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Rigid biopolymers, such as actin filaments, microtubules, and intermediate filaments, are vital
components of the cytoskeleton and the cellular environment. Understanding biopolymer growth
dynamics is essential for the description of the mechanisms and principles of cellular functions.
These biopolymers are composed of N parallel protofilaments which are aligned with arbitrary but
fixed relative displacements, thus giving rise to complex end structures. We have investigated rigid
biopolymer growth processes by Monte Carlo simulations by taking into account the effects of such
“end” properties and lateral interactions. Our simulations reproduce analytical results for the case of
N=2, which is biologically relevant for actin filaments. For the case of N=13, which applies to
microtubules, the simulations produced results qualitatively similar to the N=2 case. The simulation
results indicate that polymerization events are evenly distributed among the N protofilaments, which
imply that both end-structure effects and lateral interactions are significant. The effect of different
splittings in activation energy has been investigated for the case of N=2. The effects of activation
energy coefficients on the specific polymerization and depolymerization processes were found to be
unsubstantial. By expanding the model, we have also obtained a force-velocity relationship of
microtubules as observed in experiments. In addition, a range of lateral free-energy parameters was
found that yields growth velocities in accordance with experimental observations and previous
simulation estimates for the case of N=13. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2013248�

I. INTRODUCTION

Rigid biopolymers are vital components of the cytoskel-
eton and the cellular environment. Microtubules, actin fila-
ments, and intermediate filaments are such rigid biopolymers
that play a fundamental role in biological systems by facili-
tating cellular transport, cell motility, and reproduction.1,2

These cytoskeletal biopolymers polymerize and depolymer-
ize, and also move within the cytoplasm.1,2 Polymerization
and depolymerization processes display the phenomenon of
recurrent growing and shrinking phases which alternate sto-
chastically. This is termed “dynamic instability” and it en-
ables the growing microtubules to explore space and
reorganize.3 Although the behavior of microtubules in living
cells can be attributed to dynamic instabilities, the exact
mechanisms and biological functions are not completely
known.

Microtubules are rigid, cylindrical tubes with diameter
of approximately 25 nm that are composed of N parallel
protofilaments. N varies from 10–15, but typically N=13 is
most prevalent for the ones that are nucleated from
centrosomes.4 Polymerization and depolymerization dynam-
ics of microtubules have been studied extensively, both ex-
perimentally and theoretically. Experimental measurements
of growth dynamics of actin filaments and microtubules un-
der external forces have been made,5–7 and theoretical mod-

els, such as polymer ratchet8,9 and phenomenological10,11

models, have been proposed. Despite the fact that the theo-
retical models provide adequate descriptions of the dynamics
of growing rigid biopolymers, they lack information on mi-
croscopic structure, geometrical properties of a biopolymer’s
lattice, and lateral interactions between protofilaments.12,13

Computer simulations have also been employed for the study
of microtubule dynamics.14 These simulations do not de-
scribe accurately the geometry of the growing ends in micro-
tubules.

Stukalin and Kolomeisky12 developed a model which
takes into account the complex structure of the growing end
of the biopolymer and obtained analytical solutions for the
case of N=2, which is relevant to actin filaments. In Ref. 12,
two models for microtubule growth were considered, “one-
layer” and “full” model, respectively. In the one-layer model,
the distances between the tips of the protofilaments are con-
strained to lie within one subunit length in the allowed poly-
mer configurations. In contrast, the full model has no such
restriction. Despite the fact that the one-layer model is
soluble15 for arbitrary N, analytical solutions cannot be ob-
tained for the cases of N=10–15, which are relevant to mi-
crotubules, for the full model. Analytical difficulties arise
due to the enormous number of configurations associated
with N�2. The objective of this work is to perform Monte
Carlo simulations to obtain results for the growth velocities
for the analytically insoluble cases of N�2 full model ina�Electronic mail: makis@seas.ucla.edu
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order to test how well the one-layer approximation describes
the growth of rigid biopolymers, as well as to study the ef-
fects of activation energy coefficients for specific poly-
merization/depolymerization processes. For the case in
which the activation energy coefficients are nonzero, the
models considered in Ref. 12 cannot be solved analytically.
Furthermore, for the N=13 full model, we have found a
range of lateral energy parameters that yields growth veloci-
ties consistent with experimental observations5 and previous
simulations.14 In addition, since growing microtubules are
known to generate forces,2,3,5 we have obtained a force-
velocity curve which is in good accord with experimental
measurements5 for the analytically intractable N=13 full
model. The difference between our work and previous simu-
lations is that we incorporated the shift distance a between
adjacent protofilaments in order to explicitly calculate the
magnitude of lateral interactions, whereas previous work did
not focus on these microscopic details.

II. DESCRIPTION OF THE MODEL

The parallel protofilaments of microtubules are polymers
and their building blocks are globular proteins called tubulin
subunits. Tubulin subunits are heterodimers that are com-
posed of alternating �- and �-tubulin monomers, see Fig.
1�b�. Because of the head-to-tail arrangement of the �- and
�-tubulin subunits in protofilaments, polarity arises and the
���– end displays a faster rate of growth than the ���– end.
In this work, we consider microtubule growth from the ���–
end only. However, the method of assembly at both ends are
analogous, and recently, growth dynamics of rigid two-
stranded polymers at both ends has been described as a com-
bination of growth processes at each end separately.16

Whereas previous Monte Carlo simulations on microtu-
bule growth dynamics did not take into account the jagged
edges of the growing end of the biopolymer,14 the present

work incorporates the detailed microscopic structure in the
model, see Fig. 1. Note the omission of the jagged growing
end of the microtubule in Fig. 1�a�. In this schematic, the
“surface” of the microtubule tip is flat, whereas in reality, it
displays some “surface roughness.” In contrast, note the de-
tails of the rough edges in Fig. 1�b�. The length of the tubulin
subunit is d=8.2 nm, and a is the shifted distance for adja-
cent protofilaments. Figure 1�b� is a much more realistic rep-
resentation of a microtubule of a B-type lattice with a seam.2

Note that each rectangular tubulin subunit represents a dimer
of alternating �- and �- monomers. Specific to this diagram,
the Nth protofilament is termed the “leading” protofilament
because it is the longest.

The hollow, cylindrical nature of microtubule is simu-
lated by mimicking a contact between the first and last col-
umns �protofilament 1 and N�, see Fig. 1. Adjacent protofila-
ments are shifted by an arbitrary distance a. For real
microtubules with N=13, a=0.96 nm. However, in the sim-
plified symmetric case where seam effects are not explicitly
taken into account, a can be estimated as d /13 or a
=0.63 nm. The jagged tip of the growing biopolymer can be
treated as a surface, where structural roughness arises from
attachment or detachment of individual subunits.17 A variable
Mi is introduced as a measure of the exposed surface and
molecular roughness. It represents the lateral interactions that
an incoming subunit will have with its adjacent protofila-
ments. We explicitly calculate �M1 ,M2 , . . . ,Mi , . . . ,
MN−1 ,MN� for each ith protofilament. In essence, Mi are the
sums of the differences in lengths �xi� of protofilaments that
are on either side of protofilament i, i.e.,

Mi = �xi−1 − xi� + �xi − xi+1� �1�

and

mi =
Mi

d
, �2�

where Eq. �2� represents the fraction of lateral interactions
that an incoming subunit will have.18

It is known that microtubule assembly is not diffusion-
limited when the tubulin subunits approach the growing
biopolymer.19 Therefore, it follows that a careful investiga-
tion of the rates of attachment �rai� and detachment �rdi�,
which are in turn influenced by the complex structure of the
growing end, the geometrical properties, and the lateral in-
teractions between the protofilaments, is necessary in order
to evaluate the long-time mean velocity. These rates are re-
lated by the following thermodynamic expression:12

rai/c

rdi
= e−�g�+gim+ghi�/kBT, �3�

where c=25 �M is the concentration of free tubulin subunits
used in experiments.5 Note that the appearance of c arises
because the rate of attachment is proportional to the concen-
tration of free subunits. In Eq. �3�, g� is the vertical bond
energy, gim is the energy for immobilizing tubulin subunits
into the rigid lattice, and ghi is the lateral bond energy. Note
that these energies are negative, which is an implication of
weak chemical bonds �microtubules are noncovalent

FIG. 1. Matrix diagram. �a� The tip of the microtubule is flat. �b� The tip of
the microtubule shows jagged edges.
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polymers2�. The head-to-tail binding �vertical� and immobi-
lization energies are constant for any configuration, whereas
the lateral energy varies depending on the local configuration
at the tip of the growing microtubule. Then the lateral energy
for the ith protofilament is expressed by the following:

ghi = migho, �4�

where gho is a constant and mi is the measure of the fraction
of lateral interactions for site i. Subsequently, the rates of
attachment and detachment can be written as follows:

rai � e−	�g�+gim+ghi�/kBT, �5�

rdi � e−�	−1��g�+gim+ghi�/kBT. �6�

In Eqs. �5� and �6�, 	 reflects the value of the activation
barrier for subunit binding, 0
	
1.12

Attachment and detachment rates for the leading
protofilament �Ra and Rd, respectively� have no dependence
on ghi, and they can be represented by the following expres-
sions for any configuration:12

Ra/c

Rd
= e−�g�+gim�/kBT. �7�

Then rates rai and rdi for protofilaments other than the lead-
ing one can be expressed by the following:

rai

rdi
=

Ra

Rd
�mi, �8�

where

� = e−gho/kBT �9�

is the lateral energy parameter. The thermodynamic expres-
sion in Eq. �8� can be rewritten in the following form:

rai = Ra� f i+�1/2�mi, �10�

rdi = Rd� f i−�1/2�mi. �11�

The coefficients f i reflect the different values of activation
energies for specific polymerization and depolymerization
processes. In this work we first consider the case f i=0 for the
purpose of comparing our results to those of analytical re-
sults. After successful reproduction of the analytical results,
f i will be explicitly determined for each protofilament under
the following criteria:12

− 1
2mi 
 f i 


1
2mi �12�

or

− 1 
 f i 
 1. �13�

Equation �12� applies to protofilaments for which the tips are
at a distance less than d from the adjacent protofilaments,20

and Eq. �13� applies to protofilaments for which the tips are
at a distance greater than d from the adjacent proto-
filaments.

The coefficients f i are related to the amount of lateral
interactions that the incoming subunits will have based on
the configurations of their adjacent protofilaments �Eqs. �12�
and �13��. Since these coefficients imply a faster attachment

to the protofilament where a stronger lateral bond is created,
and conversely, a slower dissociation where a stronger lateral
bond is to be broken, it is necessary to investigate the degree
of significance of their effects on the growth velocities of the
microtubules.

In Ref. 12 two different models of growth were pro-
posed: the one-layer model and the full model. Consider a
growing rigid polymer in Fig. 2. The location of the leading
protofilament �the longest protofilament� is where ai=0. Us-
ing this as a reference, the one-layer model corresponds to
ai
d for protofilaments other than the leading one, see Fig.
2�a�. The absence of the constraint ai
d corresponds to the
so-called full model, see Fig. 2�b�. The ratio of the velocities
of these two models are obtained in order to determine how
well the simple one-layer model describes the more realistic
full model.

III. SIMULATION METHODOLOGY

The growth of microtubules is a nonequilibrium process
and it is thus simulated by a kinetic Monte Carlo method.
Kinetic Monte Carlo algorithms are based on a dynamic in-
terpretation of the Monte Carlo method through the master
equation.21–24 They were developed to address the questions
of convergence and accuracy of the Monte Carlo method22

and they also formed the basis for applying the Monte Carlo
method to simulate dynamic processes.25 In this work, the
growth of microtubules is simulated by a kinetic Monte
Carlo algorithm that was developed for Ising systems with
nearest-neighbor interactions23 and extended in stochastic
formulations of chemical reactions26–28 by Gillespie. The
transient behavior of a system that executes a random walk
over a discrete set of states �S1 ,S2 , . . . ,Sm , . . . ,Sn , . . . � is de-
scribed by the master equation:

dP�n��t�
dt

= �
m

P�m��t� · Wmn − �
m

P�n��t� · Wnṁ, �14�

where P�n��t� is the probability that the system is in state Sn

at time t and Wmn is the transition probability per unit time
from state Sm to Sn. Even for cases for which the transition
probabilities do not have explicit time dependence �as it is

FIG. 2. �a� One-layer model of the rigid polymer. �b� Full model of the rigid
polymer.
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the case in this work�, the master equation Eq. �14� is ana-
lytically and numerically intractable. An equivalent descrip-
tion of the random walk, well-suited for numerical imple-
mentations, may be formulated through the transition
probability density function Pn�� �m , t�.27 Given that the sys-
tem is at state Sm at time t, Pn�� �m , t�d� is the probability
that the system “hops” to state Sn in the time interval �t
+� , t+�+d��. Pn�� �m , t� is written as27

Pn���m,t�d� = P̃0���m,t� · Wmnd� , �15�

where P̃0�� �m , t� is the probability that no transition occurs
in the time interval �t , t+�� �i.e., the system stays in state Sm�
and Wmnd� is the probability that the system moves from Sm

to Sn in the time interval �t+� , t+�+d��. The waiting-time

probability P̃0�� �m , t� satisfies the following identity:

P̃0�� + d��m,t� = P̃0���m,t� · �1 − Wmd�� , �16�

where

Wm = �
n

Wmn, �17�

and Wmd� is the probability that the system moves away
from state Sm within d�. Rearrangement of Eq. �16� yields

dP̃0���m,t�

P̃0���m,t�
= − Wmd� , �18�

which can be integrated subject to P̃0�0 �m , t�=1 to give

P̃0���m,t� = e−Wm�. �19�

Using Eqs. �15� and �19�, the transition probability density
Pn�� �m , t� can be explicitly written as

Pn���m,t� = Wmne−Wm�. �20�

For continuous-time/discrete-state random walks, it is more
convenient to express Pn�� �m , t� in the following form:27

Pn���m,t�d� = P̃1���m,t�d� · mn, �21�

where P̃1�� �m , t�d� is the probability that a transition from
state Sm to another state �any one� occurs in �t+� , t+�+d��
and mn is the “hopping” probability from Sm to Sn.

P̃1�� �m , t� and mn are given by

P̃1���m,t� = �
n

Pn���m,t� = Wme−Wm�, �22�

mn =
Pn���m,t�

P̃1���m,t�
=

Wmn

Wm
. �23�

In the implementation of the random walk under consid-
eration, given that the system is at state Sm at time t, one
must determine at what time t+� the next step occurs and to
which state Sn the system jumps. The specification of the
time increment � and the state Sn �or the integer n� is done
according to the transition probability density function
Pn�� �m , t� and it is based on the fact that the two-variable
function Pn�� �m , t� can be written as the product of two one-

variable functions, P̃1�� �m , t� and mn, respectively, see Eq.
�21�. First, a state Sn or equivalently an integer n is selected
with probability mn. Let

Fm�n� = �
j=1

n

mj �24�

be the probability that k�n, where k is the number of several
independent paths stemming from state Sm.26 If �1 is a ran-
dom number uniformly distributed in �0, 1�, then integer n
�and state Sn� is selected if the following inequality is
satisfied:29,30

Fm�n − 1� � �1 
 Fm�n� . �25�

A time increment � must also be generated from the prob-

ability density P̃1�� �m , t�. To this end, consider the probabil-

ity distribution F̃1�� �m , t� defined by

F̃1���m,t� = 	
0

�

d�P̃1���m,t� = 1 − e−Wm�. �26�

If �2 is a random number uniformly distributed in �0, 1�, � is

found from F̃1�� �m , t�=�2 or

� = −
1

Wm
ln�1 − �2� , �27�

which ensures that � is distributed according to the probabil-

ity density P̃1�� �m , t�. Statistical averages are obtained by
performing several independent realizations of the random
walk according to the previous methodology. In the microtu-
bule growth problem, a state Sm is characterized by a given
arrangement of the protofilaments and a new state is obtained
by adding or removing a tubulin subunit. If N is the number
of protofilaments, the total number of states within reach of
the current state is 2N.31 The 2N hopping probabilities mn

are defined by

mn =
rn

� j=1

2N
rj

, �28�

where rn is either the rate of attachment or detachment �rai or
rdi �Eq. �10� or �11��, respectively� of a tubulin monomer to
a given protofilament.

IV. RESULTS AND DISCUSSION

We have performed Monte Carlo simulations for the
cases of N=2 and N=13 for both models, one-layer and full,
respectively. In the simulations we evaluate the asymptotic
�long-time� mean growth velocity


x�t�� � Vt , �29�

where x�t� represents the length of the biopolymer at time t.
This length is the maximum value among the N protofila-
ments at time t in order to be consistent with the methods of
experimental measurements. Our first goal is to reproduce
the velocities obtained in Ref. 12 with zero activation energy
coefficients f i for N=2. The growth velocity of the microtu-
bule is determined by calculating the statistical average 
x�t��
as a function of time, see Fig. 7 below. Our results are shown
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in Fig. 3 and are compared with the analytical predictions of
Ref. 12. Figure 3 shows that the simulations reproduce the
analytical results consistently. Note that the larger protofila-
ment shift distance �a /d=0.6� results in better agreement for
the one-layer and the full model. This is so because more
favorable lateral bonds are created for a /d=0.6, due to the
fact that more contact length is created between the incoming
tubulin subunit and the protofilaments that are adjacent to the
site of event.

The ratio of mean growth velocities for the case of N
=13 is expected to display characteristics similar to the N
=2 case. Results for the growth velocities for N=13 are
shown in Fig. 3. The mean growth velocity ratio at �=1 is
0.907 for both a /d=0.1 and 0.6, which is higher than the
value of 0.5 for the case of N=2 for the same value of �.
This means that the one-layer model not only describes the
dynamics of growth adequately for the N=13 model, but also
it is a better description of growth for larger N. This behavior
is as expected since there are more sites to choose from, and
the event is more likely to be distributed evenly among the
13 possible sites. The ratio of mean growth velocities ap-
proaches the value of 1 for large values of � and follows the
trend of N=2. The one-layer model is thus an excellent de-
scription of the more realistic full model.

Whereas the results in Fig. 3 were obtained by assuming
the activation energy coefficients to be zero,12 Fig. 4 shows
results for the cases of N=2, where the activation energy
coefficients are taken to be nonzero.32 Since these coeffi-
cients imply a faster attachment to the protofilament where
the stronger lateral bond is created, and conversely, a slower
dissociation where a stronger lateral bond is to be broken, it
is necessary to investigate the degree of significance of their
effects on the growth velocities of the microtubules. Two
different schemes are employed for this part of the investi-
gation. First, we consider the case where all f i are positive.
In the second scheme, f i are randomly chosen to be positive
or negative. It follows from Fig. 4 that the inclusion of f i,
whether they are all positive or positive and negative, pro-
duces results qualitatively similar to the case where all f i

=0 and the effects of activation energy coefficients on the

specific polymerization/depolymerization processes are not
significant. For this reason, we did not consider the effects of
activation energy coefficients further in this work and as-
sumed f i=0.

We then calculated the mean growth velocities for the
analytically intractable case of N=13 full model by varying
the lateral energy parameter �. The rates of attachment and
detachment of the leading protofilament, Ra and Rd, are taken
to be 8.3 and 355 s−1, respectively, to be consistent with the
work of Ref. 12 and we utilized them in the N=13 full model
in order to calculate the range of lateral interactions that is
significant for microtubule growth. The plot of various � and
their corresponding velocities can be seen in Fig. 5. It is
found that � ranges from 45 to 280, which corresponds to
−6kBT�gh�−3kBT. The same range of gh was also found
by VanBuren et al.14 by using a simplified stochastic model
of microtubule assembly dynamics. Note in Fig. 5 that out-
side the range of −6kBT�gh�−3kBT, either no growth oc-
curs or that the growth velocity plateaus so that no larger
value of � �correspondingly, no smaller value of gh� has any
significant effect on growth. It is important to note that this
model, which includes only the effects of local geometries of
the growing end of the biopolymer and the specific lateral
interactions of the adjacent protofilaments, captures the es-
sential physical properties of polymerization/depoly-
merization processes.

Another significant aspect of this study is the effect of

FIG. 3. Ratio of mean growth velocities V�one-layer� /V�full� for the cases
of N=2 and N=13 as functions of the lateral energy parameter �. ��� shows
simulation results for N=2, a /d=0.6, and ��� shows simulation results for
N=2, a /d=0.1. The solid lines are the analytical predictions of Ref. 12 for
corresponding values of a /d. ��� shows points for N=13, a /d=0.1, and ���
shows points for N=13, a /d=0.6. The trend for N=13 is similar to N=2
model.

FIG. 4. Comparison of the ratios of mean growth velocities V�one-
layer� /V�full� for the case of N=2 as functions of the lateral energy param-
eter � for nonzero activation energy coefficients f i. ��� shows the results for
f i=0, ��� is for positive and negative f i, and ��� is for only positive f i.

FIG. 5. Mean growth velocity as a function of the lateral energy parameter
� for the case of N=13 full model. The range of lateral energy parameter
corresponds to values of gh :−6kBT�gh�−3kBT.
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the forces generated by growing microtubules. These forces
are crucial for various forms of mechanisms of cellular mo-
tility and cellular transport.2,3,5 For example, assembling mi-
crotubules are believed to exert pushing forces on chromo-
somes during mitosis. Experimentally, these forces are
determined by putting the growing microtubules under exter-
nal loads �in vitro�, thus retarding growth. The source of
external loads are hard walls and/or optical trap systems.5,6

In order to consider the effect of external loads, the rate
equations must be modified. The force F acts locally only on
the leading protofilament, and the microtubule produces
work equal to F�d−ai� when a subunit is attaching to
protofilament i. The rates are adjusted as follows:12

rai�F� = rai�0�e−�	i
+F�d−ai�/kBT�, �30�

rdi�F� = rdi�0�e+�	i
−F�d−ai�/kBT�, �31�

where rai�0� and rdi�0� are the rates �cf. Eqs. �10� and
�11�� without the external force F.

For Eqs. �30� and �31�, �d−ai� is the microtubule length
change for a monomer binding to the protofilament i. 	i

+ and
	i

− are load distribution factors which reflect how the external
force affects the activation energy for attachment and detach-
ment processes of the subunit.10,12,33 These load distribution
factors may be positive or negative. However, since the load
serves to retard growth, the overall constraint is12

�
i=1

N

�	i
+ + 	i

−� = 1. �32�

By modifying the rates this way, a force-velocity rela-
tionship for N=13 case is obtained in Fig. 6 for the full
model. Figure 7 shows the mean length 
x�t�� of the micro-
tubule for different values of load force F as a function of
time t, and the slopes of the lines at large times represent the
velocities in Fig. 6. It can be seen in Fig. 7 that the slopes
become more horizontal as the load force F increases. The
experimentally obtained force-velocity curve of
microtubules5 has been fitted with theoretical models.9,10,12

Whereas previous theoretical fits overestimate the “stalling”
force Fs �the value of force for which the mean growth ve-
locity approaches zero due to the hindrance of polymeriza-
tion by the external force �or load force�,8,10,12� note in Fig. 6

that our simulation predicts Fs�4 pN, very close to the ex-
perimental value of 4.1 pN.5 The parameters used in Fig. 6
are d=8.2 nm, a=0.63 nm, Ra=8.3 s−1, Rd=355 s−1, and �
=48.27. The set of load distribution factors used in the simu-
lations were equal in value for all protofilaments except 1
and 13, and satisfies Eq. �32�. They are 0.249 45 for 	1

± and
	13

± , and 0.0001 for 	2
±–	12

± .34 This reflects the fact that the
load force affects the protofilaments at the seam �1 and 13�
much more heavily than the other protofilaments. The value
of � was estimated from Fig. 5 and corresponds to the ex-
perimentally determined growth velocity �without load
force� of 1.2 �m/min�20 nm/s. In reality, a=0.96 nm for
microtubules. However, we used a=0.63 nm in our simula-
tions for the purpose of developing a method and checking
its validity on the simplified geometry �see Sec. II�. Although
we employed this simplified geometry in our simulations, the
results for realistic geometry are expected to be similar to the
present results since the essential physics is the same. In
addition, even though the computed force-dependent growth
velocity decays faster than the experimentally observed ve-
locity, the estimated stalling force of 4 pN is almost identical
to the real value. Such a fast decay in velocity can be attrib-
uted to the simplified geometry, and our method may be the
ground for further improvement and predictions.

V. CONCLUSIONS

Monte Carlo simulations were performed for predicting
the growth velocities of rigid biopolymers. The effects of the
complex structure of the growing end, the geometrical prop-
erties, and the lateral interactions between adjacent protofila-
ments on the growth dynamics of rigid biopolymers were
explicitly taken into account. The simulations successfully
reproduced the mean growth velocity ratios of the analytical
model for the N=2 case, and the one-layer approximation
was found to be in excellent agreement with the full model,
especially for larger lateral displacements a /d. The N=13
simulation displayed a similar qualitative behavior as the N
=2 case, i.e., the ratio of velocities approached 1 for higher
lateral energy parameter �. However, the obtained ratio was
0.907 for �=1 as opposed to the value of 0.5 for the N=2
case. The simulations indicate that the one-layer approximate
model is a good representation of the growth dynamics of
multiprotofilament biopolymers. Simulations for nonzero ac-

FIG. 6. Force-dependent mean growth velocity as a function of external
�load� force for the case of N=13 full model. ��� shows this work. ��� are
experimental results �Ref. 5�.

FIG. 7. Mean length 
x�t�� for various values of load force F as a function
of time t. The lines correspond, from top to bottom, to F=1 pN, F=2 pN,
F=2.5 pN, F=3 pN, and F=4 pN.
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tivation energy coefficients in the N=2 case were also per-
formed. As expected, both cases �f i is only positive or f i is
both positive and negative� produced qualitatively similar
results to the f i=0 case, which means that the effects of
activation energy coefficients on the specific polymerization/
depolymerization processes are not significant.

For the N=13 full model, which is relevant to microtu-
bules, we calculated a range of lateral free energies that af-
fects the growth velocities of microtubules significantly. We
found that the lateral free-energy parameter � ranges from 45
to 280, which corresponds to −6kBT�gh�−3kBT. By con-
sidering only the effects of local geometries of the growing
end of the microtubule and the specific lateral interactions of
the adjacent protofilaments, we obtained a reasonable range
of lateral free energies.14 Furthermore, we were able to pro-
duce a force-velocity relationship that is comparable to ex-
perimental results5 by performing simulations for the case of
N=13 full model. The lateral energy parameter � that was
used in these simulations corresponds to a growth velocity of
20 nm/s �when no external load force is applied�, and the
force-dependent curve thus obtained is in good accord with
experimental measurements. The stalling force was esti-
mated to be Fs�4 pN, which is slightly less than the experi-
mentally determined value of Fs=4.1 pN. This difference
can be attributed to the simplified geometry that was em-
ployed in our simulations. However, the discrepancy in the
stalling force of 0.1 pN is less than the overestimated val-
ues �Fs=4.3 pN,10 Fs=5.5 pN12� of previous theoretical pre-
dictions.

Continuing in this course, future work will be focused on
obtaining and refining the velocities for multiprotofilament
cases, as well as improving the force-velocity relation. Such
improvements could include allowing for hydrolysis effects
and nonequal load distribution factors for the protofilaments.
Calculating the dispersion, or the effective diffusion constant
of length fluctuations, will provide a better understanding of
the dynamics of growth. An expansion of the simple model
to incorporate the apparently weaker interactions at the poly-
mer lattice seam and the hydrolysis effects would bring the
model closer to real systems. Note that this method is not
limited to microtubules, but may be applied to other rigid
biopolymer dynamics.35 In addition, the application of this
approach might suggest an explanation of the mechanism by
which motor proteins modulate biopolymer dynamics, as
they are known to alter the exchange of tubulin subunits at
growing ends.3,36
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