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The polymerization dynamics of double-stranded polymers, such as actin filaments, is investigated
theoretically using simple chemical kinetic models that explicitly take into account some
microscopic details of the polymer structure and the lateral interactions between the protofilaments.
By considering all possible molecular configurations, the exact analytical expressions for the growth
velocity and dispersion for two-stranded polymers are obtained in the case of the growing at only
one end, and for the growth from both polymer ends. Exact theoretical calculations are compared
with the predictions of approximate multilayer models that consider only a finite number of the most
relevant polymer configurations. Our theoretical approach is applied to analyze the experimental
data on the growth and fluctuations dynamics of individual single actin filamen200® American
Institute of Physic§ DOI: 10.1063/1.1858859

I. INTRODUCTION of microtubule dynamics, which do not incorporate the

. I _ _biopolymer’s structure and lateral interactions between the
Cytoskeletal proteins such as actin filaments, intermediz

X : . i filaments, contradict to values measured in some indepen-
ate filaments, and microtubules are rigid multifilament poly-

. Y . .2 dent bulk chemical kinetic experlmeﬁlss.
mers that play a variety of roles in biological systems, in- : .
. o A large volume of experimental results stimulated many
cluding organization of cell structures, transport of

organelles and vesicles, cell motility, and reproducﬁﬁ’n. theoretical investigations of polymerization dynamics for

Biological functions of these proteins are mostly determinedIgld multifilament proteins. In one approach, it was sug-

by the processes that take place during their polymerizatior'(r;’eSted that the.gr%%v_t[‘g of .r|g_|d blopqumers is controlled by
However, our understanding of the coupling between thesgqermal fluctuations? “This is a basic idea of the so-called

biopolymer’s structure and functions and their growth pro_polymerlzatlon ratchet mode!s. Ir! a d|ﬁereqt approach,
cesses is still very limited. more phenomenological chemical kinetitochastit models

In recent years the number of experimental investiga—h"’“’e beegllzzused to (.jeS(?l‘.Ibe the blopolym.ers growth
s-°22|n these simplified phenomenological models

tions of the growth mechanisms and dynamic properties ijynam|c hat th I S I
rigid multifilament biopolymers at a single-molecule level It IS @ssumed that the overall dynamics is a balance between

increased significantf{.X Dynamic behavior of individual POlymerization and depolymerization processes; however,

microtubules has been characterized by a variety of experil® microscopic details of the polymer structure and the

mental techniques such as video and electron microscop§ifferences in lateral intersubunit interactions are not taken
fluorescence spectroscopy, and optical trap spectrofidtry, 'Nt0 cqn3|derat|on. In addm_on, the mlt_:rotubule assembly
whereas the studies of the single actin filaments have judynamics has been studied extensively by computer
begun'®* Many unusual phenomena in the assembly dy-Simulations’
namics of these biopolymers have been observed, such as Recently, we introduced a set of simple stochastic mod-
treadmilling for microtubules and actin filamenfs'>**and ~ €ls for the description of the growth of rigid biopolymers
microtubule dynamic instabilitﬁf.*” consisting ofN protofilaments, that explicitly includes the
Recent experimental investigations of the single actirgeometric _structure and monomer-monomer lateral
filament length fluctuatior€ raised many questions about interactions.’ According to this approach, only few polymer
the actin polymerization dynamics. A large discrepancy inconfigurations are relevant for the growth dynamics because
kinetic rate constants estimated by average length change ff inhomogeneity in lateral interactions that comes from the
the initial polymerization phase and from the analysis ofgeometry of polymer ends. These configurations are selected
length fluctuations in the steady-state phésdactor of 40  using the criteria that the distances between the protofilament
has been observed. One of the possible explanations for thigs in each configuration should be less tha) wheren
discrepancy might be the oversimplified theoretical model=1,2,... andd is a polymer subunit length. For=1, in the
used in analysi&’ that neglected the polymer structure andso-called “one-layer” approximation, the mean growth veloc-
lateral monomer-monomer interactions at the actin filamenity and a dispersioffor a diffusion coefficientof polymer’s
tips. Similar problems have been found in the growth dy-length have been calculated exactly for any number of
namics of individual microtubules under the influence of ex-protofilaments and for the arbitrary geometry of biopoly-
ternal force$:®*® For example, the depolymerization rate mer's growing end. The quality of the one-layer approxima-
constants determined from a phenomenological descriptiotion has been discussed for the simple case of the growth of
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polymer made of two protofilaments, i.e\N=2, which is &) (h1]) 1)
closely related to actin filaments. In this case, a full dynamic
description that includes all possible polymer configurations; g
provided exact expressions for the mean growth velocity. It1g
was found that the predictions of the approximate model arej:..........:
approaching the exact results for large but realistic values o]
the lateral interactions.

Although the approach presented in Ref. 27 provided a 4
very good description of experimental results of individual
microtubule growth under external forces, and it suggested ¢ (i1} (1, 1))
reasonable way of coupling of the microscopic structure of
the biopolymers with their dynamic properties, there are sev-/
eral theoretical problems with this method. First, the criteria
that helps to determine the finite number of the most relevantj:
configurations in h-layer” approximations is introduced us-
ing an arbitrary cutoff distance, but it would be more desir-
able to derive it from more fundamental thermodynamic and'G. 1. Different con_figurations of the growing two-_stranded polymer mol-
cule. The molecule is attached at the left end and it can grow only from the

kinetic arguments. Second, the method used for CaICUIa'tmgght end. The size of the monomer subunitjswhile a is a shift between

exactly the full dynamic model of the grO\.Nth. of tWO- the parallel protofilaments. The rates and labels for different configurations
stranded polymers allowed only the determination of theare explained in the text.

mean growth velocity, and not the dispersion. However, the

simultaneous knowledge of the dispersion and the velocity is, . .
crucial for understanding the growth mechanisms of rigidtion 1abeled asl,1+1), where the distance between the tips

biopolymersl.’ls The goal of this paper is to address thesei?' equgl tod—a. Generally, as illustrated in F.ig. 1, for con-
theoretical issues by studying the growth dynamics of twofigurations (I,1-k), where k=0,1,2,..., thedistances be-
stranded biopolymers with more detailed microscopic defween the parallel protofilaments are equahtekd and the
scription. In addition, we will analyze the experimental ob- first protofilament is the leading one, while for configurations
servations on the growth of single actin filaments. (I-k,I1+1) the distances between protofilament tips dre
This article is organized as follows. The dynamics of the—a+kd and the second protofilament is the leading one.
two-stranded polymers that can grow only from one end is All dynamic transitions in the attached two-stranded
discussed in Sec. II, while the description of the polymerPolymers may be characterized by a set of four pairs of tran-
growth from both ends is given in Sec. IIl. The application of sition rates that depend on the local geometry of the growing
the developed chemical kinetic models for the experiment&nd. As shown in Fig. 1, the attachment and detachment rates
on single actin filaments is presented in Sec. IV. The result§om the leading protofilament for all polymer configurations
are discussed and summarized in Sec. V. The mathematicate given byu, andwy, respectively. Transition rateg and
details of calculations of dynamic properties are given in thew; describe the polymerization and depolymerization events
Appendix. when the overall length of the polymer does not change. For
example, as presented in Fig. 1, the transitions between the
configurations(I+1,I) and (I+1,I+1) are given by these
Il. GROWTH DYNAMICS OF ATTACHED rates, while in both configurations the polymer length is
TWO-STRANDED POLYMERS d(l+1)+a. A monomer can attach with the ratg to the

Consider a growing rigid polymer that consists of two pr_otofilament 2 of the configuratio('l_,l), or it can deta(_:h
protofilaments. The polymer is attached to a nucleating sit&/ith the ratew, from the same protofilament of the configu-
on a surface and may polymerize or depolymerize only fronfation (I,1+1). Similarly, the monomer subunit can associate
the free end, as shown in Fig. 1. This is the attached twoWith the rateu;_; to the protofilament 1 of the configuration
stranded polymé? The building block of this polymer is a (I.1+1), or it can dissociate with the rat_s from the same
monomer subunit of lengtt. The lateral offset between two Protofilament of the configurationl+1,1+1): see Fig. 1.
parallel protofilaments is equal toand it can generally vary Note that the subscript index€8, 1, 5, and 1-5, where
between 0 andl. For actin filaments the monomer sizeds =a/d) are equal to the fractions of the lateral bond between
=5.4 nm and the lateral shift s8=d/2=2.7 nm*? the monomers on the parallel protofilaments created or bro-

There are infinite number of possible polymer configu-ken in a given transition.
rations that differ from each other by the geometry of the  The overall kinetic scheme of the system, that includes
growing end and the total length of the polymer. For labelingall possible states and transitions, is shown in Fig).Z'he
these configurations we use a pair of integers that count theolymer growth dynamics can be described by a set of mas-
number of monomer subunits in each protofilament. Withouter equations for each configuration. Solutions of these equa-
loss a generality, let us choose a fifisbttom protofilament tions, that characterize the steady-state growth dynamics of
as a leading one in a configuratidhl), where the distance an attached two-stranded polymer, are outlined in a full de-
between protofilament tips equaldosee Fig. 1. The second tail in the Appendix. Below we present only the final results
(top) protofilament will be the leading one in the configura- for the mean growth velocity and dispersion.
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FIG. 2. Chemical kinetic schemes for models of the growth of two-stranded
attached polymerga) full dynamic description{b) two-layer approximate

model; and(c) one-layer approximate model.

Within the full dynamic description, the growth velocity

appears formally as a sum of two terms, namely,

V=Vy(1-p)+Vy, (1)
where

et @
and

V1 =d(up = Wop3). (3

The parametep (0<B<1) is given by

_UptwWy
Uy + W

The expression for the diffusion coefficient is also con-

sists of two terms,

D=Dy(1-p)+Dy, 5

where the terms are given by the following expressions:

Polymerization dynamics of double-stranded biopolymers

(4)
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d_z (Ugly 5+ WaWy_5 = 2A0)

Dy= 6
OT 2 Ut Wstupstwys ©
and
2 2(Ag + Wo)(Ug — AgB)
Di=—| Ug+WoB - . 7
1=5 {Uo W3 Uy + W (7)

The auxiliary functionA, is defined as
Ao =Vo/d. (8)

The dynamic properties of the growing polymer strongly
depend on the lateral interactions between the parallel
protofilaments. It can be seen from the fact that the transition
rates for binding or unbinding the monomer subunit are di-
rectly related to a lateral interaction free energy per mono-
melr27gh via the detail balance conditions. It can be shown
tha

UfWs = Ug/Wgy™, $=0,5,1-6,1, (9)
where
v=exp— gy/kgT). (10)

This observation is the basis for the approximate theo-
retical description of the growth of rigid biopolymers with
filaments, the one-layer model, that we developed edflier.
In this model, only polymer configurations with the distances
between the protofilament tips less than the monomer length
d are considered. It allows then to calculate the mean growth
velocity and dispersion explicitly. Specifically, fod=2 it
can be shown that

Done-layel: DO- (11)

Since the full dynamic description of the growth of the
attached two-stranded polymer is now available, the quality
of the one-layer approximation can be easily checked in this
case. As shown in Fig. 3, the one-layer model describes the
growth dynamics reasonably well for large lateral interac-
tions. In the limit of infinite lateral interactions the predic-
tions from the approximate theory become exact. However,
the convergence of the approximate one-layer results to exact
quantities strongly depends on the geometry of the growing
polymer end, specifically, on the ratio between the lateral
shift a and the monomer lengtth. The best description can
be obtained for the symmetric cageea/d=1/2, while for
other geometries this approximation is less successful.

One of the advantages of the one-layer approximation is
its ability to be easily extended to include more polymer
configurations. As a better approximation, it is natural to
consider configurations where the distances between the
protofilament tips do not exceedi2i.e., a two-layer model.
The number of polymer configurations is still finite and the
dynamic properties can be easily calculated following the
approach presented for the one-layer approxima@ﬁdn.the
two-layer approximation, for two-stranded polymers it can
be shown that

Vone-layer: VOv

1
Vtwo—layer: 1 +,3(VO + Vl) (12)

and
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results do not depend much on the specific geometry of the
growing polymer end.

The multilayer approach can be used to describe the
growth dynamics of any rigid polymer consisting Nfpar-
allel protofilaments. It is important to understand thermody-
namic and kinetic justifications for this approximations. The
fact that the growth dynamics for two-stranded polymers
(N=2) can be analyzed exactly is very useful to make the
connection withn-layer approximate description. The kinetic
schemes for full dynamic description and for the one-layer
and two-layer approximations for two-stranded polymers are
shown in Fig. 2. Comparing different kinetic diagrams, we
can see that the one-layer approach corresponds to the main
chemical pathway, while the two-layer approximation also
takes into account the closest branched states. Thus, the
n-layer approximations can be thought of as a series expan-

0 2 4 6 8 10 sjon (with n termg of full dynamic description, where the
(@) lateral energy, k,T value of energy of lateral interactions determines how good
1 " is the expansion. The higher the lateral interactions the
T ] T 4'—" T ] T | T l T X . i
< smaller number of terms is needed in order to describe suc-
) cessfully the growth dynamics of rigid multiflament poly-
0.9 [ 3 - mers.
h ~ ]
A
S 08w -
8 A Ill. GROWTH DYNAMICS OF FREE TWO-STRANDED
Q i PR POLYMERS
= -
207 ) - :
3 Now consider a two-stranded polymer that can freely
g— I . grow from both ends. Defineg (t) and xg(t) as time-
0.6 one-layer, #/d=0.5 | ] dependent coordinates of the “left” and “right” ends of the
v — — two-layer, a/d=0.5 polymer. The growth velocity is defined as
» = « one-layer, a/d=0.1 | d
0.5 e Viree= —(Xr(t) = (D)) (16)
i dt
1 A ' 1 I 1 I 1 I 1
0 2 4 6 8 10 12 and the angular brackets mean averaging over all possible
(b) lateral energy, k,T growth pathways. It can be easily seen that the mean growth

velocity of a free polymer is a difference between two terms,

FIG. 3. Comparison of the exact dynamic properties of polymer growth
calculated in the full dynamic description with the approximate results from
one-layer and two-layer models for different geometries Ratio of exact

and approximate mean growth velocities as a function of lateral interactions.

i(r?t)egi?ignzf exact and approximate dispersions as a function of Iatera{NhereVR andVL are one-end grovvth velocities, determined
explicitly in Egs.(1)—(3).
Similarly, the expression for the dispersion is given by

d d
Viree= d_t<XR(t)> - d_t<XL(t)> =Vr— V., (17)

Duo-tayer= —— (Do + D1), 13 1d
o-aver 1+B( 0+ Py (19 Diree = Ea[([XR(t)_XL(t)]2>_<[XR(t)_XL(t)]>2]- (18
where It can be simplified into the following equation:
~ 2(A+wp)(Ug— AB) D _1d 12 D2} — (xa(D)2 = (x. (1))2
B, = E[UO+W03_ pia , (14 ee= 5 gL OR(D? + (4L (D7) = () = (1. (D)
_ ~ = 2(ROXL(D) + 2{xx(1))(X (1))]. (19
with the parameteA given by
The polymerization dynamics at both ends are independent
Z:Vtwo—layer/d- (15)  from each other that means that

The results of the two-layer approximation for the mean OROX) = 0R)x (V). (20

growth velocity and dispersion are also presented in Fig. 3This leads to the conclusion that the dispersion of free grow-
The agreement with exact full dynamic properties is verying polymer can be presented as a sum of two one-end dis-
good even for weak lateral interactiofg,> 2kgT), and the  persion terms,
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Dfree=Dgr+D(, (21)  tion events. Although the exact values of these parameters
cannot be measured experimentally, they might be estimated

where the explicit expressions f@g and D, are given by quite realistically as —05f,,,<0.5 and & f,<1. It im-

Egs.(57). plies that the subunit attaches faster to the site where the

stronger lateral contact is created. Similarly, the detachment
IV. APPLICATION OF CHEMICAL KINETIC MODELS is slower if a stronger lateral bond should be broken. For
FOR THE DESCRIPTION OF EXPERIMENTS simplicity, in our calculations we consider only the case

ON INDIVIDUAL ACTIN FILAMENTS
_ , o f1,=,=0 (23

The growth dynamics of the single actin filaments has
been studied experimentally using the fluorescence micrognd, as we checked, for other values of these parameters the
copy with total internal reflectiol The assembly of actin "€Sults do not deviate much from the one presented here.
filaments was observed during the “polymerization” phase, ~Equations(22) imply that the growth dynamics of actin
i.e., at initial stages of the process, as well as the steady-statidments can be described by using only three parameters:
conditions, when the growing rate of the barbed end wadlo: Wo: andy. The parametergy=k,C (whereC is the con-
compensated by the shortening at the pointed end. The mafifntration of free actin monomers in the solujiandw, are
finding was that the kinetic rate constants estimated from thé€ association and dissociation rates from the leading
length change in the single actin filaments for the initial pe-Protofilaments, ands is a measure of lateral interactions in
riod differ considerably from that estimated using the length2Ctin filaments. The mean growth velocity for each end of
fluctuation analysis in the steady-state phase. The set of rag¢tin filaments can be presented in a simple form,
constants measured at the initial polymerization conditions d
mainly agrees with values obtained in other experimental VZE(UO_WO/Y)(YJJZ_ y 2+ 2), (24)
studies>*'while the rate constants estimated from the mea-
surements of length fluctuations at steady-state conditionghile the dispersion of the polymer length at each end is
were 30—45 times higher. given by more complex expression,

Several possible explanations for this discrepancy has 2[ 1
been suggested. The first one is that the kinetic constants D=—| =(up+Wy/y)(y*?+ 4 = 5y Y2+ 2/)
obtained in the steady-state phase may be intrinsically differ- 214
ent from those obtained in the initial phase of polymeriza- B 2ugWo/ y
tion. The change of nucleotide composition of the growing, —(1-2y "2+ U?’)m : (25)
or shortening tips in the time course of the process was in- 0 Y
dicated as a probable cause. The depolymerization velocity In order to apply our explicit expressions to describe the
of adenosine diphosphat@DP) actin is known to be an single actin filaments growth the elongation rate constants
order of magnitude higher than that of adenosine triphosfor each end of the polymer should be known. However in
phate (ATP) actin at the barbed end. The second possibléhe single-molecule experiments by Fujiwaga al’® the
reason for the discrepancy in the rate constants may be dgtowth dynamics of each end separately has not been mea-
to the possibility that the “effective” size of polymerization- sured. Nevertheless, for calculations we can use the data
depolymerization unit may not necessarily correspond to drom other investigations where the polymerization dynam-
monomer. The authors speculate that one plausible way ties at both ends has been characterized quantitatively in the
eliminate this divergence is to set effective size of unit five tosimilar experimental conditiorfS.Kinetics of actin polymer-
six times higher. However, this contradicts to widely ac-ization for the barbed end can be described/2sk?C—-k°
cepted picture that the elementary step in the growth of actimith k2=11.6 uM~'s* andk®=1.4 s*. Comparing this phe-
filaments is adding or removing a single actin monofiel*  nomenological expression with the exact dsee Eq.(24)]

In analyzing the experimental data on growth dynamicsallows us to estimate the parametagsandw,. Here we also
of single actin filaments the simplified phenomenologicaluse the realistic estimate of energy of lateral interactigns
picture has been usél Here, we investigate another possi- ~6 kgT (Ref. 32 that givesy=400. These parameters are
bility to explain the difference in the kinetic rate constants bythen applied to compute the contribution to the dispersion
using a chemical kinetic model with better description offrom the barbed end using E(®5). Similar approach is uti-
polymer ends geometry and chemical interactions betweelized for the pointed end, for which the mean growth velocity
monomers. can be described phenomenologically \&=kPC—-kP with

To estimate the parameters that describe the growth dy?=1.3 uM™1s* andk?=0.8 s12° As a result, the overall
namics of actin filaments we note thata/d=1/2, and, dispersion of single actin filaments at steady-state concentra-
using the detailed balance conditidsee Eqs(9) and(10)], tion Cy=0.17uM can be estimated asD=1.0
the rate constants can be written in the following form: X 103 wm?/min. It should be noted that this procedure de-
pends weakly on the value of. Also in these calculations
we used the subunit length=5.4 nm, and lateral off-sed
=2.7 nm.

In the single actin filaments experimejr?ts;he measure-
Coefficientsf,,, and f; reflect the different values of activa- ment of fluctuations at steady state conditions produced the
tion energies for specific polymerization and depolymeriza-dispersion oD =(1.1-1.25 X 102 um?/min, which is ap-

f1/2+1/2
’

_ _ o ftl
Us=U;-s= Ugy Up=Upy 1,

f1/-1/2
1

W;s=Wi_s=WpY Wy =wpy' (22
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0.004 e i I L end and the monomer-monomer interactions, the growth
properties of two-stranded polymers depend only on three
parameters, namely, the rate constants of attaching or disso-
ciating from the leading protofilament and the energy of lat-
eral interactions.

The exact full dynamic description of the growth of two-
stranded polymers, that accounts for all possible configura-
tions, has been compared with a setndfyer approximate
models that consider only the most relevant polymer con-
figurations. It was shown that the approximate approach is
successful because it captures the main features of full dy-
namic kinetic diagram. In addition, the approximate descrip-
tion becomes better for larger lateral interactions between the
monomer subunits. It has been concluded thddyer ap-
proximations might be viewed as a series expansion of the
0 IR I U I T S T full dynamic description of polymer growth dynamics. It im-

0 0.2 04 06 0.8 1 plies that the approximate approach can be used to describe
[actin], 1M the growth dynamics of rigid biopolymers with many
FIG. 4. Dispersion as a function of free actin monomers for growing singlepmtomaments’ such as microtubules or intermediate fila-
actin filaments. ments.
The full dynamic chemical kinetic model of the growth

proximately ten times larger than the value calculated above?f two-stranded polymers has been applied to analyze the
The difference is significant and it implies that the chemica/®XPerimental observations on single actin filaments growth.
kinetic models with detailed description of polymer ends andJSing the kinetic rate parameters and the realistic estimate of
monomer-monomer interactions still cannot explain fully thethe lateral interactions extracted from bulk chemical kinetic

experimentally observed fluctuations in growing actin fila-Measurements of actin filaments, we calculated the overall
ments. However, our theoretical treatment does not take intgispersion in the length fluctuations of single actin filaments.

account the hydrolysis of ATP-actin monomers and relateci—he obtained value of the dispersion was approximately ten

processes. It might be expected that these processes can di2€s smaller than the experimentally observhe differ-
nificantly effect the growth dynamics of actin filaments. ence is significant and it implies that other processes, not

It is interesting to note that the dispersion for actin fila- accounted by current theoretical analysis, contribute to the
ment assembly(with a=d/2) is a nonlinear function of dispersion of the single actin filaments. It was argued that
monomer’s concentration, as shown in Fig. 4. At high con-this discrepancy is due to the fact that the hydrolysis in the

centrations of actin monomers the dispersion is proportiondpOlymer molecule is not accounted in our theoretical ap-
to concentration, while for low concentrations there is aProach.

weak deviation from linearity. This dependence contrasts to !N addition, we also discussed the concentration depen-
the observed and calculated behavior of the mean growtﬁence of dispersion. Our theoretical calculations suggest that

velocity. It will be interesting to measure experimentally the the dispersion of actin filaments depends weakly nonlinearly
concentration dependence of dispersion. at low concentrations of free monomers, and it approaches

the linear dependence at large concentrations. It will be very

important to measure the concentration dependence experi-
V. SUMMARY AND CONCLUSIONS mentally since it will give a valuable information on the
gmechanisms of growth and it will provide a direct check of

0.003

0.002

D, umzlmin

0.001

We investigated theoretically the growth dynamics o o X :
two-stranded polymers where association and dissociation dfi€ Validity of our theoretical picture. _
monomers can take place from both ends. Because the poly- N @ future, we plan to investigate the effect of hydrolysis
merization events at each end are independent from eadf the monomers, associated with ATP or its analogs, on the
other, we argued that the overall polymer elongation dynam@rowth of biopolymers consisting oN parallel rigid

ics can be described as a combination of growth processes Bfetofilaments. For actin filament&=2) it seems reason-
each end separately. able to extend the current chemical kinetic model, however,

For attached rigid two-stranded polymers, that made ofor biopolymers with larger number of protofilaments, such

two protofilaments and can only elongate from one end, wéS microtubules and intermediate filaments, the coupling of
developed a chemical kinetic model of the growth. Thishydrolysis withn-layer approximate approach, probably, is

model takes into account the exact relative positions of twd€ most realistic approach.

protofilaments and both lateral and longitudinal chemical in-

teractions between the monomers. Considering full dynamiq ~. N owLEDGMENTS

chemical kinetic scheme, the exact and explicit expressions

for the mean growth velocity and dispersion have been de- The authors would like to acknowledge the support from
rived in terms of rate constants of binding and unbinding ofthe Welch FoundatioGrant No. C-155% the Alfred P.
monomer subunits. Because of the geometry of the polyme8loan FoundatioiGrant No. BR-4418 and the U.S. Na-



104903-7 Polymerization dynamics of double-stranded biopolymers

tional Science FoundatiofGrant No. CHE-0237105 The

authors also are grateful to M. E. Fisher for valuable discus-

sions and encouragements.

APPENDIX: CALCULATIONS FOR FULL DYNAMIC
MODEL OF THE GROWTH OF ATTACHED
TWO-STRANDED POLYMERS

Let us introduce the probabilitieB(l,I-k;t) and P(l

-k,I+1;t) of finding the two-stranded polymer in the con-

figurations (I,1-k) and (I-k,I+1), respectively, at timd.

Herel,k=0,1,... and the twparameters in brackets corre-
spond to the number of subunits in the first and secon

protofilaments, respectively. These probabilifiak=0) sat-
isfy the following master equations:

dP(,l;t
(dt ) =u_sP(=1,1;t) +wsP(I,1 + 1;t)
+uP(I,1=1;5t) +woP(I +1,151)
= (Us+Wy_5+Ug+wy)P(l,151), (A1)
dP(l, 1+ 1:t
% =usP(,1;t) +wy P+ 1,1+ 15t)

+u P =21+ 1;t) +woP(l,1 +2;t)

- (U1_5+W5+ U1+W0)P(I,I + 1,t) (AZ)

These equations describe a set of special states on the main

pathway in a chemical kinetic scheme, see Fi@).2For k
#0 we have

dP(l,l - k;t
% =uP(I = 1,1 = k;t) +wy P(I,1 + 1 = k;t)
+uP(I1 =1 -Kk;t) +woP(I + 1,1 = k;t)
= (U +Wo +uy + W) P(l,I = K;t) (A3)
and
dP( -k, 1 +1:t
%zuoP(l k1) +wP(I+1-kl+1;t)

+u P =1-kI+1;t)+wy
XP(I= 1,1 +2;t) = (Up +Wp + Uy + W)
XP(l =k, +1:1). (A4)

The conservation of probability leads to

400

> (2 P(,I —k:t) + > P(I — k| + 1;t)> =1, (A5)
k=0 k=0

1=0 \k=

at all times.
Following the idea of Derridd® we define four sets of
auxiliary functions(k=0,1,..),

B o(t) = 2 P(I,1 - k1), (AB)
1=0

Cuo) =2 1+ §P(,1 -k;t), (A7)
=0

J. Chem. Phys. 122, 104903 (2005)

+o

B1() =2 P(I -k, +1;0), (A8)
1=0

+oo

Ca® =2 I+ P -k, + 1), (A9)
1=0

whereé=a/d. Note that the conservation of probability gives

us

4o 1

> 2Bt =1.

k=0 i=0

(A10)

dl'hen from master equatiori$1)—(A4) we derive fork=0

d
B;—’,?(t) = (Uj_s+ Ws)Bg (1) + (g +Wp) By o(1)

= (Us+Wy_5+ Ug+Wq)Bg o),

(A11)

d
B;_,tl(t) = (Us+Wq_5)Bg o(t) + (g + W) By 4(1)

= (Ug—s+ W+ Ug +Wq)Bg 5(1),

while for k#0 (i=0,1) it is given by

dBy;
B = (g W) Be 10+ (0 + WoBe, (0

= (Ug + Wp + Uy +Wy)By(1). (A12)

Similar arguments can be used to describe functions

Cyo(t) andC, 1(t). Specifically, fork=0 we obtain

d
90 = 1y + W Co st + Uy + W Co )
= (Us+W;_5+ Ug+W;)Co (1)
+[0u;_5— (1 = W,]Bg 1(t) = WoBy (1),
(A13)
d
Cg—'tl(t) = (Us+W;_5)Co ot) + (ug +wWp)Cy 4(1)
= (Up_5+Ws+ Ug+ W) Co 4(1) (A14)
+[(1 = d)us— dwy_5]Bg ot) = WoBy 1(1).
(A15)
Fork#0 (i=0,1) the expressions are
dCy;
Cg—'t(t) = (Up + W1)Cy—g () + (Ug + Wp)Cypq (1)
= (Ug + Wo + Uy + W) Cy (1) + UpBy_q (1)
= WoBys1(1). (A16)

Again following the Derrida’s methotf we introduce
the ansatz that should be valid at large timesamely,

By () — by, Cyi(t) — ayit+Ty; (1=0,1). (A17)

At steady statelB,;(t)/dt=0 and Eqs(A11) and(A12) yield
for k=0,
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07 Ul (L ol A= § é i =[(1 = &us= dwy_s]by o
= (Us+Wy_s+ Ug +Wy)bg o, k=0i=0 '
0 = (Ug+Wy_g)bg o+ (Ug +Wo)by 5 +[U-5= (1 = 8)Wslbo, 1 + Ug
= (Up-s+ Ws+ Ug + Wp)byg 1, (A18) = Wo(1 =bo o= bo.y)- (A28)
while for k#0 (i=0,1) we obtain Thus we haveA=Aq(1-p)+A;, where
0= (Up +Wy)by-gj + (Ug + Wo)Dys Ag=[(1 = us— dw;_slbg o+ [Uy-5= (1 = &)W,]bg 1
= (Up + W + Uy + Wy)by;. (A19) _ Ui = WeWs s (A29)
The solutions of Eqs(A18) and(A19) can be written in U Wt U5+ Wi-p
the following form: and
by = ﬁio/ﬁk, for (i=0,1), (A20) Ay = Up = WopB. (A30)

Note thatA, does not depend explicitly oél

wherek=0,1,... and X - )
To determine the coefficient;;, we define for alk the

Ugs+ Wy Ug+ W i ion:
q= ot Wis _ Yot W, (A21) following function:
Up-s+W;s Up +Wo _
: - Te=Teo+ Ti1, (A31)
To determine the coefficients,; and T,; from Eq.
(A17), the ansatz for the functiorG; is substituted into the _
asymptotic expression#13)—(A16), yielding fork=0, G = Ao A1, (A32)
0=(up_s+Wgag 1+ (U +Wplay o by = by o + by 1. (A33)

- (us+ +Uug+
(Us+Wa-s + o + Wi)3o,0, Then we define
0 =(us+W;-_s)ag o+ (Uy + Wo)ay 1 Yie = (Up + W) T = (Ug + W) Ty_1. (A34)

= (Uy_s+ W+ Ug+W,)ag 1. A22
(U5 + W+ Up + W),y (A22) Now Egs.(A24)—(A26) can be rewritten as

At the same time, fok#0 (i=0,1) we obtain

Yo = Y-1= 8+ Wby = Ag(1 =), (A35)
0 =(Up +Wp)ay-1j + (Ug + Wo) 1
= (Ug + Wp + Uy + Wp)ay . (A23) Vi~ Yke1 = @ — Ugby1 + Wby 1, (A36)
The coefficientsT,; satisfy the following equationgfor Kk \vith y_,=0 andk=1,2,.... Thesolutions for these equa-

=0): tions are given by

A9,0= (U1—5+Ws) T 1+ (U + W) Ty o= (Us+ Wy _s+ Ug + Wy)

k
XTo0+[8U1_5— (1 = )ws]bg 1 = Woby o (A24) Yk =Ao(1 - B) (2 by - 1) + Ughy. (A37)
i=0
and
Summing upay o or a; separately for alk, we obtain the
89,1 (Us+tWy_5)To o+ (Up + W) Ty 1 = (Ug—5+ Ws+ Ug +Wy) relationship between the paramet@gs, and Ty g, i.€.,
XTo,1+[(1 = d)us— W, _s]bg o= Woby 1. (A25) _
) To1=aTop
Fork#0 (i=0,1) we have ) bo d (1~ s~ Wi_s] — alo(1 ~ BI(L +a)
i = (U + W) Ty + (Ug + Wo) Tye1 5 = (Ug + Wo + Ug +Wy) Up_s+ W;
X Ty + Ugby-1; = Wobesq,- (A26) (A38)

Comparing Egs.(A18) and (A19) with expressions and for sum of allT, we have
(A22) and(A23), we conclude that

a,;=Ab; (i=0,), (A27) i Ty= (TO + IJO_—A‘ﬁ)i (A39)

. . k=0 uptwp /1-8
with the constanA. This constant can be calculated by sum-
ming over the left and right sides in EGA27) and recalling It is now possible to calculate explicitly the mean growth
the normalization conditiofA10). The summation over all velocity V and dispersiorD at steady-state conditions. The
a; in Egs.(A22) and (A23) produces average length of the polymer is given by
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+o0o 400

(1)) :d(E > 1+ 9P, —k:t)

k=0 =0

k=0 1=0

+ 2 D (1+1)P(I -k, | + 1;t))

+oo

= dg) [Cio(t) + C1(D].

(A40)

Then, using Eq(A27), we obtain for the velocity

d +0o0 +00
V=lim =((t)) = dA(Z bro+ > bkyl) =dA. (A4l
t—e dt k=0 k=0

Polymerization dynamics of double-stranded biopolymers
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D =d?| [(1-8)us— dw;_s] T o+ [SU_s— (1 = W4l Tp 1
1 2
+ 5[(1 = 8)2us+ 8wy _s]bg o
1 , 1
+ 5[52111—5"' (1-6)Wslbg 1+ EUO

1
+ EWO(l —bg 0= 0g,2) + Wo(To 0+ To,0)

+0oo

+(Up=Wo—A) X [Tyo+ Tl
k=0

(A46)

Finally, after some algebraic transformations, we derive the

A similar approach can be used to derive the expressiofinal expression for the dispersio=Dy+D,, which is

for dispersior13.4'35 We start from

+oo +©

(1)) = dZ(E > (1+6)2P(I,1 -k;t)

k=0 1=0

+ > > (1+1)2P(1 -k, | + 1;t)> . (A42)

k=0 1=0

Then, using master equatiofd1)—(A4), it can be shown
that

d
lim d_t<|-2(t)> =d?) 2[(1 - d)us— dw;_5]Co o+ 2[ SUy_s
t—soo

= (1= 8W5lCo 1+ [(1 = 8)2us+ &wy_slbg o
+[PU—s+ (1 = 8)2Ws]bg 1 + Ug

+oo

+Wo(1 —bg o= b 1) + 2up >, [Cy o+ Cicsl
k=0
+0

- 2W02 [Cyo+ Cial
k=1

(A43)

Also, the following expression can be derived using Eq..

(A40)
. d . ) 400
lim —[(1(1)%]= 2°AX [Co+ Cicl. (A44)
t—oo dt k=0 ' '
The formal expression for dispersion is given by
1 H d 2 2
D=2 lim — ()% = 1)). (A45)
2 t—ow dt

Then substituting into this expression E¢a43) and (A44)
we obtain

given in Egs.(5)<7) in Sec. Il. Note that a constari o
cancels out in the final equation.
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