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General discrete one-dimensional stochastic models to describe the transport of single molecules
along coupled parallel lattices with period N are developed. Theoretical analysis that allows to
calculate explicitly the steady-state dynamic properties of single molecules, such as mean velocity
V and dispersion D, is presented for N=1 and N=2 models. For the systems with N�2 exact
analytic expressions for the large-time dynamic properties are obtained in the limit of strong
coupling between the lattices that leads to dynamic equilibrium between two parallel kinetic
pathways. It is shown that for all systems dispersion is maximal when the coupling between
channels is weak. © 2006 American Institute of Physics. �DOI: 10.1063/1.2194011�

I. INTRODUCTION

Successful functioning of biological cells strongly de-
pends on two classes of enzyme molecules, motor proteins
and cytoskeleton proteins, that form the basis of the biologi-
cal transport systems.1,2 Motor proteins such as kinesins, dy-
neins, myosins, RNA and DNA polymerases, etc., operate in
cells by transforming the chemical energy of hydrolysis of
adenosine triphosphate �ATP� �or related compounds� into
the mechanical work, although the mechanism of this pro-
cess is still largely unknown.2 The cytoskeleton proteins,
such as microtubules and actin filaments, are rigid multifila-
ment linear polymers that provide tracks for the motion of
motor proteins.1–4 The growth dynamics of these proteins
strongly influences their biological functions.1–3 One of the
most striking properties of growing cytoskeleton proteins is
the dynamic instability phenomena that observed both
in vitro and in vivo in the microtubules,3 and it was also
observed in ParM proteins,5 closely related homologs of the
actin filaments.

Recent experimental advances have allowed to deter-
mine the dynamics of motor proteins and the growth of cy-
toskeleton proteins with a single-molecule precision at dif-
ferent conditions.2,5–10 These experiments suggest that the
complex biochemical transitions and intermediate states in
the motor proteins and cytoskeleton proteins influence their
dynamic properties and functions. In order to understand bio-
physical properties of these proteins all biochemical path-
ways and transitions should be taken into account.

One of the most successful approaches to describe the
dynamics of motor proteins and growth of cytoskeleton pro-
teins is a method of multistate discrete chemical kinetic or
stochastic models.11–20 According to this approach, the motor
protein molecule or the tip of the cytoskeleton filament
moves between discrete biochemical states, and these transi-

tions are governed by a set of stochastic rates. These bio-
chemical pathways are periodic due to the periodicity in the
structure of the cytoskeleton proteins. This method allows to
obtain exact analytic expressions for the dynamic properties,
such as mean velocity V and dispersion D, in terms of the
transition rates for systems with arbitrary number of states in
the periods.12–15 Another advantage of the discrete stochastic
models is the ability to describe the complexity of the under-
lying biochemical pathways, something that cannot be done
by other theoretical methods.12,20 Currently, discrete stochas-
tic models are developed, analyzed, and applied for the
simple sequential single-chain pathways,12,16,17 for the bio-
chemical pathways with irreversible detachments,13,16 for the
lattices with branched states,13 for the parallel-chain
pathways,13,15 and for the systems with general waiting-time
distributions for transitions between the states.14

In order to describe better the complex biological trans-
port processes, in this work we extend the discrete chemical
kinetic approach by considering a two-chain model with a
direct coupling between parallel lattices at each site, as illus-
trated in Fig. 1. There are total 2N sites in each period of the
system, equally divided between the chains. Each site corre-
sponds to a specific biochemical state of the motor protein or
the cytoskeleton protein. The protein molecule can be found
on the upper biochemical pathway �chain 0� or it can move
along the lower pathway �chain 1�: see Fig. 1. The particle at
state j�j=0,1 , . . . ,N−1� on the chain 0 can make a forward
step with the rate uj and a backward step with the rate
wj—see Fig. 1. It also can make a vertical transition to the
state j on the chain 1 with the rate � j. Similarly, the particle
at state j on the chain 1 can diffuse forward �backward� with
the rate � j �� j�, while the transition to the upper channel is
given by the rate � j, as shown in Fig. 1. The distance be-
tween identical states in different periods is equal to d. This
model can be used, for example, to analyze the dynamics of
RNA polymerases10 or it can describe the dynamic instability
of microtubules and ParM proteins.3,5a�Electronic mail: tolya@rice.edu
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It is interesting to note that a similar model, the so-called
“two-phase” model that is closely related to our N=1 case,
has been proposed by Hill in order to describe polymeriza-
tion of single actin filaments and dynamic instability in
microtubules.21 However, explicit expressions for disper-
sions in dynamics of rigid biopolymers have not obtained.
The theoretical approach presented in this work enables us to
calculate all dynamic properties for more complicated mod-
els.

Our analysis of the periodic coupled parallel-chain dis-
crete stochastic models is based on Derrida’s method22 that
allows to obtain explicit analytic expressions for the
stationary-state drift velocity,

V = V��uj,wj,� j,� j,� j,� j�� = lim
t→�

d

dt
�x�t�� , �1�

and dispersion �or diffusion constant�,

D = D��uj,wj,� j,� j,� j,� j�� =
1

2
lim
t→�

d

dt
��x2�t�� − �x�t��2� ,

�2�

where x�t� represents the spatial coordinate of the motor pro-
tein or of the tip of the cytoskeleton protein.

The paper is organized as follows. The results for dis-
crete parallel-chain models in the limit of strong coupling
between the pathways are outlined in Sec. II, while general
explicit formulas for dynamic properties for N=1 and N=2
models are discussed in Sec. III. Section IV summarizes and
concludes our analysis. The details of mathematical calcula-
tions are given in the Appendix.

II. TRANSPORT ALONG PARALLEL CHANNELS
IN THE LIMIT OF STRONG COUPLING

Consider the general periodic coupled two-chain discrete
stochastic model, as shown in Fig. 1. Let us define J�j ,0�
and J�j ,1� as probability density currents between the states
j and j+1 in the channel 0 and 1, correspondingly. Also
J�j ,v� is a vertical probability density current from the state
j in the channel 0 to the state j in the channel 1, assuming
that this current is positive in the downward direction �see
Fig. 1�. The stationary-state conditions and the periodicity of

the system require that J�j ,0�+J�j ,1� to be a constant for
any j=0,1 , . . . ,N−1. Then it leads to the following condi-
tion on the vertical currents:

	
j=0

N−1

J�j,v� = 0. �3�

Generally, each vertical current is not equal to zero, and
to calculate the dynamic properties of the system analytically
is mathematically very hard, except for N=1 and N=2 mod-
els as will be shown below. However, when the vertical tran-
sitions rates � j and � j are much larger than other transition
rates, one expects that in the limit of large times there will be
a “dynamic” equilibrium between two channels, i.e., J�j ,v�
=0 at each site. We call this a strong coupling limit. In this
case, as shown in the Appendix, it is possible to obtain exact
analytic expressions for the dynamic properties of the sys-
tem. Specifically, the equation for velocity is written as

V =
d�1 − 
 j=0

N−1
w̃j/ũj�

	 j=0

N−1
�1 + �� j/� j��rj

, �4�

and the expression for dispersion is

D =
d2

N2� 1

�	 j=0

N−1
�1 + �� j/� j��rj�2

�N	
j=0

N−1

ũjsjrj

+ A	
j=0

N−1

sj	
i=0

N−1

�i + 1�
1 +
� j+i+1

� j+i+1
�rj+i+1� − A

N + 2

2 �
�5�

where A=NV /d, and the modified transition rates are

ũj = uj +
� j

� j
� j, w̃j = wj +

� j

� j
� j . �6�

Also, the functions rj and sj are defined as

rj =
1

ũj

1 + 	

k=1

N−1



i=1

k
w̃j+i

ũj+i
� �7�

and

sj =
1

ũj
�
1 +

� j

� j
� + 	

k=1

N−1 
1 +
� j−k

� j−k
�


i=1

k
w̃j+1−i

ũj−i
� . �8�

Comparing these results with the velocity and dispersion
for single-channel periodic discrete models,12,22 it is interest-
ing to note that the dynamic properties of the two-channel
coupled model can be viewed as a an effective motion along
the single pathway with the modified transition rates. This is
due to the dynamic equilibrium between two parallel path-
ways in the strong coupling limit.

III. DYNAMICS FOR N=1 AND N=2 MODELS
WITH GENERAL COUPLING

For the periodic two-chain coupled discrete stochastic
models with N=1, the dynamics can be calculated explicitly
for all parameters. Because of Eq. �3� the vertical current is

FIG. 1. General kinetic scheme for the two-chain periodic stochastic model.
Both channels have N discrete states per period. The particle on the upper
chain 0 moves forward �backward� with the rate uj �wj�, while on the lower
chain 1 the corresponding rates are � j and � j �with j=0,1 , . . . ,N−1�. The
vertical transitions between the pathways are given by � j and � j.

204901-2 E. B. Stukalin and A. B. Kolomeisky J. Chem. Phys. 124, 204901 �2006�



always equal to zero at all sites, and the dynamics is similar
as in the strong coupling limit. Then the expressions for the
mean velocity and dispersion are given by

V = d���u − w�
� + �

+
��� − ��

� + �
� , �9�

D =
d2

2
���u + w�

� + �
+

��� + ��
� + �

+ 2
��u − w� − �� − ���2��

�� + ��3 � . �10�

Note, that Eq. �9� can be directly obtained from Eq. �4�,
while to calculate dispersion a procedure outlined in the Ap-
pendix is used. It can also be seen that the mean velocity
consist of two terms, corresponding to the motion along the
pathways 0 and 1. Here � /�+� and � /�+� are the probabili-
ties to find the particle on the channels 0 and 1, respectively.
At the same time dispersion has three terms. First two terms
also describe the motion along the corresponding channels,
while the third term reflect the correlations between two
pathways. In the limit of strong coupling between the chan-
nels �� and � are much larger than u, w, �, and �� the
correlations decrease and the last term in dispersion van-
ishes.

Now let us consider N=2 periodic two-chain discrete
stochastic models. In this case the dynamic properties can be
calculated by solving explicitly a set of Master equations
�see Appendix�. Then the exact expression for the mean ve-
locity can be written as follows:

V =
d

�
��u0u1 − w0w1����0 + �0��1 + ��1 + �1��0 + �0�1�

+ ��0�1 − �0�1���u0 + w0��1 + �u1 + w1��0 + �0�1�

+ �u0�1 − w0�1��0�1 + ��0u1 − �0w1��0�1� , �11�

where

� = �u0 + w0 + �0����0 + �0��1 + ��1 + �1��1�

+ �u1 + w1 + �1����0 + �0��0 + ��1 + �1��0�

+ ��0 + �0 + �0���u0 + w0��1 + �u1 + w1��1�

+ ��1 + �1 + �1���u0 + w0��0 + �u1 + w1��0� . �12�

The corresponding expression for dispersion is quite bulky
and it is presented in the Appendix.

It is interesting to compare these formulas with the re-
sults from the strong coupling limit. The mean velocity is
given by a simpler equation,

VSC =
�u0�0 + �0�0��u1�1 + �1�1� − �w0�0 + �0�0��w1�1 + �1�1�

��u0 + w0��0 + ��0 + �0��0���1 + �1� + ��u1 + w1��1 + ��1 + �1��1���0 + �0�
. �13�

This formula directly corresponds to Eq. �4�.
In order to illustrate the effect of the coupling between

the pathways we represent the vertical transition rates in the
following form:

� j��,p� = � j
0�p, � j��,p� = � j

0��1 − p� . �14�

We take � j
0 and � j

0 as fixed parameters and vary only the
parameters ����0� and p�0	 p	1�. The coefficient � gives
a measure of the coupling between the channels. When �

1 we reach the strong coupling limit, while for small val-
ues of � the coupling is rather weak. The coefficient p re-

flects the direction of the dominating vertical current. For p
�0 the current is mainly upward from the chain 1 into the
chain 0, while for p�1 the vertical current changes the di-
rection �see Fig. 1�. The mean velocities for N=2 model with
different sets of parameters are presented in Fig. 2. It can be
seen that the mean velocities do not depend strongly on the
coupling between the pathways. Thus the expression for the
mean velocity generally can be well approximated by the
strong coupling result. This observation can be very useful
for analyzing the dynamics of motor proteins that move on
parallel biochemical pathways.

FIG. 2. Comparison of mean velocities for N=2 coupled parallel-chain dis-
crete stochastic model as a function of the parameter 0	 p	1 for different
values of the parameter � �see text for explanations�. The solid line corre-
sponds to �=1, the dashed line is for �=20, while the dotted line describes
the strong coupling limit ��→��. The values of the horizontal transition
rates used for calculations are u0=�0=5, w0=�0=1, u1=�1=10, and w1

=�1=2. For transitions between the chains we used the following param-
eters: �0

0=1, �0
0=�1

0=2, and �1
0=0.6. For all calculations it was assumed that

d=1.
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The situation is different for the diffusion constant. Dis-
persions for different parameters are plotted in Fig. 3. It is
interesting to note that for a given set of the transition rates
dispersion reaches a maximum for low values of � and inter-
mediate values of the parameter p. When the coupling be-
tween the channels is weak ��=1� the particle spends most
of the time by diffusing in one of the channels before trans-
ferring to another one, and dispersion is large. However, for
strong coupling ��→�� the transitions between the vertical
states are very frequent. The particle moves a short distance
along the channel before transferring to the other chain, and,
as a result, dispersion is low. The situation for weak cou-
plings between the channels is very similar to the picture of
dynamic instability in microtubules.2,3 Note also that similar
behavior is observed for N=1 models. This suggests that the
dynamic instability in the cytoskeleton proteins can only take
place when the transition rates along the horizontal pathways
�polymerization and depolymerization� are much faster than
the frequency of changes between the channels.

IV. SUMMARY AND CONCLUSIONS

Parallel-chain periodic discrete stochastic models with
coupling between the channels are introduced and studied
theoretically. The exact analytic expressions for the mean
velocity and dispersion are found for the models with arbi-
trary period size in the limit of strong coupling. This corre-
sponds to the dynamic equilibrium between the pathways
and zero currents in the vertical directions at each state. For
the two-chain discrete models with N=1 and N=2 periods
the dynamic properties are calculated explicitly for general
conditions. It is found that for N=1 and N=2 systems with
weak coupling between the channels dispersion is maximal,
while in the dynamic equilibrium regime it is significantly

lower. At the same time, the effect of the coupling on the
mean velocities is much smaller. Our analysis can be ex-
tended to more general parallel-chain discrete stochastic
models with more than two different pathways. In addition, it
will be interesting to study the dynamics of these models
under the influence of external forces.12 It is also suggested
that these models can be used to investigate the transport of
motor proteins and growth dynamics of cytoskeleton pro-
teins.
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APPENDIX: DYNAMIC PROPERTIES OF PERIODIC
TWO-CHAIN MODELS

Let us introduce the probabilities P0�l ; t� and P1�l ; t� of
finding the particle at time t at the position l= j+Nk �j
=0, . . . ,N−1, k are integers� on the lattice 0 and 1, respec-
tively. These probabilities satisfy the following Master equa-
tions:

dP0�j + nk,t�
dt

= uj−1P0�j − 1 + Nk,t�

+ wj+1P0�j + 1 + Nk,t� + � jP1�j + Nk,t�

− �uj + wj + � j�P0�j + Nk,t� , �A1�

dP1�j + Nk,t�
dt

= � j−1P1�j − l + Nk,t�

+ � j+1P1�j + 1 + Nk,t� + � jP0�j + Nk,t�

− �� j + � j + � j�P1�j + Nk,t� . �A2�

The conservation of probability requires that

	
k=−�

+�

	
j=0

N−1

P0�j + Nk,t� + 	
l=−�

+�

	
j=0

N−1

P1�j + Nk,t� = 1 �A3�

at all times.
Following the idea of Derrida,22 we define two sets of

auxiliary functions for each j=0,1 , . . ., N−1 and i=0,1.

Bi�j,t� = 	
k=−�

+�

Pi�j + Nk,t� , �A4�

Ci�j,t� = 	
k=−�

+�

�j + Nk�Pi�j + Nk,t� . �A5�

Note that the conservation of probability yields

	
j=0

N−1

B0�j,t� + 	
j=0

N−1

B1�j,t� = 1. �A6�

Then from the Master equations �A1� and �A2� we derive

FIG. 3. Comparison of dispersions for N=2 coupled parallel-chain discrete
stochastic model as a function of the parameter 0	 p	1 for different values
of the parameter � �see text for explanations�. The solid line corresponds to
�=1, the dashed line is for �=20, while the dotted line describes the strong
coupling limit ��→��. All parameters used for calculations are the same as
in Fig. 2.
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dB0�j,t�
dt

= uj−1B0�j − 1,t� + wj+1B0�j + 1,t� + � jB1�j,t�

− �uj + wj + � j�B0�j,t� , �A7�

dB1�j,t�
dt

= � j−1B1�j − 1,t� + � j+1B1�j + 1,t� + � jB0�j,t�

− �� j + � j + � j�B1�j,t� . �A8�

Similar arguments can be used to describe the functions
C0�j , t� and C1�j , t�,

dC0�j,t�
dt

= uj−1C0�j − 1,t� + wj+1C0�j + 1,t� + � jC1�j,t�

− �uj + wj + � j�C0�j,t� + uj−1B0�j − 1,t�

− wj+1B0�j + 1,t� , �A9�

dC1�j,t�
dt

= � j−1C1�j − 1,t� + � j+1C1�j + 1,t� + � jC0�j,t�

− �� j + � j + � j�C1�j,t� + � j−1B1�j − 1,t�

− � j+1B1�j + 1,t� . �A10�

Again using Derrida’s method,22 we assume the follow-
ing stationary-state behavior:

Bi�j,t� → bi�j�, Ci�j,t� → ai�j�t + Ti�j�

�i = 0,1; j = 0,1, . . . ,N − 1� . �A11�

At steady state we have dBi�j , t� /dt=0, and Eqs. �A7� and
�A8� yield

0 = uj−1b0�j − 1� + wj+1b0�j + 1� + � jb1�j�

− �uj + wj + � j�b0�j� , �A12�

0 = � j−1b1�j − 1� + � j+1b1�j + 1� + � jb0�j�

− �� j + � j + � j�b1�j� . �A13�

To determine the coefficients ai�j� and Ti�j�, Eq. �A11� is
substituted into the asymptotic expressions �A9� and �A10�,
producing

0 = uj−1a0�j − 1� + wj+1a0�j + 1� + � ja1�j�

− �uj + wj + � j�a0�j� , �A14�

0 = � j−1a1�j − 1� + � j+1a1�j + 1� + � ja0�j�

− �� j + � j + � j�a1�j� . �A15�

The coefficients Ti�j� satisfy the following equations:

a0�j� = uj−1T0�j − 1� + wj+1T0�j + 1� + � jT1�j�

− �uj + wj + � j�T0�j� + uj−1b0�j − 1�

− wj+1b0�j + 1� , �A16�

a1�j� = � j−1T1�j − 1� + � j+1T1�j + 1� + � jT0�j�

− �� j + � j + � j�T1�j� + � j−1b1�j − 1�

− � j+1b1�j + 1� . �A17�

The strong coupling limit describes the situation when
the rates � j and � j are much larger than other transition rates.
In this case we have

B1�j,t� �
� j

� j
B0�j,t�, C1�j,t� �

�i

� j
C0�j,t� . �A18�

Then, by introducing the modified transition rates,

ũj = uj +
� j

� j
� j, w̃j = wj +

� j

� j
� j , �A19�

from Eqs. �A12�, �A13�, and �A18�, we obtain

0 = ũj−1b0�j − 1� + w̃j+1b0�j + 1� − �ũj + w̃j�b0�j� . �A20�

At the same time, Eqs. �A14�–�A18� lead to

0 = ũj−1aj−1 + w̃j+1aj+1 − �ũj + w̃j�aj . �A21�


1 +
� j

� j
�aj = ũj−1Tj−1 + w̃j+1Tj+1 − �ũj + w̃j�Tj

+ ũj−1b0�j − 1� − w̃j+1b0�j + 1� . �A22�

Here for simplicity we put a0�j��aj and T0�j��Tj. Follow-
ing Derrida’s solution,22 we show that b0�j�=�0rj with

rj =
1

ũj

1 + 	

k=1

N−1



i=1

k
w̃j+i

ũj+i
� . �A23�

The coefficient �0 can be found from the normalization con-
dition �A6� and from Eq. �A18�,

�0 =
1

	 j=0

N−1
�1 + �� j/� j��rj

. �A24�

Then, comparing Eqs. �A21� and �A20�, we conclude that
aj =Ab1�j�. The coefficient A can be calculated by summing
up Eq. �A22� for j=0,1 , . . . ,N−1,

A = 	
j=0

N−1 
1 +
� j

� j
�aj = 	

j=0

N−1

�ũj − w̃j�b0�j� , �A25�

that yields

A =
N�1 − 
 j=0

N−1
w̃j/ũj�

	 j=0

N−1
�1 + �� j/� j��rj

. �A26�

To solve Eq. �A22� we define

yj � w̃j+1Tj+1 − ũjTj . �A27�

Then Eq. �A22� can be rewritten as

yj − yj−1 = 
1 +
� j

� j
�aj + w̃j+1b0�j + 1� − ũj−1b0�j − 1� .

�A28�

The solution of this equation is
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yj = ũjb0�j� +
A

N
	
i=0

N−1

�i + 1�
1 +
� j+i+1

� j+i+1
�b0�j + i + 1� + �1,

�A29�

where �1 is some unknown constant. From Eq. �A27� we
obtain

Tj = −
1

ũj�1 − 
 j=0

N−1
w̃j/ũj��yj + 	

k=1

N−1

yj+k

i=1

k
w̃j+i

ũj+i
� .

�A30�

Now we can can calculate the mean velocity using the
expression for the mean position of the particle,

�x�t�� =
d

N
	

k=−�

+�

	
j=0

N−1

�j + Nk��P0�j + Nk,t� + P1�j + Nk,t��

=
d

N
	
j=0

N−1

�C0�j,t� + C1�j,t��

=
d

N
	
j=0

N−1 
1 +
� j

� j
�C0�j,t� . �A31�

The velocity is given by the following equation:

V = lim
t→�

d

dt
�x�t��

=
d

N
	
j=0

N−1 
1 +
� j

� j
�aj

=
d

N
A	

j=0

N−1 
1 +
� j

� j
�b0�j� =

d

N
A , �A32�

where the function A is given in Eq. �A26�.
Similar calculations can be performed to determine dis-

persion. Starting from

�x2�t�� = 	
k=−�

+�

	
j=0

N−1

�j + Nk�2�P0�j + Nk,t� + P1�j + Nk,t�� ,

�A33�

and utilizing Eqs. �A1�, �A2�, and �A19�, we obtain

lim
t→�

d

dt
�x2�t�� = 2	

j=0

N−1

�ũj − w̃j�C0�j,t�

+ 	
j=0

N−1

�ũj + w̃j�B0�j,t� . �A34�

Then, the diffusion constant can be derived from the defini-
tion �2�,

D =
d2

N2�	
j=0

N−1

�ũj − w̃j�Tj +
1

2 	
j=0

N−1

�ũj + w̃j�b0�j�

− A	
j=0

N−1 
1 +
� j

� j
�Tj� . �A35�

By substituting the expressions for Tj �using Eqs. �A30� and
�A29�� into Eq. �A35�, the final expression for dispersion,
given in Eq. �5�, is obtained. The unknown constant �1 can-
cels out in the final equation for dispersion.

For N=2 models with arbitrary coupling between the
channels, the dynamic properties can be obtained by solving
directly Eqs. �A12� and �A13�. The solutions are

b0�0�

=
�u1 + w1���0 + �0 + �0��1 + ��1 + �1��u1 + w1 + �1��0

�
,

b1�1�

=
�u0 + w0���1 + �1 + �1��0 + ��0 + �0��u0 + w0 + �0��1

�
,

b1�0�

=
��1 + �1��u0 + w0 + �0��1 + �u1 + w1���1 + �1 + �1��0

�
,

b1�1�

=
��0 + �0��u1 + w1 + �1��0 + �u0 + w0���0 + �0 + �0��1

�
.

�A36�

The expressions for ai�j� follow from the relation ai�j�
=Abi�j�. Similarly, the general solutions of Eqs. �A16� and
�A17� yield the explicit expressions for Ti�j�. These expres-
sions are not shown here because they are quite bulky. Fi-
nally, the formula for the velocity is given in Eq. �11�, while
for dispersion we have

D =
d2

4
��u0 − w0�T0�0� + �u1 − w1�T0�1�

+ ��0 − �0�T1�0� + ��1 − �1�T1�1� − A�T0�0� + T0�1�

+ T1�0� + T1�1�� +
1

2
��u0 + w0�b0�0� + �u1 + w1�b0�1�

+ ��0 + �0�b1�0� + ��1 + �1�b1�1��� . �A37�
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