0s1 − bd + D1, s5d

where the terms are given by the following expressions:

D0 =
d2

2

sudu1−d + wdw1−d − 2A0
2d

ud + wd + u1−d + w1−d

s6d

and

D1 =
d2

2
Fu0 + w0b −

2sA0 + w0dsu0 − A0bd
u1 + w0

G . s7d

The auxiliary functionA0 is defined as

A0 = V0/d. s8d

The dynamic properties of the growing polymer strongly
depend on the lateral interactions between the parallel
protofilaments. It can be seen from the fact that the transition
rates for binding or unbinding the monomer subunit are di-
rectly related to a lateral interaction free energy per mono-
mer gh via the detail balance conditions. It can be shown
that27

us/ws = u0/w0g2s, s= 0,d,1 −d,1, s9d

where

g = exps− gh/kBTd. s10d

This observation is the basis for the approximate theo-
retical description of the growth of rigid biopolymers withN
filaments, the one-layer model, that we developed earlier.27

In this model, only polymer configurations with the distances
between the protofilament tips less than the monomer length
d are considered. It allows then to calculate the mean growth
velocity and dispersion explicitly. Specifically, forN=2 it
can be shown that

Vone-layer= V0, Done-layer= D0. s11d

Since the full dynamic description of the growth of the
attached two-stranded polymer is now available, the quality
of the one-layer approximation can be easily checked in this
case. As shown in Fig. 3, the one-layer model describes the
growth dynamics reasonably well for large lateral interac-
tions. In the limit of infinite lateral interactions the predic-
tions from the approximate theory become exact. However,
the convergence of the approximate one-layer results to exact
quantities strongly depends on the geometry of the growing
polymer end, specifically, on the ratio between the lateral
shift a and the monomer lengthd. The best description can
be obtained for the symmetric cased=a/d=1/2, while for
other geometries this approximation is less successful.

One of the advantages of the one-layer approximation is
its ability to be easily extended to include more polymer
configurations. As a better approximation, it is natural to
consider configurations where the distances between the
protofilament tips do not exceed 2d, i.e., a two-layer model.
The number of polymer configurations is still finite and the
dynamic properties can be easily calculated following the
approach presented for the one-layer approximation.27 In the
two-layer approximation, for two-stranded polymers it can
be shown that

Vtwo-layer=
1

1 + b
sV0 + V1d s12d

and

FIG. 2. Chemical kinetic schemes for models of the growth of two-stranded
attached polymers:sad full dynamic description;sbd two-layer approximate
model; andscd one-layer approximate model.
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Dtwo-layer=
1

1 + b
sD0 + D̃1d, s13d

where

D̃1 =
d2

2
Fu0 + w0b −

2sÃ + w0dsu0 − Ãbd
u1 + w0

G , s14d

with the parameterÃ given by

Ã = Vtwo-layer/d. s15d

The results of the two-layer approximation for the mean
growth velocity and dispersion are also presented in Fig. 3.
The agreement with exact full dynamic properties is very
good even for weak lateral interactionssgh.2kBTd, and the

results do not depend much on the specific geometry of the
growing polymer end.

The multilayer approach can be used to describe the
growth dynamics of any rigid polymer consisting ofN par-
allel protofilaments. It is important to understand thermody-
namic and kinetic justifications for this approximations. The
fact that the growth dynamics for two-stranded polymers
sN=2d can be analyzed exactly is very useful to make the
connection withn-layer approximate description. The kinetic
schemes for full dynamic description and for the one-layer
and two-layer approximations for two-stranded polymers are
shown in Fig. 2. Comparing different kinetic diagrams, we
can see that the one-layer approach corresponds to the main
chemical pathway, while the two-layer approximation also
takes into account the closest branched states. Thus, the
n-layer approximations can be thought of as a series expan-
sion swith n termsd of full dynamic description, where the
value of energy of lateral interactions determines how good
is the expansion. The higher the lateral interactions the
smaller number of terms is needed in order to describe suc-
cessfully the growth dynamics of rigid multifilament poly-
mers.

III. GROWTH DYNAMICS OF FREE TWO-STRANDED
POLYMERS

Now consider a two-stranded polymer that can freely
grow from both ends. DefinexLstd and xRstd as time-
dependent coordinates of the “left” and “right” ends of the
polymer. The growth velocity is defined as

Vfree=
d

dt
kuxRstd − xLstdul s16d

and the angular brackets mean averaging over all possible
growth pathways. It can be easily seen that the mean growth
velocity of a free polymer is a difference between two terms,

Vfree=
d

dt
kxRstdl −

d

dt
kxLstdl = VR − VL, s17d

whereVR andVL are one-end growth velocities, determined
explicitly in Eqs.s1d–s3d.

Similarly, the expression for the dispersion is given by

Dfree=
1

2

d

dt
fkfxRstd − xLstdg2l − kfxRstd − xLstdgl2g. s18d

It can be simplified into the following equation:

Dfree=
1

2

d

dt
fkxRstd2l + kxLstd2l − kxRstdl2 − kxLstdl2

− 2kxRstdxLstdl + 2kxRstdlkxLstdlg. s19d

The polymerization dynamics at both ends are independent
from each other that means that

kxRstdxLstdl = kxRstdlkxLstdl. s20d

This leads to the conclusion that the dispersion of free grow-
ing polymer can be presented as a sum of two one-end dis-
persion terms,

FIG. 3. Comparison of the exact dynamic properties of polymer growth
calculated in the full dynamic description with the approximate results from
one-layer and two-layer models for different geometries.sad Ratio of exact
and approximate mean growth velocities as a function of lateral interactions.
sbd Ratio of exact and approximate dispersions as a function of lateral
interactions.
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Dfree= DR + DL, s21d

where the explicit expressions forDR and DL are given by
Eqs.s5d–s7d.

IV. APPLICATION OF CHEMICAL KINETIC MODELS
FOR THE DESCRIPTION OF EXPERIMENTS
ON INDIVIDUAL ACTIN FILAMENTS

The growth dynamics of the single actin filaments has
been studied experimentally using the fluorescence micros-
copy with total internal reflection.10 The assembly of actin
filaments was observed during the “polymerization” phase,
i.e., at initial stages of the process, as well as the steady-state
conditions, when the growing rate of the barbed end was
compensated by the shortening at the pointed end. The main
finding was that the kinetic rate constants estimated from the
length change in the single actin filaments for the initial pe-
riod differ considerably from that estimated using the length
fluctuation analysis in the steady-state phase. The set of rate
constants measured at the initial polymerization conditions
mainly agrees with values obtained in other experimental
studies,29–31while the rate constants estimated from the mea-
surements of length fluctuations at steady-state conditions
were 30–45 times higher.

Several possible explanations for this discrepancy has
been suggested.10 The first one is that the kinetic constants
obtained in the steady-state phase may be intrinsically differ-
ent from those obtained in the initial phase of polymeriza-
tion. The change of nucleotide composition of the growing,
or shortening tips in the time course of the process was in-
dicated as a probable cause. The depolymerization velocity
of adenosine diphosphatesADPd actin is known to be an
order of magnitude higher than that of adenosine triphos-
phate sATPd actin at the barbed end. The second possible
reason for the discrepancy in the rate constants may be due
to the possibility that the “effective” size of polymerization-
depolymerization unit may not necessarily correspond to a
monomer. The authors speculate that one plausible way to
eliminate this divergence is to set effective size of unit five to
six times higher. However, this contradicts to widely ac-
cepted picture that the elementary step in the growth of actin
filaments is adding or removing a single actin monomer.29–31

In analyzing the experimental data on growth dynamics
of single actin filaments the simplified phenomenological
picture has been used.10 Here, we investigate another possi-
bility to explain the difference in the kinetic rate constants by
using a chemical kinetic model with better description of
polymer ends geometry and chemical interactions between
monomers.

To estimate the parameters that describe the growth dy-
namics of actin filaments we note thatd=a/d=1/2, and,
using the detailed balance conditionsfsee Eqs.s9d ands10dg,
the rate constants can be written in the following form:

ud = u1−d = u0g f1/2+1/2, u1 = u0g f1+1,

wd = w1−d = w0g f1/2−1/2, w1 = w0g f1−1. s22d

Coefficientsf1/2 and f1 reflect the different values of activa-
tion energies for specific polymerization and depolymeriza-

tion events. Although the exact values of these parameters
cannot be measured experimentally, they might be estimated
quite realistically as −0.5ø f1/2ø0.5 and −1ø f1ø1. It im-
plies that the subunit attaches faster to the site where the
stronger lateral contact is created. Similarly, the detachment
is slower if a stronger lateral bond should be broken. For
simplicity, in our calculations we consider only the case

f1/2 = f1 = 0 s23d

and, as we checked, for other values of these parameters the
results do not deviate much from the one presented here.

Equationss22d imply that the growth dynamics of actin
filaments can be described by using only three parameters:
u0, w0, andg. The parametersu0=k0C swhereC is the con-
centration of free actin monomers in the solutiond andw0 are
the association and dissociation rates from the leading
protofilaments, andg is a measure of lateral interactions in
actin filaments. The mean growth velocity for each end of
actin filaments can be presented in a simple form,

V =
d

2
su0 − w0/gdsg1/2 − g−1/2 + 2d, s24d

while the dispersion of the polymer length at each end is
given by more complex expression,

D =
d2

2
F1

4
su0 + w0/gdsg1/2 + 4 − 5g−1/2 + 2/gd

− s1 − 2g−1/2 + 1/gd
2u0w0/g

u0 + w0/g
G . s25d

In order to apply our explicit expressions to describe the
single actin filaments growth the elongation rate constants
for each end of the polymer should be known. However in
the single-molecule experiments by Fujiwaraet al.10 the
growth dynamics of each end separately has not been mea-
sured. Nevertheless, for calculations we can use the data
from other investigations where the polymerization dynam-
ics at both ends has been characterized quantitatively in the
similar experimental conditions.29 Kinetics of actin polymer-
ization for the barbed end can be described asVb=k+

bC−k−
b

with k+
b=11.6mM−1 s−1 andk−

b=1.4 s−1. Comparing this phe-
nomenological expression with the exact onefsee Eq.s24dg
allows us to estimate the parametersu0 andw0. Here we also
use the realistic estimate of energy of lateral interactionsgh

,6 kBT sRef. 32d that givesg.400. These parameters are
then applied to compute the contribution to the dispersion
from the barbed end using Eq.s25d. Similar approach is uti-
lized for the pointed end, for which the mean growth velocity
can be described phenomenologically asVp=k+

pC−k−
p with

k+
p=1.3 mM−1 s−1 and k−

p=0.8 s−1.29 As a result, the overall
dispersion of single actin filaments at steady-state concentra-
tion C0=0.17mM can be estimated as D.1.0
310−3 mm2/min. It should be noted that this procedure de-
pends weakly on the value ofg. Also in these calculations
we used the subunit lengthd=5.4 nm, and lateral off-seta
=2.7 nm.

In the single actin filaments experiments10 the measure-
ment of fluctuations at steady state conditions produced the
dispersion ofD.s1.1−1.25d310−2 mm2/min, which is ap-
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proximately ten times larger than the value calculated above.
The difference is significant and it implies that the chemical
kinetic models with detailed description of polymer ends and
monomer-monomer interactions still cannot explain fully the
experimentally observed fluctuations in growing actin fila-
ments. However, our theoretical treatment does not take into
account the hydrolysis of ATP-actin monomers and related
processes. It might be expected that these processes can sig-
nificantly effect the growth dynamics of actin filaments.

It is interesting to note that the dispersion for actin fila-
ment assemblyswith a=d/2d is a nonlinear function of
monomer’s concentration, as shown in Fig. 4. At high con-
centrations of actin monomers the dispersion is proportional
to concentration, while for low concentrations there is a
weak deviation from linearity. This dependence contrasts to
the observed and calculated behavior of the mean growth
velocity. It will be interesting to measure experimentally the
concentration dependence of dispersion.

V. SUMMARY AND CONCLUSIONS

We investigated theoretically the growth dynamics of
two-stranded polymers where association and dissociation of
monomers can take place from both ends. Because the poly-
merization events at each end are independent from each
other, we argued that the overall polymer elongation dynam-
ics can be described as a combination of growth processes at
each end separately.

For attached rigid two-stranded polymers, that made of
two protofilaments and can only elongate from one end, we
developed a chemical kinetic model of the growth. This
model takes into account the exact relative positions of two
protofilaments and both lateral and longitudinal chemical in-
teractions between the monomers. Considering full dynamic
chemical kinetic scheme, the exact and explicit expressions
for the mean growth velocity and dispersion have been de-
rived in terms of rate constants of binding and unbinding of
monomer subunits. Because of the geometry of the polymer

end and the monomer-monomer interactions, the growth
properties of two-stranded polymers depend only on three
parameters, namely, the rate constants of attaching or disso-
ciating from the leading protofilament and the energy of lat-
eral interactions.

The exact full dynamic description of the growth of two-
stranded polymers, that accounts for all possible configura-
tions, has been compared with a set ofn-layer approximate
models that consider only the most relevant polymer con-
figurations. It was shown that the approximate approach is
successful because it captures the main features of full dy-
namic kinetic diagram. In addition, the approximate descrip-
tion becomes better for larger lateral interactions between the
monomer subunits. It has been concluded thatn-layer ap-
proximations might be viewed as a series expansion of the
full dynamic description of polymer growth dynamics. It im-
plies that the approximate approach can be used to describe
the growth dynamics of rigid biopolymers with many
protofilaments, such as microtubules or intermediate fila-
ments.

The full dynamic chemical kinetic model of the growth
of two-stranded polymers has been applied to analyze the
experimental observations on single actin filaments growth.
Using the kinetic rate parameters and the realistic estimate of
the lateral interactions extracted from bulk chemical kinetic
measurements of actin filaments, we calculated the overall
dispersion in the length fluctuations of single actin filaments.
The obtained value of the dispersion was approximately ten
times smaller than the experimentally observed.10 The differ-
ence is significant and it implies that other processes, not
accounted by current theoretical analysis, contribute to the
dispersion of the single actin filaments. It was argued that
this discrepancy is due to the fact that the hydrolysis in the
polymer molecule is not accounted in our theoretical ap-
proach.

In addition, we also discussed the concentration depen-
dence of dispersion. Our theoretical calculations suggest that
the dispersion of actin filaments depends weakly nonlinearly
at low concentrations of free monomers, and it approaches
the linear dependence at large concentrations. It will be very
important to measure the concentration dependence experi-
mentally since it will give a valuable information on the
mechanisms of growth and it will provide a direct check of
the validity of our theoretical picture.

In a future, we plan to investigate the effect of hydrolysis
of the monomers, associated with ATP or its analogs, on the
growth of biopolymers consisting ofN parallel rigid
protofilaments. For actin filamentssN=2d it seems reason-
able to extend the current chemical kinetic model, however,
for biopolymers with larger number of protofilaments, such
as microtubules and intermediate filaments, the coupling of
hydrolysis withn-layer approximate approach, probably, is
the most realistic approach.
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APPENDIX: CALCULATIONS FOR FULL DYNAMIC
MODEL OF THE GROWTH OF ATTACHED
TWO-STRANDED POLYMERS

Let us introduce the probabilitiesPsl , l −k; td and Psl
−k, l +1;td of finding the two-stranded polymer in the con-
figurations sl , l −kd and sl −k, l +1d, respectively, at timet.
Here l ,k=0,1, . . . and the twoparameters in brackets corre-
spond to the number of subunits in the first and second
protofilaments, respectively. These probabilitiessat k=0d sat-
isfy the following master equations:

dPsl,l ;td
dt

= u1−dPsl − 1,l ;td + wdPsl,l + 1;td

+ u1Psl,l − 1;td + w0Psl + 1,l ;td

− sud + w1−d + u0 + w1dPsl,l ;td, sA1d

dPsl,l + 1;td
dt

= udPsl,l ;td + w1−dPsl + 1,l + 1;td

+ u1Psl − 1,l + 1;td + w0Psl,l + 2;td

− su1−d + wd + u1 + w0dPsl,l + 1;td. sA2d

These equations describe a set of special states on the main
pathway in a chemical kinetic scheme, see Fig. 2sad. For k
Þ0 we have

dPsl,l − k;td
dt

= u0Psl − 1,l − k;td + w1Psl,l + 1 −k;td

+ u1Psl,l − 1 −k;td + w0Psl + 1,l − k;td

− su0 + w0 + u1 + w1dPsl,l − k;td sA3d

and

dPsl − k,l + 1;td
dt

= u0Psl − k,ld + w1Psl + 1 −k,l + 1;td

+ u1Psl − 1 −k,l + 1;td + w0

3Psl − 1,l + 2;td − su0 + w0 + u1 + w1d

3Psl − k,l + 1;td. sA4d

The conservation of probability leads to

o
l=0

+` So
k=0

+`

Psl,l − k;td + o
k=0

+`

Psl − k,l + 1;tdD = 1, sA5d

at all times.
Following the idea of Derrida,33 we define four sets of

auxiliary functionssk=0,1, . . .d,

Bk,0std = o
l=0

+`

Psl,l − k;td, sA6d

Ck,0std = o
l=0

+`

sl + ddPsl,l − k;td, sA7d

Bk,1std = o
l=0

+`

Psl − k,l + 1;td, sA8d

Ck,1std = o
l=0

+`

sl + 1dPsl − k,l + 1;td, sA9d

whered=a/d. Note that the conservation of probability gives
us

o
k=0

+`

o
i=0

1

Bk,istd = 1. sA10d

Then from master equationssA1d–sA4d we derive fork=0

dB0,0std
dt

= sul−d + wddB0,1std + su1 + w0dB1,0std

− sud + w1−d + u0 + w1dB0,0std,

sA11d
dB0,1std

dt
= sud + w1−ddB0,0std + su1 + w0dB1,1std

− su1−d + wd + u0 + w1dB0,1std,

while for kÞ0 si =0,1d it is given by

dBk,istd
dt

= su0 + w1dBk−1,istd + su1 + w0dBk+1,istd

− su0 + w0 + u1 + w1dBk,istd. sA12d

Similar arguments can be used to describe functions
Ck,0std andCk,1std. Specifically, fork=0 we obtain

dC0,0std
dt

= su1−d + wddC0,1std + su1 + w0dC1,0std

− sud + w1−d + u0 + w1dC0,0std

+ fdu1−d − s1 − ddwdgB0,1std − w0B1,0std,

sA13d

dC0,1std
dt

= sud + w1−ddC0,0std + su1 + w0dC1,1std

− su1−d + wd + u0 + w1dC0,1std sA14d

+ fs1 − ddud − dw1−dgB0,0std − w0B1,1std.

sA15d

For kÞ0 si =0,1d the expressions are

dCk,istd
dt

= su0 + w1dCk−1,istd + su1 + w0dCk+1,istd

− su0 + w0 + u1 + w1dCk,istd + u0Bk−1,istd

− w0Bk+1,istd. sA16d

Again following the Derrida’s method,33 we introduce
the ansatz that should be valid at large timest, namely,

Bk,istd → bk,i, Ck,istd → ak,it + Tk,i si = 0,1d. sA17d

At steady statedBk,istd /dt=0 and Eqs.sA11d andsA12d yield
for k=0,
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0 = su1−d + wddb0,1+ su1 + w0db1,0

− sud + w1−d + u0 + w1db0,0,

0 = sud + w1−ddb0,0+ su1 + w0db1,1

− su1−d + wd + u0 + w1db0,1, sA18d

while for kÞ0 si =0,1d we obtain

0 = su0 + w1dbk−1,i + su1 + w0dbk+1,i

− su0 + w0 + u1 + w1dbk,i . sA19d

The solutions of Eqs.sA18d andsA19d can be written in
the following form:

bk,i =
1 − b

1 + a
aibk, for si = 0,1d, sA20d

wherek=0,1, . . . and

a =
ud + w1−d

u1−d + wd

, b =
u0 + w1

u1 + w0
. sA21d

To determine the coefficientsak,i and Tk,i from Eq.
sA17d, the ansatz for the functionsCk,i is substituted into the
asymptotic expressionssA13d–sA16d, yielding for k=0,

0 = su1−d + wdda0,1+ su1 + w0da1,0

− sud + w1−d + u0 + w1da0,0,

0 = sud + w1−dda0,0+ su1 + w0da1,1

− su1−d + wd + u0 + w1da0,1. sA22d

At the same time, forkÞ0 si =0,1d we obtain

0 = su0 + w1dak−1,i + su1 + w0dak+1,i

− su0 + w0 + u1 + w1dak,i . sA23d

The coefficientsTk,i satisfy the following equationssfor k
=0d:

a0,0= su1−d + wddT0,1+ su1 + w0dT1,0− sud + w1−d + u0 + w1d

3T0,0+ fdu1−d − s1 − ddwdgb0,1− w0b1,0 sA24d

and

a0,1= sud + w1−ddT0,0+ su1 + w0dT1,1− su1−d + wd + u0 + w1d

3T0,1+ fs1 − ddud − dw1−dgb0,0− w0b1,1. sA25d

For kÞ0 si =0,1d we have

ak,i = su0 + w1dTk−1,i + su1 + w0dTk+1,i − su0 + w0 + u1 + w1d

3Tk,i + u0bk−1,i − w0bk+1,i . sA26d

Comparing Eqs.sA18d and sA19d with expressions
sA22d and sA23d, we conclude that

ak,i = Abk,i si = 0,1d, sA27d

with the constantA. This constant can be calculated by sum-
ming over the left and right sides in Eq.sA27d and recalling
the normalization conditionsA10d. The summation over all
ak,i in Eqs.sA22d and sA23d produces

A = o
k=0

+`

o
i=0

1

ak,i = fs1 − ddud − dw1−dgb0,0

+ fdu1−d − s1 − ddwdgb0,1+ u0

− w0s1 − b0,0− b0,1d. sA28d

Thus we haveA=A0s1−bd+A1, where

A0 = fs1 − ddud − dw1−dgb0,0+ fdu1−d − s1 − ddwdgb0,1

=
udu1−d − wdw1−d

ud + wd + u1−d + w1−d

sA29d

and

A1 = u0 − w0b. sA30d

Note thatA0 does not depend explicitly ond.
To determine the coefficientsTk,i, we define for allk the

following function:

Tk ; Tk,0 + Tk,1, sA31d

ak ; ak,0 + ak,1, sA32d

bk ; bk,0 + bk,1. sA33d

Then we define

yk ; su1 + w0dTk − su0 + w1dTk−1. sA34d

Now Eqs.sA24d–sA26d can be rewritten as

y0 − y−1 = a0 + w0b1 − A0s1 − bd, sA35d

yk − yk−1 = ak − u0bk−1 + w0bk+1, sA36d

with y−1;0 and k=1,2, . . .. Thesolutions for these equa-
tions are given by

yk = A0s1 − bdSo
j=0

k

bj − 1D + u0bk. sA37d

Summing upak,0 or ak,1 separately for allk, we obtain the
relationship between the parametersT0,1 andT0,0, i.e.,

T0,1= aT0,0

+
b0,0fs1 − ddud − dw1−dg − aA0s1 − bd/s1 + ad

u1−d + wd

sA38d

and for sum of allTk we have

o
k=0

`

Tk = ST0 +
u0 − A0b

u1 + w0
D 1

1 − b
. sA39d

It is now possible to calculate explicitly the mean growth
velocity V and dispersionD at steady-state conditions. The
average length of the polymer is given by
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klstdl = dSo
k=0

+`

o
l=0

+`

sl + ddPsl,l − k;td

+ o
k=0

+`

o
l=0

+`

sl + 1dPsl − k,l + 1;tdD
= do

k=0

+`

fCk,0std + Ck,1stdg. sA40d

Then, using Eq.sA27d, we obtain for the velocity

V = lim
t→`

d

dt
klstdl = dASo

k=0

+`

bk,0 + o
k=0

+`

bk,1D = dA. sA41d

A similar approach can be used to derive the expression
for dispersion.34,35 We start from

kl2stdl = d2So
k=0

+`

o
l=0

+`

s1 + dd2Psl,l − k;td

+ o
k=0

+`

o
l=0

+`

sl + 1d2Psl − k,l + 1;tdD . sA42d

Then, using master equationssA1d–sA4d, it can be shown
that

lim
t→`

d

dt
kL2stdl = d2H2fs1 − ddud − dw1−dgC0,0+ 2fdu1−d

− s1 − ddwdgC0,1+ fs1 − dd2ud + d2w1−dgb0,0

+ fd2u1−d + s1 − dd2wdgb0,1+ u0

+ w0s1 − b0,0− b0,1d + 2u0o
k=0

+`

fCk,0 + Ck,1g

− 2w0o
k=1

+`

fCk,0 + Ck,1gJ . sA43d

Also, the following expression can be derived using Eq.
sA40d

lim
t→`

d

dt
fklstdl2g = 2d2Ao

k=0

+`

fCk,0 + Ck,1g. sA44d

The formal expression for dispersion is given by

D =
1

2
lim
t→`

d

dt
sklstd2l − klstdl2d. sA45d

Then substituting into this expression Eqs.sA43d and sA44d
we obtain

D = d2Hfs1 − ddud − dw1−dgT0,0+ fdu1−d − s1 − ddwdgT0,1

+
1

2
fs1 − dd2ud + d2w1−dgb0,0

+
1

2
fd2u1−d + s1 − dd2wdgb0,1+

1

2
u0

+
1

2
w0s1 − b0,0− b0,1d + w0sT0,0+ T0,1d

+ su0 − w0 − Ado
k=0

+`

fTk,0 + Tk,1gJ . sA46d

Finally, after some algebraic transformations, we derive the
final expression for the dispersion,D=D0+D1, which is
given in Eqs.s5d–s7d in Sec. II. Note that a constantT0,0

cancels out in the final equation.
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