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Continuous-time random walks �CTRW� play an important role in understanding of a wide range of
phenomena. However, most theoretical studies of these models concentrate only on dynamics at
long times. We present a new theoretical approach, based on generalized master equations picture,
which allowed us to obtain explicit expressions for Laplace transforms for all dynamic quantities for
different CTRW models. This theoretical method leads to the effective description of CTRW at all
times. Specific calculations are performed for homogeneous, periodic models and for CTRW with
irreversible detachments. The approach to stationary states for CTRW is analyzed. Our results are
also used to analyze generalized fluctuations theorem. © 2009 American Institute of Physics.
�doi:10.1063/1.3276704�

I. INTRODUCTION

Continuous-time random walks �CTRWs� are discreet
models where particle transitions between different states are
controlled by random waiting-time distribution functions.1–3

CTRW is a powerful tool in studying dynamic processes in
chemistry, physics, biology, social sciences, and
economics.4–9 These models are especially convenient for
investigation transport processes where deviations from the
classical diffusion picture are observed.1,2,7 Recently,
CTRWs have been successfully utilized for analyzing single-
molecule enzyme kinetics,10 dynamics of motor proteins,11,12

and one-dimensional drift and diffusion in fields.13

The majority of theoretical studies of CTRW address
only dynamics at large times, i.e., on calculation of the
stationary-state dynamic properties.1,4 But one might ques-
tion the applicability of these results for understanding dif-
ferent processes since it is frequently not clear if the studied
system reached the steady-state conditions. It should be
noted also that frequently complex systems do not even pos-
ses a proper stationary state. Strong advances in experimen-
tal techniques, especially in single-molecule biophysics and
cellular transport, provided us with a comprehensive full-
time description of many complex phenomena. It is reason-
able to suggest that a theoretical method that permits a cal-
culation of dynamic properties of the system at all times will
provide a much better understanding of underlying mecha-
nisms. The original work on CTRW �Ref. 1� suggested a
combined Laplace–Fourier transforms as a way to describe
dynamics at all times. But these results, although formally
correct, are technically impossible to apply for analyzing real
systems. Recently, Berezhkovskii and Weiss14 introduced a
new elegant method of computing exactly Laplace trans-
forms of dynamics properties of CTRW. They successfully
analyzed first two moments of the displacement of the ran-
dom walker, the asymptotic behavior of the moments at large
times, and the effective diffusion constant. However, this
method has been developed only for homogeneous CTRW

with the same set of waiting-time distribution functions at
each site, and it is not clear how to extend it for more com-
plex CTRW models.

In this paper we develop an alternative approach for cal-
culating dynamics properties in complex CTRW models at
all times. Utilizing the generalized master-equations
description,11,15 it is shown how all Laplace transforms can
be obtained explicitly for several CTRW models. The impor-
tant advantage of the developed method is the ability to ana-
lyze inhomogeneous systems and systems with complex
transitions. Although our results are valid for general CTRW
models, in examples, we mostly concentrate on the systems
where stationary states can be reached at large times.

II. HOMOGENEOUS CTRW

To proceed, consider first the sequential CTRW kinetic
model as shown in Fig. 1. The dynamics of the random
walker is specified by waiting-time distribution functions
� j

��t� and � j
��t�. We define � j

+�t�dt as the probability of
jumping one step forward from the state j between times t
and t+dt after arriving to the state j. Similarly, � j

−�t�dt is the
corresponding probability to move backward, while � j

��t�dt
determines the probability of irreversible detachment �or
death� from the state j at the same time interval. To illustrate
our theoretical method, we will first analyze in detail the
simplest homogeneous CTRW model with � j

��t�=���t� to
be independent of the state j and without detachments
�� j

��t�=0 for all j�.
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FIG. 1. A general scheme for CTRW models. � j
+�t�, � j

−�t�, and � j
��t� are

waiting-time distribution functions to step forward, backward, or to dissoci-
ate irreversibly, correspondingly.
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Our theory is based on the crucial observation, presented
first by Landman, Montroll and Shlesinger3 in 1977, that the
probability Pn�t� of finding the random walker at the site n at
time t �assuming that at t=0 it started at n=0� is governed by
a generalized master equation,

dPn�t�
dt

= �
0

t

��+���Pn−1�t − �� + �−���Pn+1�t − ��

− ��+��� + �−����Pn�t − ���d� , �1�

where waiting-time rate distributions ���t� �Ref. 11� are re-
lated to waiting-time distribution functions via Laplace trans-
forms,

�̃��s� =
s�̃��s�

1 − �̃�s�
, �2�

with �̃�s�= �̃+�s�+ �̃−�s�. Performing Laplace transformation
to the generalized master equation �Eq. �1�� leads to

�s + �̃+�s� + �̃−�s��P̃n�s�

= �n,0 + �̃+�s�P̃n−1�s� + �̃−�s�P̃n+1�s� . �3�

After introducing new variables, a�s+ �̃+�s�+ �̃−�s�, b
� �̃+�s�, and c� �̃−�s�, this equation can be written as

aP̃n�s� = �n,0 + bP̃n−1�s� + cP̃n+1�s� . �4�

We can define a new function, R̃n�s�, such that

P̃n�s� = 	b

c

n/2

R̃n�s� , �5�

and after substituting this relation into Eq. �4� we obtain

aR̃n�s� = 	 c

b

n/2

�n,0 + �bc�R̃n−1�s� + R̃n+1�s�� . �6�

This equation can be solved by looking for a solution in the

form, R̃n�s�= R̃0�s�x�n�, and after substituting into Eq. �6� it
yields

x =
a � �a2 − 4bc

2�bc
, �7�

and

R̃0�s� = 1/�a2 − 4bc . �8�

Combining Eqs. �5�–�7�, one can show that the final expres-
sion for the Laplace transform of the probability function is
given by

P̃n�s� = 	b

c

n/2	a − �a2 − 4bc

2�bc

�n� 1

�a2 − 4bc
, �9�

or

P̃n�s� = 	 �̃+�s�
�̃−�s�


n/2	 s + �̃+�s� + �̃−�s� − ��s + �̃+�s� + �̃−�s��2 − 4�̃+�s��̃−�s�

2��̃+�s��̃−�s�

�n�

1

��s + �̃+�s� + �̃−�s��2 − 4�̃+�s��̃−�s�
. �10�

It can also be written in terms of waiting-time distribution functions by utilizing Eq. �2�,

P̃n�s� = 	 �̃+�s�

�̃−�s�

n/2	 2��̃+�s��̃−�s�

1 + �1 − 4�̃+�s��̃−�s�

�n�

1 − �̃�s�

s�1 − 4�̃+�s��̃−�s�
. �11�

This is exactly the expression for the Laplace transform of the probability distribution function obtained in Ref. 14 by a
different approach.

These equations provide a direct way of analyzing dynamics of CTRW at all times. It can be shown by calculating
explicitly first two moments of the motion. Defining n�t�� as the average position of the random walker at time t, the following
expression for the corresponding Laplace transform can be found:

ñ�s�� = �
n=−�

�

nP̃n�s� =
b − c

�a − b − c�2 =
�̃+�s� − �̃−�s�

s2 . �12�

Similar calculations for the Laplace transform of the second moment produce

ñ2�s�� = �
n=−�

�

n2P̃n�s� =
�b + c��a + b + c� − 8bc

�a − b − c�3 =
��̃+�s� + �̃−�s���s + 2�̃+�s� + 2�̃−�s�� − 8�̃+�s��̃−�s�

s3 . �13�

At large times the dynamic behavior of the first and second moments can be found by considering the limit of s→0.
Expanding Laplace transforms of waiting-time rate distributions it can be shown that11
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�̃+�s� � u + g+s + ¯ ,

�14�
�̃−�s� � w + g−s + ¯ ,

where u= �̃+�s=0� and w= �̃−�s=0� are effective transition
rates,11 and g�= �d�̃� /ds� �s=0. Substituting these expansions
into Eqs. �12� and �13�, one can find that

n�t�� � �u − w�t + �g+ − g−� , �15�

and

n2�t�� � �u − w�2t2 + ��u + w� + 4�u − w��g+ − g−��t

+ 2�g+ − g−�2 + �g+ + g−� . �16�

It is interesting to compare the characteristic times after
which the dynamic property achieves its stationary-state be-
havior. For the first and for the second moments these char-
acteristic times are

t1
� �

g+ − g−

u − w
, �17�

and

t2
� �

u + w + 4�u − w��g+ − g−�
�u − w�2 , �18�

respectively. Then, because t2
�� t1

�, for some time interval the
first moment can already be in the stationary state, while the
second moment has not reached it yet. The application of
stationary-state formalism for analyzing CTRW in this re-
gime might lead to wrong description of its dynamics.

From large-time behavior of the moments we could also
compute other important dynamic properties such as the ef-
fective drift velocity V and the effective diffusion constant
D. The velocity is given by

V = lim
t→�

dn�t��
dt

= u − w . �19�

The corresponding expression for the diffusion constant is

D =
1

2
lim
t→�

dn2�t�� − n�t��2

dt

=
1

2
�u + w� + �u − w��g+ − g−� . �20�

These equations reproduce stationary-state results obtained
earlier for periodic N-state sequential CTRW with N=1 �the
homogeneous case�.11

III. CTRW WITH IRREVERSIBLE DETACHMENTS

The advantage of using this theoretical approach for
computing dynamic properties at all times is the fact that it
can be easily adopted for more complex CTRW models. Let
us show this by considering the CTRW model with irrevers-
ible detachments presented in Fig. 1. We will again assume
that � j

��t�=���t� while the detachment waiting-time distri-
bution functions are � j

��t�=���t��0. This system is also ho-
mogeneous. In addition, it is related to a problem of irrevers-
ible reactions that was also analyzed via CTRW approach by
Sokolov et al.16

The probability to find the random walker at the site n at
time t if at t=0 it was at the origin is again governed by the
corresponding generalized master equation,3,11

dPn�t�
dt

= �
0

t

�+���Pn−1�t − �� + �−���Pn+1�t − ��

− ��+��� + �−��� + ������Pn�t − ��d� , �21�

where �+�t�, �−�t�, and ���t� are waiting-time rate distribu-
tions for moving forward, backward, and to detach, respec-
tively. They can be expressed in terms of original waiting-
time distribution functions,

�̃i�s� =
s�̃i�s�

1 − �̃�s�
, �22�

with �̃�s�= �̃+�s�+ �̃−�s�+ �̃��s� and i=+, −, or �. In this
system, the probability is not conserved, and it is convenient
to define a new function Qn�t�, defined as11

Pn�t� = e−�tQn�t� . �23�

The function Qn�t� has a meaning of the survival probability
of reaching the site n at time t, and the parameter � is an
effective detachment rate for the random walker. Then the
generalized master equation should be modified as

dQn�t�
dt

= �
0

t

��+���e��Qn−1�t − �� + �−���e��Qn+1�t − ��

− ��+��� + �−��� + ������e��Qn�t − ���d�

+ �Qn�t� . �24�

Then after Laplace transformation this equation produces

�s + �̃+�s − �� + �̃−�s − �� + �̃��s − �� − ��Q̃n�s�

= �n,0 + �̃+�s − ��Q̃n−1�s� + �̃−�s − ��Q̃n+1�s� . �25�

To simplify notations we again define

a � s + �̃+�s − �� + �̃−�s − �� + �̃��s − �� − � ,

b � �̃+�s − �� , �26�

c � �̃−�s − �� .

As shown in the Sec. II, Eq. �25� can be solved to yield the
expression for the Laplace transform for the survival prob-
ability,

Q̃n�s� = 	b

c

n/2	a − �a2 − 4bc

2�bc

�n� 1

�a2 − 4bc
. �27�

The corresponding expression for the probability function
Pn�t� can be easily obtained from Eq. �23�,

P̃n�s� = Q̃n�s + �� . �28�

Explicit equations for Laplace transforms can be used to
calculate behavior of all relevant dynamic properties at all
times. In this system the first moment is defined as
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n�t�� =
�nnPn�t�
�nPn�t�

=
�nnQn�t�
�nQn�t�

. �29�

It can be shown that the Laplace transform of the first mo-
ment is equal to

ñ�s�� =
�nnQ̃n�s�

s�nQ̃n�s�
. �30�

Utilizing Eq. �27� it can be calculated that

ñ�s�� =
b − c

s�a − b − c�
=

�̃+�s − �� − �̃−�s − ��
s�s + �̃��s − �� − ��

. �31�

We can also perform similar analysis for the second moment, and it yields

ñ2�s�� =
�b + c��a + b + c� − 8bc

s�a − b − c�2

= ��̃+�s − �� + �̃−�s − ��� 	
�s + 2�̃+�s − �� + 2�̃−�s − �� + �̃d�s − �� − �� − 8�̃+�s − ���̃−�s − ��

s�s + �̃−�s − �� − ��2 . �32�

The stationary-state behavior of the first and second mo-
ments can be found by expanding at small s expressions for
�̃+�s−��, �̃−�s−��, and �̃��s−��:

�̃+�s − �� � u + g+s + 1
2h+s2

¯ ,

�̃−�s − �� � w + g−s + 1
2h−s2

¯ , �33�

�̃��s − �� � � + g�s + 1
2h�s2 + ¯ .

Using these expansions leads us to the following expressions
for stationary-state behavior of the first and second moments:

n�t�� �
�u − w�
�1 + g��

t +
�g+ − g−�
�1 + g��

−
�u − w�h�

2�1 + g��2 , �34�

n2�t�� �
�u − w�2

�1 + g��2 t2 + � �u + w�
�1 + g��

+
4�u − w��g+ − g−�

�1 + g��2

−
2�u − w�2h�

�1 + g��3 �t . �35�

From these results we can easily compute the effective drift
velocity,

V =
�u − w�
�1 + g��

, �36�

and the effective diffusion constant,

D =
�u + w�

2�1 + g��
+

�u − w��g+ − g−�
�1 + g��2 −

�u − w�2h�

2�1 + g��3 . �37�

These equations are identical to the steady-state expressions
for V and D obtained earlier via a different method.11,17

IV. PERIODIC CTRW

This theoretical method can also be extended for peri-
odic CTRW. Let us consider the simplest nontrivial periodic
system as shown in Fig. 1 with � j

��t�=�0
��t� for j even and

� j
��t�=�1

��t� for j add. This corresponds to the periodic
N-state CTRW model with N=2. Irreversible detachments
will be neglected in this case, i.e., � j

��t�=0 for all j.
The temporal evolution of the system is described by a

system of generalized master equations,

dP2n�t�
dt

= �
0

t

�1
+���P2n−1�t − �� + �1

−���P2n+1�t − ��

− ��0
+��� + �0

−����P2n�t − ��d�;

dP2n+1�t�
dt

= �
0

t

�0
+���P2n�t − �� + �0

−���P2n+2�t − ��

− ��1
+��� + �1

−����P2n+1�t − ��d� . �38�

As before, waiting-time rate distributions �i
��t� are closely

connected to waiting-time distribution functions �i
��t� �i

=0,1� as given by

�̃i
��s� =

s�̃i
��s�

1 − �̃i�s�
, �39�

for i=0 or 1, and with �̃i�s�= �̃i
+�s�+ �̃i

−�s�. Laplace transfor-
mations change generalized master equations into

�s + �̃0
+�s� + �̃0

−�s��P̃2n�s�

= �n,0 + �̃1
+�s�P̃2n−1�s� + �̃1

−�s�P̃2n+1�s�;

�s + �̃1
+�s� + �̃1

−�s��P̃2n+1�s�

= �n,0 + �̃0
+�s�P̃2n�s� + �̃0

−�s�P̃2n+2�s� . �40�

After introducing the auxiliary functions

ai � s + �̃i
+�s� + �̃i

−�s�, bi � �̃i
+�s� ci � �̃i

−�s� , �41�

for i=0 or 1, and defining P2n�t�=Qn�t� and P2n+1�t�=Rn�t�,
we obtain
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a0Q̃n�s� = �n,0 + b1R̃n−1�s� + c1R̃n�s� ,

�42�
a1R̃n�s� = b0Q̃n�s� + c0Q̃n+1�s� .

Combining these two equations we can write

AQ̃n�s� = a1�n,0 + BQ̃n−1�s� + CQ̃n+1�s� , �43�

where

A = a0a1 − b1c0 − b0c1, B = b0b1, C = c0c1. �44�

Equation �43� can be solved to produce the Laplace trans-
form for the probability on even sites,

Q̃n�s� = 	B

C

n/2	A − �A2 − 4BC

2�BC

�n� a1

�A2 − 4BC

= 	b0b1

c0c1

n/2	a0a1 − b1c0 − b0c1 − ��a0a1 − b1c0 − b0c1�2 − 4b0b1c0c1

2�b0b1c0c1

�n� a1

��a0a1 − b1c0 − b0c1�2 − 4b0b1c0c1

. �45�

Simultaneously, it can be shown that for the odd sites,

R̃n�s� =
b0

a1
Q̃n�s� +

c0

a1
Q̃n+1�s� . �46�

Now we can calculate the dynamic behavior of the first
and second moments. For the first moment,

n�t�� = �
n

nPn�t� = �
n

2nQn�t� + �
n

�2n + 1�Rn�t� . �47�

Then using explicit expressions for Q̃n�s� and R̃n�s�, our cal-
culations yield

ñ�s�� =
b0 − c0

s�s + b0 + b1 + c0 + c1�

+
2�b0b1 − c0c1�

s2�s + b0 + b1 + c0 + c1�
. �48�

Similar calculations for the Laplace transform of the second
moment are quite tedious, but the corresponding expression
is relatively compact,

ñ2�s�� =
4�b0b1 + c0c1�

s2�s + b0 + b1 + c0 + c1�

+
8�b0b1 − c0c1�2

s3�s + b0 + b1 + c0 + c1�2

+
4�b0b1 − c0c1��b0 − c0�

s2�s + b0 + b1 + c0 + c1�2

+
�b0 + c0�

s�s + b0 + b1 + c0 + c1�
. �49�

At large times, the dynamics can be understood if we use
expansions of waiting-time rate distribution functions at s
→0,11

b0 = �̃0
+�s� � u0 + g0

+s + ¯ ,

b1 = �̃1
+�s� � u1 + g1

+s + ¯ ,

�50�

c0 = �̃0
−�s� � w0 + g0

−s + ¯ ,

c1 = �̃1
−�s� � w1 + g1

−s + ¯ .

Then at t→� we have for the first moment,

n�t�� �
2�u0u1 − w0w1�

�u0 + u1 + w0 + w1�
t

+
2�u1g0

+ + u0g1
+� − 2�w0g1

− + w1g0
−� + �u0 − w0�

�u0 + u1 + w0 + w1�

−
2�u0u1 − w0w1��1 + g0

+ + g1
+ + g0

− + g1
−�

�u0 + u1 + w0 + w1�2 , �51�

while for the second moment,

n2�t�� �
4�u0u1 − w0w1�2

�u0 + u1 + w0 + w1�2 t2 + � 4�u0u1 + w0w1�
�u0 + u1 + w0 + w1�

+
4�u0u1 − w0w1��u0 − w0�

�u0 + u1 + w0 + w1�2

+
16�u1g0

+ + u0g1
+ − w0g1

− − w1g0
−��u0u1 − w0w1�

�u0 + u1 + w0 + w1�2

−
16�u0u1 − w0w1�2�1 + g0

+ + g1
+ + g0

− + g1
−�

�u0 + u1 + w0 + w1�3 �t .

�52�

These expressions allow us to derive the stationary drift ve-
locity,

V =
2�u0u1 − w0w1�

�u0 + u1 + w0 + w1�
, �53�

while for the effective diffusion constant we have
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D =
2�u0u1 + w0w1�

�u0 + u1 + w0 + w1�

+
4�u0u1 − w0w1��u1g0

+ + u0g1
+ − w0g1

− − w1g0
−�

�u0 + u1 + w0 + w1�2

−
4�u0u1 − w0w1�2�1 + g0

+ + g1
+ + g0

− + g1
−�

�u0 + u1 + w0 + w1�3 . �54�

These equations reproduce, as expected, known results for
dynamic properties of CTRW at stationary-state conditions.11

Calculations for periodic CTRW models with N�2 can be
accomplished following this approach.

V. GENERALIZED FLUCTUATION THEOREM

Berezhkovskii and Weiss14 introduced a generalized

fluctuation theorem by considering the ratio P̃n�s� / P̃−n�s�. It
was argued that it reduces to the conventional form of the
fluctuation theorem18–20 under some conditions. For homo-
geneous CTRW it was found14 �see also our Eqs. �10� and
�11�� that

P̃n�s�

P̃−n�s�
= � �̃+�s�

�̃−�s�
�n

= � �̃+�s�
�̃−�s�

�n

. �55�

It leads to the original fluctuation theorem result when
�+�t� /�−�t� is time independent. Our calculations allow to
extend this result for periodic N-state CTRW with N=2. Us-
ing Eqs. �41� and �45� we obtain

P̃2n�s�

P̃−2n�s�
= � �̃0

+�s��̃1
+�s�

�̃0
−�s��̃1

−�s�
�n

= � �̃0
+�s��̃1

+�s�
�̃0

+�s��̃1
−�s��n

. �56�

It is also interesting to consider the generalized fluctuation
theorem for CTRW with irreversible detachments. In this
case we obtain from Eqs. �27� and �28� the expression iden-
tical to Eq. �55�. This result is rather surprising, and it sug-
gests that irreversible detachments do not affect the ratio of
probabilities for the forward and backward steps of the ran-
dom walker, and consequently do not change statistics for
occurrence of different fluctuations.

VI. SUMMARY AND CONCLUSIONS

A new theoretical approach of computing dynamic prop-
erties of CTRW at all times is developed. The important
critical step of the method is the observation that CTRW
dynamics can be described by generalized master equations.
It allowed us to compute exactly Laplace transforms of prob-
ability functions and all other relevant dynamic properties.
The presented approach is flexible enough to describe com-
plex CTRW systems. Specifically, we analyzed homoge-
neous and periodic homogeneous CTRW, as well as the
model with irreversible detachments.

We calculated explicitly how different CTRW models
approach their stationary-state dynamics for the systems
where steady states exist. All derived expressions for dy-
namic properties at steady states agree with available large-
time results for CTRW obtained by different methods. Based
on these observations it is argued that times to reach the
steady-state conditions might differ significantly for different
dynamic properties, and one must be careful in applying
stationary-state results for understanding mechanisms of pro-
cesses described by CTRW models. We also analyzed the
generalized fluctuation theorem and it is found that irrevers-
ible detachments do not affect much the fluctuation dynam-
ics. It will be interesting to extend this theoretical approach
to analyze at all times more complex CTRW systems, such
as models with branched states12 and parallel-chain
models.21,22
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