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When the nucleation of a stable crystalline phase directly in a supersaturated old phase is greatly
retarded, the crystal nuclei might nucleate within faster-forming particles of an intermediate phase.
Here we present a theoretical investigation of the kinetics of this two-step nucleation of crystals and
derive general expressions for the time dependence of the number of crystals nucleated within the
particles of the intermediate phase. The results reveal that crystal nucleation can be strongly delayed
by the slow growth of the particles and/or by the slow nucleation of the crystals in them.
Furthermore, the linear part of the time dependence of the number of nucleated crystals is
determined by the formation rate of the intermediate particles. This is in contrast with the one-step
nucleation of crystals when this linear part is determined by the rate of crystal nucleation directly in
the old phase. Criteria are proposed for distinction between the one- and two-step nucleation
mechanisms, based on the supersaturation dependence of the delay time for nucleation. The
application of the theoretical approach to the analysis of experimental data on the nucleation of
crystals and other ordered aggregates of protein and other soluble materials is discussed. © 2005
American Institute of Physics. �DOI: 10.1063/1.1943389�

I. INTRODUCTION

Materials of increasing complexity are crystallized for
various applications from various media, but, in particular,
from solutions. Crystals of proteins are grown for the pur-
poses of structural biology;1 large organic molecules are
crystallized in pharmaceutical processes.2 The formation of
crystals and other ordered aggregates of proteins is of further
interest, because they are often associated with debilitating
and deadly diseases: anemia,3,4 cataract,5 and others. A com-
mon feature of the solutions of such large molecules is that at
ionic strengths �0.1 M, where the characteristic Debye
length of the electrostatic interactions is comparable �or, at
higher ionic strengths, shorter� than the surface roughness of
the molecules, the range of interactions between the solute
molecules is largely determined by the solvent molecular size
and is significantly shorter than the size of the solute
molecules.6 As a result liquid–liquid �L–L� phase
separation7–10 in such solutions is metastable with respect to
the solution–crystal equilibrium.11–14

The complexity of the phase behavior allows for a com-
plex dynamics of the formation of new crystalline phases at
all stages of the phase transformation.15 Over the years, the
problem of the formation of the nuclei �the smallest clusters
of the new crystalline phase that are capable of spontaneous
overgrowth� has emerged as particularly challenging.16 Crys-
tal nucleation is hard to describe theoretically and difficult to

quantify experimentally even in simple cases of pure sub-
stances with well-understood interactions. For systems with
complex phase diagrams, general considerations invoking
the Oswald rule of stages suggest that if a metastable phase
exists, it may be involved in the process of formation of the
stable crystalline phase. More rigorous simulation and theory
have predicted that the metastability of the dense liquid
phase with respect to the crystalline phase may provide for a
novel mechanism of the solution-to-crystals phase
transition.17–22 According to this mechanism, the nucleation
of the crystalline nuclei proceeds in two steps: a droplet of a
dense liquid forms, within which a crystalline nucleus ap-
pears due to the ordering of a certain number of
molecules.10,19,23,24 This mechanism has been shown to apply
for two cases �i� where the liquid phase is metastable with
respect to the crystals, but has lower free energy than the
low-concentration solution, e.g., Refs. 12 and 25, and �ii�
where the dense liquid phase is doubly metastable with re-
spect to both crystals and low-concentration solution and
only exists as small disordered fluid clusters of limited
lifetime,15,26 e.g., Refs. 23, 24, and 27–29.

While the original theoretical works suggested that the
existence of the dense liquid precursor might lower the
nucleation barrier and enhance the rate of crystal nucleation
by many orders of magnitude, they did not analyze the sta-
tistical and kinetic relations associated with the two-step
nucleation mechanism and did not provide the criteria for
comparison with the experimental data. The objective of the
study presented here is to derive a general expression for thea�Electronic mail: tolya@rice.edu
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time dependence of the number of crystals formed during
two-step nucleation and to apply this expression to two par-
ticular cases. For both cases, we only consider stationary
nucleation of protein crystals in steadily forming droplets of
an intermediate protein phase. While below we imply that
the precursor is a liquid and the nucleating final phase is a
crystal, the formalism that we develop is applicable to all
cases of sequential nucleation of one phase within an inter-
mediate phase, which may be liquid, gel, ramified, or even
another crystalline polymorph.30 Another important example
of potential application of the results of this work is the
formation of sickle cell hemoglobin polymers, an ordered
solid phase, which underlies the deadly sickle cell
anemia:3,31 emerging evidence suggests that a two-step
mechanism might apply to the polymer nucleation.

II. PHYSICAL MODEL

We consider the physical model, schematically illus-
trated in Fig. 1. At a given moment t=0 an old phase �gas,
liquid, or solid� of macroscopically large volume V �m3� be-
comes supersaturated with respect to a stable crystalline
phase. Direct �i.e., one-step� nucleation of crystals in the old
phase is infinitely retarded with respect to the generation of
particles of an intermediate phase �liquid or solid�, which
appears randomly at a rate j�t� �m−3 s−1�. The intermediate-
phase particles grow radially according to the law

r�t� = �Gt�m, �1�

where r �m� is the effective radius of a particle, G �m1/m s−1�
is the growth constant, and m�0 is the growth exponent
�e.g., m=1/2 or 1 for growth controlled by diffusion or in-
terface transfer, respectively�. When the particles become
sufficiently large, nucleation of crystals at a rate
jc�t� �m−3 s−1� begins in them.

We also assume that just one crystal can nucleate within
one particle. Different physical mechanisms can underlie this
assumption: if the growth rate of the first crystal nucleus is
very fast, the entire material in the particle will turn into a
crystal before a second nucleus can form; if the formation of
a crystal nucleus changes the chemical potential of the re-
maining noncrystalline material in the particle, in a way that

may prevent crystallization. This assumption leads to the so-
called mononuclear mechanism,16 according to which the
number of nucleated crystals is equal to the number of par-
ticles in which crystals have formed; below, we call such
particles crystallized.

It is clear that when the nucleation of the crystals occurs
solely within the particles of the intermediate phase, the ki-
netics of the crystallization process becomes dependent on
the kinetics of particle formation and growth. In particular,
the overall formation of the crystalline phase is delayed with
respect to that of the intermediate phase.16,32 Correspond-
ingly, within the scope of the mononuclear mechanism, at
any time t the number Nc�t� of crystals in the old phase is
always smaller than or at most equal to the number N�t� of
particles of the intermediate phase that appeared until that
time. To reveal how crystal nucleation is controlled by the
formation and growth of the particles of the intermediate
phase, below we first obtain general results for the Nc�t�
dependence and then apply them for two particular cases that
might be important for the crystallization of proteins and
other large molecules in solution or for the formation of
other ordered aggregates of such materials.

III. GENERAL RESULTS

With the assumption that two-step nucleation follows the
mononuclear mechanism, the number of nucleated crystals is
equal to the number of particles containing a crystal, Fig. 1.
For that reason, at time t the number Nc of crystals nucleated
by this mechanism within a fixed number N0 of particles of
equal constant volume �0 �m3� is given by16,33

Nc�t� = N0�1 − exp�− �
0

t

jc�t���0dt��	 . �2�

This formula is a generalization of the expression16,33,34

Nc�t� = N0�1 − exp�− Jc�0t�� �3�

in which Jc �m−3 s−1� is the time-independent value of jc, i.e.,
the stationary rate of nucleation of crystals in the particles.

To employ Eq. �2� to the case of growing particles, we
use a time-dependent particle volume ��t� , t�, where t�� t is
the moment of particle formation. With this definition, par-
ticles formed first �at t�=0� are the largest and nucleation of
crystals in them is most likely. Conversely, particles formed
last �at t�= t� have zero volume and crystals cannot nucleate
within them. Equation �2� also shows that the probability of
nucleation of crystals Nc /N0 becomes larger with the in-
crease of the volume of the particles of the intermediate
phase. Thus, more generally, Eq. �2� becomes

Nc�t� = N0�1 − exp�− �
0

t

jc�t����t�,t�dt��	 , �4�

where, according to Eq. �1�, at time t the volume � of a
particle formed at time t� is given by

��t�,t� = crd = cGmd�t − t��md. �5�

Here d=1, 2, 3 is the dimensionality of growth and c �m3−d�
is the shape factor of the growing particles; for values of c
for different geometries see Table I. We note that with d=0

FIG. 1. Two-step nucleation by the mononuclear mechanism: only one crys-
tal �shown black� nucleates within a particle of an intermediate phase
�shown gray�.

244706-2 Kashchiev, Vekilov, and Kolomeisky J. Chem. Phys. 122, 244706 �2005�



and c=�0, formally, Eq. �5� applies also to crystal nucleation
within particles of equal constant volume �0: then Eq. �4�
passes into Eq. �2�.

We can now derive a general formula for the Nc�t� de-
pendence when the number N of particles within which crys-
tal nucleation occurs is not fixed �i.e., not equal to N0�, but
changes with time in a known way. To this end, we use Eq.
�4�, but in a differential form, i.e., for dNc and dN rather than
for Nc and N0. Indeed, if we consider a small number dN of
particles of the intermediate phase that are formed between �
and �+d�, at a later time t�� a small number dNc of these
dN particles will be crystallized by the mononuclear mecha-
nism. Treating � as the initial moment of crystal nucleation in
the dN particles, analogous to Eq. �4� we can write

dNc = �1 − exp�− �
�

t

jc�t����t�,t�dt��	dN . �6�

This relation parallels the one used elsewhere16,32 to
couple the fractions of crystallized volume in two-step crys-
tallization. We note that an equation similar to Eq. �6� was
employed for describing the coverages of the successive lay-
ers in nucleation-mediated polylayer growth of crystals35 and
thin solid films.16,36 Integrating the right-hand side of Eq. �6�
from �=0 to �= t and its left-hand side from Nc=Nc�0�=0 to
Nc=Nc�t� yields

Nc�t� = N�t� − �
0

t

exp�− �
�

t

jc�t����t�,t�dt��
��dN���/d��d� , �7�

because our considerations are restricted to cases in which
N�0�=0.

Equation �7� represents the sought general time depen-
dence of the number of crystals appearing by the mono-
nuclear mechanism within continuously forming and grow-
ing particles of an intermediate phase. This equation can also
be used with ��t� , t� dependence different from that given by
Eq. �5�. Equation �7� reveals that Nc depends not only on the
kinetics of nucleation of the crystals themselves within the
particles �i.e., on jc�, but also on the formation rate dN /dt
and the growth law of the particles. This general equation
shows that always Nc�t��N�t�, with the equality holding
only in the limit of jc→�, i.e., in the case when a crystal
instantaneously nucleates in every appearing particle. We
note also that in the particular case of particles formed in-

stantaneously at t=0, as required, Eq. �7� passes into Eq. �4�.
Indeed, in this case N�t�=N0 for all t�0, and the particle
formation rate is given by the expression dN /dt=N0��t�,
where � is the Dirac delta function. Employing this expres-
sion for dN /dt in Eq. �7� and evaluating the d� integral with
the help of the general relation 
0

t ����y�� , t�d�=y�0, t� trans-
forms Eq. �7� into Eq. �4� �y is an arbitrary function of � and
t�.

Below, we consider in detail only the case where the
number of particles increases in time according to the law16

N�t� = V�
0

t

j�t��dt�, �8�

which is valid as long as the total volume of the particles is
significantly smaller than the volume V of the old phase. In
this case, from Eq. �7� we obtain

Nc�t� = N�t� − V�
0

t

j���exp�− �
�

t

jc�t����t�,t�dt��d� . �9�

Using Eqs. �7� and �9� allows a straightforward calcula-
tion of the number Np�t� of uncrystallized particles at time t
�these are the particles within which no crystals were nucle-
ated until that time�. Since Np�t��N�t�−Nc�t�, from these
equations we find that

Np�t� = �
0

t

exp�− �
�

t

jc�t����t�,t�dt���dN���/d��d� , �10�

in general, and that

Np�t� = V�
0

t

j���exp�− �
�

t

jc�t����t�,t�dt��d� �11�

in the concrete case of N�t� given by Eq. �8�.

IV. STATIONARY FORMATION OF PARTICLES
AND NUCLEATION OF CRYSTALS

An important special case of two-step nucleation of crys-
tals is that of the stationary formation of the intermediate-
phase particles in the old phase and the stationary nucleation
of the crystals within the particles. Then the rates j and jc are
time independent16 and denoting, respectively, their station-
ary values as J and Jc, from Eqs. �5�, �8�, �9�, and �11� we get

Nc�t� = JVt − JVa�
0

t/a

exp�− xmd+1�dx , �12�

Np�t� = JVa�
0

t/a

exp�− xmd+1�dx , �13�

where x is an integration variable and the parameter a �s� is
given by

a = ��md + 1�/cGmdJc�1/�md+1�. �14�

Equations �12� and �13� show that asymptotically, i.e.,
for t	a, Nc becomes a linear function of time, and Np

reaches a maximum value Np,max,

Nc�t� = JV�t − 
� , �15�

TABLE I. Dimensionality d and shape factor c for nongrowing particles
with volume �0 �m3�, for growing needles with constant cross-sectional area
A0 �m2�, for growing disks or square prisms with constant thickness H0 �m�,
and for growing spheres or cubes.

Shape d c

Any 0 �0

Needle 1 2A0

Disk 2 �H0

Square prism 2 4H0

Sphere 3 4� /3
Cube 3 8
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Np,max = JV
 . �16�

Here 
 �s� is the intercept of Nc on the time axis and has the
physical meaning of delay time of the process of two-step
crystal nucleation. This time is given by the expression


 = a�
0

�

exp�− xmd+1�dx = ���md + 2�/�md + 1��

���md + 1�/cGmdJc�1/�md+1�, �17�

where � is the complete gamma function. This expression
shows that the slow growth �G� of the particles and/or the
slow nucleation �Jc� of the crystals within them result in a
longer delay of the two-step crystal nucleation. We also see
that Np,max contains no new information; it is merely the
product of the delay time 
 and the slope JV of the linear
portion of the Nc�t� function.

In the opposite limiting case of short times, i.e., for
t
a, Eq. �12� predicts a power dependence of Nc on t.
Indeed, then for the integrand in Eq. �12� we have
exp�−xmd+1��1−xmd+1 and evaluating the integral yields

Nc�t� = �cGmdJcJV/�md + 1��md + 2��tmd+2. �18�

Accordingly, for t
a the Np�t� function from Eq. �13� takes
the form

Np�t� = JVt − �cGmdJcJV/�md + 1��md + 2��tmd+2. �19�

V. APPLICATION TO TWO-STEP NUCLEATION
OF PROTEIN CRYSTALS

We can now apply the above general results to two par-
ticular cases of the stationary nucleation of protein crystals in
steadily forming droplets of an intermediate protein phase.
When the process occurs in a supersaturated solution that is
in the region below the liquid–liquid separation line in the
corresponding phase diagram, the droplets represent a liquid
protein phase which is stable with respect to the solution, but
metastable with respect to the crystalline protein phase—
then j and J are merely the time-dependent and the stationary
rates of droplet nucleation in the solution. When, however,
the crystallization conditions are such that the supersaturated
solution is in the region above the liquid–liquid separation
line in the phase diagram, the appearance of protein droplets
is not mediated by nucleation and j and J do not represent
nucleation rates, but, rather, the rates of nonnucleation for-
mation of the droplets.

Let us first consider the case of droplets �d=3, c
=4� /3� appearing at stationary rate J and having radii that
increase linearly with time �then m=1, see Eq. �1��. From
Eqs. �12�–�19� it follows then that

Nc�t� = JVt − JVa�
0

t/a

exp�− x4�dx , �20�

Np�t� = JVa�
0

t/a

exp�− x4�dx , �21�

where

a = �3/�G3Jc�1/4. �22�

Initially �t
a�, we have

Nc�t� = ��/15�G3JcJVt5, �23�

Np�t� = JVt − ��/15�G3JcJVt5, �24�

and asymptotically �t	a�, Nc and Np are again given by

Nc�t� = JV�t − 
� , �25�

Np,max = JV
 , �26�

with the delay time


 = ��5/4��3/�G3Jc�1/4. �27�

The lines in Fig. 2 display the Nc�t� dependence accord-
ing to Eq. �20� at JVa=0, 0.2, 1, and 2. The initial parabolic
and the asymptotic linear dependencies of Nc on t are clearly
seen. The arrow indicates the delay time 
 only at JVa=2;
this time shortens with decreasing a, i.e., with increasing the
product �G3Jc�1/4. At �G3Jc�1/4=�, in agreement with Eq.
�27�, we have 
=0, because then the crystals nucleate in the
droplets at the very moment of the droplet appearance. In
this case the Nc�t� dependence is linear for all times and
takes the form Nc�t�=N�t�=JVt. Accordingly, there are no
uncrystallized droplets and Np�t�=0. Thus, although in this
case no droplets can be detected in the old phase because of
their instantaneous crystallization, Jc has no effect on the
number Nc of nucleated crystals—this number is entirely
controlled by J, i.e., by the kinetics of droplet formation.

As a second case, let us consider droplets appearing
again at stationary rate J, but with equal fixed volume �0. As
noted above, in this case we have d=0 and c=�0, so that
from Eqs. �12�–�19� we obtain

Nc�t� = JVt − �JV/Jc�0��1 − exp�− Jc�0t�� , �28�

Np�t� = �JV/Jc�0��1 − exp�− Jc�0t�� . �29�

Initially, i.e, for t
1/Jc�0, Nc increases quadratically with
time,

Nc�t� = �1/2�JVJc�0t2, �30�

and the Np�t� dependence reads

FIG. 2. Time dependence of the number of crystals: lines 0, 0.2, 1, and
2—Eq. �20� at JVa=0, 0.2, 1, and 2, respectively; dashed line—Eq. �25� at
JVa=2.
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Np�t� = JVt − �1/2�JVJc�0t2. �31�

Asymptotically �t	1/Jc�0�, Nc and Np are again of the form

Nc�t� = JV�t − 
� , �32�

Np,max = JV
 , �33�

where 
, given by


 = 1/Jc�0, �34�

is merely the mean time for the appearance of a crystal
nucleus in a droplet.16

The lines in Fig. 3 depict the Nc�t� dependence �28� at
JV /Jc�0=0, 0.2, 1, and 2. This dependence is analogous to
the one in Fig. 2; Nc initially increases parabolically with
time and, at longer times, becomes linear. The delay time 

�indicated by the arrow only for JV /Jc�0=2� shortens with
increasing Jc�0 and vanishes in the limit of Jc�0→�, because
then the crystals nucleate in the droplets virtually at the very
moment of droplet formation.

VI. DISCUSSION AND CONCLUSIONS

The simplest case of two-step nucleation is when the rate
of formation of the intermediate-phase particles is signifi-
cantly faster than the rate of nucleation of crystals within
them, and the particles quickly reach time-independent vol-
ume �0 and number N0. This is the case of instantaneous
particle formation, discussed in Sec. III. The values of �0 and
N0 may reflect stable or metastable equilibrium between the
intermediate-phase particles and the old phase, as envisioned
in Ref. 26. The nucleation of crystals within these instanta-
neously formed equisized N0 particles would then follow Eq.
�3�. If the typical observation times t are much shorter than
the characteristic time 1/Jc�0, then Eq. �3� simplifies to

Nc�t� = N0Jc�0t , �35�

i.e., Nc increases proportionally to the rate of nucleation of
crystals in the particles. Equation �35� indicates that analyses
of dNc /dt=N0Jc�0 and its variations with temperature, super-
saturation, solution composition, and other system param-
eters, such as those in Refs. 23, 24, and 37–39 provide in-
sights, including the nucleus size and its variation with
increasing supersaturation, into the nucleation of crystals

within the intermediate-phase particles, the rate-determining
step of the nucleation process.

In the case of steadily increasing number N=JVt of
intermediate-phase particles, the above results show that the
delay time 
 and the slope JV of the linear part of the Nc�t�
dependence are determined by the particle-formation rate J,
growth constant G, and by the rate Jc of crystal nucleation in
the particles. The time dependence of the number Np�t� of
uncrystallized particles provides no additional information,
because its linear part has also the slope JV, and, according
to Eq. �16�, its plateau value Np,max is proportional to 
.
Nonetheless, it is advantageous to determine in an experi-
ment both the Nc�t� and Np�t� dependencies, because the
equality of the slopes of their linear parts is an unambiguous
evidence for two-step nucleation.

If only the Nc�t� dependence is known, it is not obvious
whether the delay time 
 is due to a two-step nucleation
process; even in the one-step �i.e., direct� nucleation of crys-
tals in the old phase, Nc�t� may have a delay followed by a
linear part.16 In this case the delay time is not given by Eq.
�17�, but is the sum of the time tn for the establishment of
stationary nucleation40,41 and the time tg for the growth of the
crystal nuclei to a detectable size,16


 = tn + tg. �36�

To distinguish between one- and two-step nucleation from
experimental data, one has to rely on the different dependen-
cies of 
 defined by Eqs. �17� and �36� on the supersaturation
�� of the system ��� is the difference between the chemical
potentials of the old phase and the nucleated crystalline
phase�. Usually tn and tg are relatively weak functions of ��
and one expects a weak 
���� dependence for one-step
nucleation. In contrast, for two-step nucleation 
 from Eq.
�17� is expected to change considerably with �� because Jc

is an exponential function of supersaturation.
An important feature of the two-step nucleation mecha-

nism is that according to Eqs. �15�, �16�, and �19�, the slope
of the linear portions of the Nc�t� and Np�t� curves is propor-
tional to the rate J of formation of the intermediate-phase
particles, while the delay time 
 of the Nc�t� and the plateau
of the Np�t� dependencies are determined by the nucleation
rate Jc of the crystals within the particles. This interpretation
of the slope of experimentally obtained Nc�t� curves in two-
step crystal nucleation differs radically from that in the case
of one-step nucleation, where the slope is proportional to the
rate Jc,1 of crystal nucleation directly in the old phase.

Experimentally, it would be advantageous to obtain the
Nc�t� and/or Np�t� dependencies at different supersaturations
�� of the system. Then J and 
 can be determined as func-
tions of �� and can be used for the verification of theories
for particle formation and growth in the old phase and for
crystal nucleation within the particles.

The model that we analyze here is based on assumptions
that may limit its applicability. For instance, one can readily
envision cases in which the particle-growth law is different
from the simple power law in Eq. �1�. Also, the crystals
within the particles of the intermediate phase nucleate under
supersaturation, which in fact varies with the particle size
because of the Gibbs–Thomson effect. This effect is negli-

FIG. 3. Time dependence of the number of crystals: lines 0, 0.2, 1, and
2—Eq. �28� at JV /Jc�0=0, 0.2, 1, and 2, respectively; dashed line—Eq. �32�
at JV /Jc�0=2.
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gible only for sufficiently large particles; thus, the assump-
tion of a stationary rate of nucleation of crystals within the
particle Jc only applies to large particles. Furthermore, it is
important to consider a mechanism in which more than one
crystal could appear in each particle of the intermediate
phase. Accounting for this effect is needed for a more accu-
rate description of crystallization processes in two-step
nucleation.
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