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Most biological processes are controlled by complex systems of enzymatic chemical reactions.
Although the majority of enzymatic networks have very elaborate structures, there are many ex-
perimental observations indicating that some turnover rates still follow a simple Michaelis–Menten
relation with a hyperbolic dependence on a substrate concentration. The original Michaelis–Menten
mechanism has been derived as a steady-state approximation for a single-pathway enzymatic chain.
The validity of this mechanism for many complex enzymatic systems is surprising. To determine
general conditions when this relation might be observed in experiments, enzymatic networks con-
sisting of coupled parallel pathways are investigated theoretically. It is found that the Michaelis–
Menten equation is satisfied for specific relations between chemical rates, and it also corresponds
to a situation with no fluxes between parallel pathways. Our results are illustrated for a simple
model. The importance of the Michaelis–Menten relationship and derived criteria for single-molecule
experimental studies of enzymatic processes are discussed. © 2011 American Institute of Physics.
[doi:10.1063/1.3580564]

I. INTRODUCTION

It is known that almost all chemical reactions in biologi-
cal systems are catalyzed by protein enzymatic molecules.1, 2

Fundamental understanding of cellular processes cannot be
accomplished without determining how related enzymatic
networks function. First catalytic mechanism that involves
enzyme molecules has been proposed almost a century ago
by Michaelis and Menten,3 and since it became one of the
most used and celebrated relations in biochemical and bio-
physical studies of natural phenomena. Similar relations be-
tween chemical rates and substrate concentrations have been
observed in many enzymatic systems.4–7 However, why the
Michaelis–Menten (MM) mechanism, i.e., the hyperbolic de-
pendence on the concentration of substrate, is working even
for some very complex enzymatic networks is still not well
understood.

The original MM mechanism has been derived as a
steady-state approximation to a simple single-pathway enzy-
matic process with irreversible creation of product molecules
as shown in a scheme at Fig. 1.8 In addition, it was assumed
that the initial concentration of enzyme was much smaller
than the initial concentration of the substrate, and that not too
many product molecules have been produced.8 Then the rate
of the catalyzed reaction can be written in terms of the rate
constants shown in Fig. 1 as

V = k2c

c + KM
, (1)

where c is the concentration of substrate molecules, KM

= (k2 + k−1)/k1 is known as the Michaelis constant, and the
rate k2 is called the catalytic rate. The rate of enzymatic re-
action in the MM mechanism is proportional to the concen-

a)Author to whom correspondence should be addressed. Electronic address:
tolya@rice.edu.

tration of the substrate molecules at low concentrations while
it saturates at high concentrations. Surprisingly, similar be-
havior is also observed experimentally in many enzymatic
systems with much more complex topology of chemical tran-
sitions than one shown in Fig. 1.4–7 Several theoretical stud-
ies have been presented in order to understand why turnover
rates in complex enzymatic networks might follow the sim-
ple MM relation.9–13 It has been argued that the MM equa-
tion will be satisfied for fluctuating enzymatic systems when
conformational transition rates are very large or very low in
comparison with catalytic rates, although with redefined def-
initions of catalytic rates and KM constants.9, 10 A general
approach to analyze enzymatic kinetics, based on the flux
balance method, has been developed recently,12 and it sug-
gests that the MM relation will not be observed when the de-
tailed balance is broken. However, in all current approaches
only enzymatic networks with several irreversible transitions
have been considered. In addition, general expressions for
the rate of product formation have not been derived, and ex-
plicit conditions on validity of the MM equation have not been
obtained.

In this paper, we present an alternative theoretical method
of analyzing complex enzymatic networks based on solving
discrete-state stochastic master equations. This approach has
been utilized successfully to describe dynamic properties and
mechanisms of motor proteins, and also in the analysis of
other single-molecule experiments.14–19 Specifically, we con-
sider enzymatic networks consisting of coupled parallel path-
ways with all chemical transitions assumed to be reversible.
Our method allows us to describe explicitly conditions when
the MM relation for the turnover rate is satisfied. These con-
ditions are analogous to the requirement that the flux be-
tween parallel pathways vanishes at each state. Using a simple
model to explain our method we argue that all turnover rates
behave qualitatively similar to the MM relation.
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FIG. 1. A reaction scheme for the simple enzymatic process that can be
described by the Michael–Menten (MM) mechanism. An enzyme molecule
E reacts reversibly with a substrate molecule S to produce an intermediate
molecule X which can irreversibly transition to a product molecule P and
the enzyme E with corresponding rates.

The paper is organized as follows. In Sec. II our theo-
retical method is presented for general coupled parallel en-
zymatic networks. Examples to illustrate obtained results are
given in Sec. III. Finally, Sec. IV provides a summary of our
findings.

II. THEORETICAL ANALYSIS

As an example of complex enzymatic networks a sys-
tem made of several coupled parallel biochemical pathways,
as shown in Fig. 2, will be analyzed. We adopt here a single-
molecule approach, and to simplify calculations all deriva-
tions will be made for the network of two coupled parallel
pathways (see Fig. 2), although the analysis can be easily ex-
tended to many coupled parallel pathways. This situation cor-
responds to a single enzymatic molecule that can be found in
one of two conformations in each chemical state, and it cat-
alyzes the reaction of the substrate transformation to the cor-
responding product in both conformations but with different
rates.

It is assumed that in each pathway there are N discrete
chemical states per period, i.e., each enzymatic molecule goes
through N consecutive intermediate states before completing
the catalytic cycle. The enzyme molecule can be found in the
state i from which it can move forward or backward along the
same reaction channel with rates ui or wi , respectively, or it
can change its conformation by moving to the state i in the
second pathway with the rate γi : see Fig. 2. Similarly, if the
molecule is in the state i of the second reaction channel it can
make forward (backward) transition with the rate αi (βi ), or it
can change its conformational state by going to the first path-
way with the rate δi , as illustrated in Fig. 2. We also assume
that the enzyme molecule binds to the substrate in the states
i = 0, i.e., the corresponding transition rates are proportional
to the concentration of substrate molecules c, u0 = k1c and
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FIG. 2. Enzymatic network with two coupled parallel pathways. Both path-
ways have N discrete states per each enzymatic cycle. The enzyme molecule
in the state i can transition forward (backward) with the rate ui (wi ) if found
in the pathway 1, while in the second channel the forward (backward) rates
are αi (βi ) (with i = 0, 1, . . . , N − 1). The conformational transitions be-
tween two i th states in different pathways are given by rates γi and δi .

α0 = k2c. Let us define a function P (k)
i (t) as a probability to

find the enzyme molecule in the state i at the reaction chan-
nel k (k = 1 or 2) at time t . The temporal evolution of this
enzymatic network can be described by a system of master
equations,17

d P (1)
i (t)

dt
= ui−1 P (1)

i−1(t) + wi+1 P (1)
i+1(t) + δi P (2)

i (t)

− (ui + wi + γi )P (1)
i (t), (2)

d P (2)
i (t)

dt
= αi−1 P (2)

i−1(t) + βi+1 P (2)
i+1(t) + γi P (1)

i (t)

− (αi + βi + δi )P (2)
i (t). (3)

Because of periodicity of each enzymatic pathway, it is con-
venient to define a new function,

R(k)
i (t) =

∑
l

P (k)
i+l N (t) (4)

with l being any integer number. Then the conformational
transition flux between the states i (i = 0, 1, . . . , N − 1) in
two pathways can be written as

Ji = γi R(1)
i − δi R(2)

i . (5)

When the system reaches a stationary state (t → ∞),
master equations (2) and (3) transform into the following ex-
pressions,

0 = ui−1 R(1)
i−1 + wi+1 R(1)

i+1(t) − Ji − (ui + wi )R(1)
i , (6)

0 = αi−1 R(2)
i−1 + βi+1 R(2)

i+1 + Ji − (αi + βi )R(2)
i . (7)

In addition, at large times total conformational flux between
states in two pathways must disappear,

N−1∑
i=0

Ji = 0. (8)

This expression can be easily derived because at t → ∞ one
can shown from master equations (2) and (3) that the sum of
fluxes along the pathways is conserved.

Now we can define new effective rates,

ũi = ui + αi
γi

δi
, (9)

w̃i = wi + βi
γi

δi
. (10)

Using these definitions and the expression for the flux (5) one
can obtain from Eq. (6)

0 = ũi−1 R(1)
i−1 − w̃i R(1)

i − Ki−1 − ũi R(1)
i + w̃i+1 R(1)

i+1 + Ki ,

(11)
where a new function Ki is defined as

Ki = αi

δi
Ji − βi+1

δi+1
Ji+1. (12)

Since Eq. (11) must be satisfied for any chemical state i it
leads to

ũi R(1)
i − w̃i+1 R(1)

i+1 − Ki = C, (13)
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where C is some unknown constant. Using periodicity
Eq. (13) can be easily solved, yielding

R(1)
i = Cri + ri (K )

1 − �
(14)

with

� =
N−1∏
i=0

w̃i

ũi
, (15)

ri = 1

ũi

⎛
⎝1 +

N−1∑
k=1

k∏
j=1

w̃ j+1

ũ j+1

⎞
⎠ , (16)

ri (K ) = 1

ũi

⎛
⎝Ki +

N−1∑
k=1

Ki+k

k∏
j=1

w̃ j+1

ũ j+1

⎞
⎠ . (17)

The unknown constant C can be found from the normalization
condition, namely

N−1∑
i=0

(
R(1)

i + R(2)
i

) = 1, (18)

which produces

C = (1 + L)(1 − �) − S(K )

S
, (19)

where new auxiliary functions are defined as

L =
N−1∑
i=0

Ji

δi
, (20)

S =
N−1∑
i=0

(
1 + γi

δi

)
ri , (21)

S(K ) =
N−1∑
i=0

(
1 + γi

δi

)
ri (K ). (22)

Substituting Eq. (19) into Eq. (14) it can be shown that

R(1)
i =

(
1 + L

R
− R(K )

R(1 − �)

)
ri + ri (K )

(1 − �)
. (23)

This expression for the probability to be found in the state i of
the first reaction channel at steady-state conditions allows us
to compute all dynamic properties of the system. The turnover
rate for this enzymatic network is

V =
N−1∑
i=0

(ui − wi )R(1)
i +

N−1∑
i=0

(αi − βi )R(2)
i , (24)

which can be written as

V =
N−1∑
i=0

(ũi − w̃i )R(1)
i −

N−1∑
i=0

Ki . (25)

Then it can be shown that
N−1∑
i=0

(ũi − w̃i )ri = N (1 − �), (26)

N−1∑
i=0

(ũi − w̃i )ri (K ) = (1 − �)
N−1∑
i=0

Ki . (27)

It leads to a compact expression for the chemical reaction rate,

V = N (1 − �)

S
+ N (1 − �)L

S
+ N R(K )

S
. (28)

We can repeat derivations if we choose another set of ef-
fective rates,

α̃i = αi + ui
δi

γi
, (29)

β̃i = βi + wi
δi

γi
. (30)

Comparing them with Eqs. (9) and (10) we conclude that

ũi

α̃i
= w̃i

β̃i
= γi

δi
. (31)

Again the equation for the turnover rate can be derived with
this set of effective rates. Combining both expression, we ar-
rive to the final formula for the reaction speed of the enzy-
matic process presented in Fig. 2,

V = N (1 − �)

S
+ N (1 − �)

2S

N−1∑
i=0

Ji

(
1

δi
− 1

γi

)
+ N S(M)

2S

(32)
with

ri (M) = 1

ũi

⎛
⎝Mi +

N−1∑
k=1

Mi+k

k∏
j=1

w̃ j+1

ũ j+1

⎞
⎠ , (33)

S(M) =
N−1∑
i=0

(
1 + γi

δi

)
ri (M), (34)

and functions Mi are defined as

Mi =
(

αi

δi
− ui

γi

)
Ji −

(
βi+1

δi+1
− wi+1

γi+1

)
Ji+1. (35)

Equation (32) is an exact expression for the turnover rate
for general enzymatic network made of coupled parallel path-
ways. It depends on chemical rates for individual transitions
as well as conformational fluxes Ji . It should be noted that
these fluxes are not independent parameters. Explicit forms
of conformational fluxes can be found utilizing Eqs. (5) and
also from the balance of total fluxes through each chemical
state,17

ui−1 R(1)
i−1 − wi R(1)

i = Ji + ui R(1)
i − wi+1 R(1)

i+1, (36)

αi−1 R(2)
i−1 − βi R(2)

i + Ji = αi R(2)
i − βi+1 R(2)

i+1. (37)

It is convenient to analyze the expression (32) for the
overall chemical rate of the coupled enzymatic network if it
follows or not the MM dependence. It can be easily shown
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that the first term has a hyperbolic dependence on the concen-
tration of the substrate and it does not depend on conforma-
tional fluxes. At the same time, the second and the third terms
do depend on Ji and they are not satisfying the MM relation
for any nonzero conformational fluxes. Thus the condition for
the turnover rate to follow the MM dependence is when last
two terms in Eq. (32) vanish, which can only take place when
conformational fluxes disappear. This condition can be writ-
ten explicitly in terms of relations between chemical rates,

ui

αi
= wi

βi
= γi

δi
, (38)

or in the different form as

ui

γi
= αi

δi
,

wi

γi
= βi

δi
. (39)

This is the main result of our work. A general coupled parallel
enzymatic network will follow the MM relation when rates of
coupled pathways satisfy the Eq. (38) for each chemical state.
This is a clear and explicit criterion on the MM dependence
of the enzymatic cycle in such complex systems.

All previously discussed situations of the MM behavior
for the turnover rate in enzymatic networks9, 10, 12 can be de-
scribed by our general approach. It has been argued using
a continuum description9, 10 that conformationally fluctuating
enzymes still obey the MM relationship for (1) quasi-static
conditions (when conformational rates are very slow in com-
parison with other chemical transitions), and for (2) quasi-
equilibrium conditions (when conformational rates are very
fast). The last case has been also analyzed in Ref. 17. The first
situation corresponds to γi � 1 and δi � 1. Then Eqs. (39)
are valid for any value of other chemical rates (as long as they
are larger than conformational transitions rates). The second
case describes very large γi and δi , and again Eqs. (39) pre-
dict that it might happen for any value of chemical rates ui ,
wi , αi , and βi . It was also found10 that the MM relation still
holds when only one group of the conformationally related
states i is found in quasi-static or quasi-equilibrium condi-
tions. Since N = 2 periodic system has been used for ana-
lyzing fluctuating enzymes, then from Eq. (8) one can easily
conclude that there are two conformational fluxes, J1 and J2,
and they are related via J1 + J2 = 0. If one of them goes to
zero the second flux must also vanish, and the MM relation-
ship is recovered. Cao has argued that the MM dependence is
observed when the detailed balance is not broken.12 For the
system of coupled parallel pathways it means that the overall
circular current in each loop (see Fig. 2) is zero. The ratio of
clockwise and counterclockwise currents for any loop can be

written with the help of Eqs. (38) as

uiγi+1βi+1δi

αiδi+1wi+1γi
= γi+1βi+1

δi+1wi+1
= 1, (40)

which indicates that the loop current vanishes when the MM
relation is observed.

It is important to note also that criteria given in Eqs. (38)
suggest that the MM dependence is found for systems where
each state has similar free energy landscape near each chem-
ical state. Then the enzymatic network of coupled parallel re-
action channels can be effectively viewed as a single enzy-
matic pathway with properly rescaled transitions rates which
by definition follow the MM behavior.

III. EXAMPLES

To illustrate our theoretical method let us present some
explicit results for the N = 2 system which is the most rel-
evant for analyzing fluctuating enzyme systems.3, 4, 6, 9, 10 The
dynamic properties of enzyme molecule in such system has
been already obtained.17 The general formula for the turnover
rate is given by17

V = (1/�){(k1cu1−w0w1)[(k2c+β0)δ1+(α1+β1)δ0+δ0δ1]

+ (k2cα1 − β0β1)[(k1c + w0)γ1 + (u1 + w1)γ0 + γ0γ1]

+ (k1cα1 − w0β1)δ0γ1 + (k2cu1 − β0w1)γ0δ1}, (41)

where the function � is defined as

� = (k1c + w0 + γ0)[(k2c + β0)δ1 + (α1 + β1)γ1]

+ (u1 + w1 + γ1)[(k2c + β0)γ0 + (α1 + β1)δ0]

+ (k2c + β0 + δ0)[(k1c + w0)γ1 + (u1 + w1)δ1]

+ (α1 + β1 + δ1)[(k1c + w0)δ0 + (u1 + w1)γ0]. (42)

It can be shown that the maximal possible rate (c � 1) that
the enzyme molecule can achieve in this system is given by

Vmax = u1δ1 + α1γ1

δ1 + γ1
. (43)

This result can be easily explained since at large concentra-
tions rate-limiting states correspond to i = 1, and the overall
reaction rate is the average over finding the molecule in one
of two enzymatic pathways.

The conformational flux between channels is equal to

J0 = −J1 = J = (1/�)[(u1 + w1)(k2c + β0)γ0δ1

− (k1c + w0)(α1 + β1)γ1δ0]. (44)

When the conformational fluxes are zero the turnover rate has
the MM dependence,

V = (k1δ0 + k2γ0)(u1δ1 + α1γ1)c − (w0δ0 + β0γ0)(w1δ1 + β1γ1)

[(k1c + w0)δ0 + (k2c + β0)γ0](γ1 + δ1) + [u1 + w1)δ1 + (α1 + β1)γ1](γ0 + δ0)
. (45)

Reaction rates for different sets of parameters are pre-
sented in Fig. 3. The dependence of all enzymatic rates on
the substrate concentration is qualitatively similar: increas-

ing function at small c and saturation to a constant value for
c � 1. There is nothing special in the MM relation (black
curve in Fig. 3). This can be easily understood because the
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FIG. 3. The turnover reaction rate as a function of the concentration of sub-
strate molecules for N = 2 periodic coupled parallel enzymatic network.
Calculations have been performed utilizing Eq. (41) for the following pa-
rameters for all curves: k1 = 10 μM−1 s−1, k2 = 1 μM−1 s−1, u1 = 5 s−1,
w1 = γ0 = 1 s−1, β0 = β1 = 0.1 s−1, and δ1 = 0.5 s−1. In addition, for the
brown curve we used α1 = 5 s−1, δ0 = 0.1 s−1, γ1 = 5 s−1, and w0 = 1 s−1;
for the green curve we used α1 = 0.5 s−1, δ0 = 1 s−1, γ1 = 5 s−1, and w0
= 1 s−1; for the black curve we used α1 = 0.5 s−1, δ0 = 0.1 s−1, γ1 = 5 s−1,
and w0 = 1 s−1; for the blue curve we used α1 = 0.5 s−1, δ0 = 0.1 s−1,
γ1 = 5 s−1, and w0 = 10 s−1; and for the red curve we used α1 = 0.5 s−1,
δ0 = 0.1 s−1, γ1 = 50 s−1, and w0 = 1 s−1. The Michaelis–Menten case is
described by the black curve.

turnover rate is equal to the ratio of polynomial functions
of c. For the MM case both numerator and denominator
are just linear functions. At large concentrations of the sub-
strate molecules transitions from the states i = 1 become
rate-limiting leading to effectively concentration-independent
behavior. One could also observe that changing transition
rates for i = 0 does not affect much overall enzymatic rates
in comparison with the MM relation [green and blue curves
in Fig. 3(a)]. However, modifying transition rates associ-

c, μΜ
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–0.15

–0.1

–0.05

0

J, s
–1

0 20 40 60 80 100

FIG. 4. The conformational flux as a function of the concentration of sub-
strate molecules for N = 2 periodic coupled parallel enzymatic network.
Calculations have been performed utilizing Eq. (44) for the following pa-
rameters for all curves: k1 = 10 μM−1 s−1, k2 = 1 μM−1 s−1, u1 = 5 s−1,
w1 = γ0 = 1 s−1, β0 = β1 = 0.1 s−1, and δ1 = 0.5 s−1. In addition, for the
brown curve we used α1 = 5 s−1, δ0 = 0.1 s−1, γ1 = 5 s−1, and w0 = 1 s−1;
for the green curve we used α1 = 0.5 s−1, δ0 = 1 s−1, γ1 = 5 s−1, and w0
= 1 s−1; for the blue curve we used α1 = 0.5 s−1, δ0 = 0.1 s−1, γ1 = 5 s−1,
and w0 = 10 s−1; and for the red curve we used α1 = 0.5 s−1, δ0 = 0.1 s−1,
γ1 = 50 s−1, and w0 = 1 s−1. For parameters describing the MM relation-
ship the conformational flux is equal to zero.

ated with i = 1 can significantly alter reaction rates (red and
brown curves in Fig. 3). In addition, analyzing shapes of all
reaction rates curves we conclude that many experimental ob-
servations for systems that are analyzed by using N = 2 peri-
odic models might be easily assumed to follow effectively the
MM relation, especially if experimental errors are taken into
account.

The conformational fluxes for different sets of parame-
ters are shown in Fig. 4. In the MM case we have J = 0 as ex-
pected, while in other cases the complex behavior is observed.
At large concentrations all conformational fluxes tend to zero
because in this case transitions from i = 1 are becoming rate
limiting, and they do not depend on c. In some situations the
magnitude of the conformational flux reaches a maximum for
the specific concentration of the substrate molecules.

IV. SUMMARY AND CONCLUSIONS

A new theoretical method of analyzing complex enzy-
matic networks is developed. It is based on solving explicitly
master equations for discrete-state stochastic models. Apply-
ing this approach for systems made of coupled parallel enzy-
matic pathways, we derived explicit criteria on when the MM
behavior might be observed. It leads to special relations be-
tween all chemical rates. This method allows to explain all
previous theoretical observations on the validity of the MM
relationship in complex enzymatic systems. Theoretical anal-
ysis is illustrated for simple models relevant for conforma-
tionally fluctuating enzyme molecules. It is found that general
behavior of enzymatic rates is qualitatively similar to the MM
equation. Our theoretical method argues that turnover rates
can be viewed as a ratio of polynomial functions of the sub-
strate concentrations. The MM relationship is observed when
these polynomials are linear functions of concentrations.

The presented theoretical method might be a powerful
tool for analyzing single-molecule experiments since it allows
to compute all dynamic properties for complex enzymatic net-
works. It will be interesting to test experimentally developed
criteria for coupled enzymatic pathways. It will be also impor-
tant to extend this approach to other enzymatic network sys-
tems and for computations of other experimentally observed
quantities such as dwell-time distributions and diffusion con-
stants.
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