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One of the most important features of biological systems that controls their functioning is the ability
of protein molecules to find and recognize quickly specific target sites on DNA. Although these phe-
nomena have been studied extensively, detailed mechanisms of protein-DNA interactions during the
search are still not well understood. Experiments suggest that proteins typically find their targets fast
by combining three-dimensional and one-dimensional motions, and most of the searching time pro-
teins are non-specifically bound to DNA. However these observations are surprising since proteins
diffuse very slowly on DNA, and it seems that the observed fast search cannot be achieved under these
conditions for single proteins. Here we propose two simple mechanisms that might explain some of
these controversial observations. Using first-passage time analysis, it is shown explicitly that the
search can be accelerated by changing the location of the target and by effectively irreversible disso-
ciations of proteins. Our theoretical predictions are supported by Monte Carlo computer simulations.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697763]

I. INTRODUCTION

In biological systems most processes start when some
protein molecules bind to specific target sequences on DNA
molecules to initiate a cascade of biochemical reactions.1 This
fundamental aspect of protein-DNA interactions has been
studied extensively by various experimental2–14 and theoret-
ical methods.5, 9, 10, 15–29 Although a significant progress in ex-
plaining protein search phenomena has been made, detailed
mechanisms remain not fully understood.10, 26 Furthermore,
there are strong theoretical debates on how to explain fast pro-
tein search for the targets on DNA, which is also known as a
facilitated diffusion.5, 9, 10, 26

Large amount of experimental evidences, coming mostly
from single-molecule measurements,6–8, 12 suggest that pro-
tein search is a complex dynamic phenomenon consisting
of three-dimensional (in the solution) and one-dimensional
(on the DNA) modes. But the most paradoxical observa-
tion is that protein molecules spend most of the search time
(≥90 − 99%) on the DNA chain where they diffuse very
slowly.7, 8, 12 It is not clear then how the fast search can be
achieved in this case. Several theoretical ideas that point out to
the role of lowering dimensionality,3–5, 10, 15, 16, 21 electrostatic
effects,9 correlations between 3D and 1D motions,17, 26, 27

transitions between different chemical states,12, 28 bending
fluctuations, and hydrodynamics25 have been proposed. How-
ever, a comprehensive theoretical description is still not avail-
able, especially for the case when concentration of proteins
is relatively small. In this letter, we propose and investi-
gate two possible mechanisms that might accelerate one-
dimensional search of proteins for specific targets on DNA.
Using explicit calculations via first-passage analysis, it is ar-
gued that optimal location of the target site as well as ef-
fectively irreversible dissociations of protein molecules from
the DNA segments might strongly lower the overall search
time.

II. THEORETICAL MODEL

We consider a simple model for a search where one pro-
tein molecule diffuses along the DNA chain while scanning
for the target as shown in Fig. 1. As 3D excursions to the
solution are very fast, we concentrate here on analyzing only
the rate-limiting 1D contributions to the overall facilitated tar-
get search. The DNA segment has L binding sites, and one of
them at the position m is the target for the protein molecule.
At time t = 0, the protein molecule starts the searching pro-
cedure with equal probability at any site of the DNA chain.
The protein molecule can diffuse forward/backward with the
rate u, and it also might dissociate irreversibly with the rate
k (see Fig. 1). These rates are connected to the protein hop-
ping barriers along and away from the DNA molecule. For lac
repressor proteins from experimental data,7, 8 one could esti-
mate these rates as following: u � 103 − 106 s−1 and k � 200
− 3000 s−1. Note that for a given DNA segment, these dis-
sociations are only effectively irreversible since after leaving
the DNA segment the protein most likely will bind to other
DNA segments. The protein molecule diffuses so fast in the
solution that the detachment and reattachment locations can
be viewed as non-correlated.30

A. Target position

First, we will consider the role of the target position on
the mechanisms of protein search by neglecting dissociations,
i.e., for the case when k = 0. Let us define a function Fn(t)
as a first-passage probability to reach the target, if at t = 0,
the protein was at the site n (n = 1, 2, . . . , L). Temporal evo-
lution of this quantity can be described by backward master
equations,31

dFn(t)

dt
= u[Fn+1(t) + Fn−1(t)] − 2uFn(t), (1)
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FIG. 1. A general scheme for one-dimensional model of the protein search.
DNA chain has L − 1 non-specific binding sites and one specific site that is a
target of the search. A protein molecule can diffuse along the DNA segment
with rates u in both directions and it can also dissociate with the rate k. These
rates are directly connected with hopping over the barriers along and away
from the DNA. The search is finished when the protein binds to the target site
at the position m.

for 1 < n < L, and we assume reflecting boundaries at the
ends,

dF1(t)

dt
= u[F2(t) − F1(t)],

dFL(t)

dt
= u[FL−1(t)−FL(t)].

(2)
In addition, we have Fm(t) = δ(t) and Fn�=m(t = 0) = 0 be-
cause the target is occupying the site m. Introducing Laplace
transform, AFn(s) ≡ ∫ ∞

0 e−stFn(t)dt , backward master equa-
tions can be written as

sAFn(s) = u[BFn+1(s) + BFn−1(s)] − 2uAFn(s), (3)

sAF1(s) = u[AF2(s) −AF1(s)], sAFL(s) = u[BFL−1(s) − AFL(s)].
(4)

Using boundary and initial conditions, these equations can be
solved producing a simple expression,

AFn(s) = y1+L−n + yn−L

y1+L−m + ym−L
, (5)

for n > m, while for n < m, we have

AFn(s) = y1−n + yn

y1−m + ym
, (6)

with y = (s + 2u − √
s2 + 4us)/2u. Explicit formulas for

Laplace transforms of the first-passage probability distribu-
tion functions allow us to obtain full description of the search
process. The mean first-passage time τ n to reach the target
if the starting point of the protein is at the position n can be

calculated from τn = − dAFn(s)
ds

|s=0, yielding

τn = [(L−m)2+(L−m+1)2]−[(L−n)2+(L−n+1)2]

4u
(7)

for n > m, while for n < m, it can be shown that

τn = [m2 + (m − 1)2] − [n2 + (n − 1)2]

4u
. (8)

In order to obtain the mean time Tm(L) for the protein, which
starts with equal probability anywhere on the DNA segment
of length L, to reach the target at the site m, we must aver-
age over the initial positions of the protein molecule, Tm(L)
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FIG. 2. Relative search time, Tm/Tm=(L+1)/2, as a function of the position
along the DNA segment for L = 251. Solid curves are analytical results,
while symbols are from Monte Carlo computer simulations. Note that results
depend only on ratio of rates x = k/u.

=
∑L

n=1 τn

L
. It leads to the following expression:

Tm(L)= (L−m)(L−m+1)(L−m+1/2)+m(m−1)(m−1/2)

3uL
.

(9)
As expected, for this case of the unbiased diffusion, the av-
erage search time to find the target has a quadratic scaling
with DNA length L, as shown in Fig. 3. Its dependence on the
target position, m, is non-monotonic: it is minimal when the
target is in the middle of the chain, and maximal if the target
is positioned at the ends of the DNA segment, as shown in
Fig. 2. From Eq. (9), it can be easily shown that

Tmin = Tm=(L+1)/2 = (L + 1)(L − 1)

12u
,

(10)

Tmax = Tm=1 = Tm=L = (L − 1)(L − 1/2)

3u
.

One can see that moving the target closer to the center of the
DNA chain might decrease the search time significantly, up
to four times for large L. This result can be easily explained:
when the target is near the ends of the DNA segment, the av-
erage distance to the specific site from the starting protein is
∼L/2, while for the target in the center of the chain this dis-
tance is smaller, ∼L/4. Thus the protein molecule, on aver-
age, makes shorter scans if the target is in the middle of the
DNA segment. The ratio Tmax/Tmin is intimately related to
the scaling of T with L. This can be seen from the follow-
ing properties of the problem: (i) search time is symmetric
with respect to the middle of the chain, m = (L + 1)/2, i.e.,
Tm(L) = TL−m+1(L); (ii) Tm(L) also depends on the relative
position of the target, m/L, rather than on m alone; and (iii) a
protein which starts on one side of the target cannot pass to
the other side without finding the target first, therefore Tm(L)
= [mTm(m) + (L − m + 1)T1(L − m + 1)]/(L + 1). It leads to
T(L+1)/2(L) = T1((L + 1)/2), which combined with the scaling
Tm(L) ∝ Lα (α is a scaling exponent) for L 
 1 yields

TL/2(L) ≈ 2−αT1(L), Tmax/Tmin ≈ 2α. (11)

The fact that the searching time depends on the position
of the target on DNA has been predicted before.30 However,
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the suggested mechanism relies on combination of 3D and 1D
motions, while in our case the mechanism is different since it
is a purely 1D effect. It is also important to note that for DNA
lengths much longer than the average sliding length of a pro-
tein (e.g., 100–500 base pairs for transcription factors), the
target position makes only a small effect on the mean search
time, as shown below in this paper. In a simple bacteria, the
length of DNA is of order of 106 bps, while typical slid-
ing length for transcription factor proteins is much smaller,
namely 102–103 bps. In this case, the target positioning is
probably not relevant for acceleration of the search. How-
ever, when these two lengths are comparable the effect might
be significant. For example, this might be the case for com-
pactified DNA molecules in prokaryotes and for nucleosome-
bound and tightly wrapped DNA molecules in eukaryotic
cells. Our results suggest that this effect might be observed
in in vitro experiments by changing the ionic strength of the
solution: for low-salt conditions, nonspecific protein-DNA in-
teractions are large leading to longer 1D searches.

B. Effectively irreversible detachments

Since in real systems the protein molecule cannot be
bound infinitely long to the DNA chain it will eventually dis-
sociate. In this paper, we consider a situation when this dis-
sociation is effectively irreversible. In biological systems, it
might correspond to the case of fast intersegment rates, or
when the concentration of proteins in the solution is quite
small so the associations to the given DNA segment are rare
events, or when the protein diffusion in the solution is much
faster than binding to DNA and it leads to uncorrelated lo-
cations of dissociation and rebinding sites, but proteins do
not disappear and they still participate in the search process
on other DNA segments. Our goal here is to evaluate the ef-
fect of irreversible detachments on the search dynamics. For
k > 0, the corresponding backward master equations for first-
passage distributions are modified as compared to the case
without dissociations,

dFn(t)

dt
= u[Fn+1(t) + Fn−1(t)] − (2u + k)Fn(t), (12)

dF1(t)

dt
= uF2(t) − (u + k)F1(t),

(13)
dFL(t)

dt
= uFL−1(t) − (u + k)FL(t).

Utilizing again the Laplace transformations, we obtain for n
> m again [see Eqs. (5) and (6)],

AFn(s) = y1+L−n + yn−L

y1+L−m + ym−L
, (14)

and for n < m,

AFn(s) = y1−n + yn

y1−m + ym
, (15)

but now with y = (s + 2u + k −
√

(s + 2u + k)2 − 4u2)/2u.
It will be also useful to consider a function ȳ ≡ y(s = 0)
= (2u + k − √

k2 + 4uk)/2u. It can be roughly interpreted

as a quantity that is proportional to the survival probability
for the protein over a single step. Defining x = k/u, it can be
easily shown that ȳ varies between ȳ � 1 − √

x + O(x) at x
� 1 and ȳ � x−1 + O(x−2), at x 
 1.

Since the protein molecule that started at the site n can
dissociate before finding the target at the site m, the probabil-
ity to reach the special binding site, �n < 1, can be explicitly
evaluated via �n = CFn(s = 0) producing,

�n = ȳm−n(ȳ1+2L + ȳ2n)

ȳ1+2L + ȳ2m
, (16)

for n > m and

�n = ȳm−n(ȳ + ȳ2n)

ȳ + ȳ2m
(17)

for n < m. In the limit x 
 1, we obtain �n = x−|m−n|. The
average probability to reach the target is given then by

Pm ≡
∑L

n=1 �n

L
= (1 + ȳ)(1 − ȳ2L)

L(1 − ȳ)(1 + ȳ1+2(L−m))(1 + ȳ1+2(m−1))
.

(18)
Pm varies between Pm � 1 − [m(2L + 1)(L + 1) − m(L + 1
− m)/6]x2 at ȳ ≈ 1 and

Pm � 1

L
(1 + 2ȳ − ȳ2(L−m)+1 − ȳ2m−1) + O(ȳ2) (19)

for ȳ < 1. Equation (19) is valid not only in the limit of large
x. Instead, the crossover between the two regimes for Pm can
be obtained by testing the limit of validity of expanding the
expression ȳL ≈ 1 − L

√
x for x � 1. Then one finds that the

crossover is observed for xc ∼ L−2. In addition, analysis of
Eq. (18) suggests that the probability to reach the target is
higher when this special site is in the middle of the DNA seg-
ment. Again, this can be easily understood in terms of aver-
age distance between the starting position of the proteins and
the target. The closer the target, the higher the probability to
survive and to reach the target site. As suggested in our dis-
cussion after Eq. (11), for L 
 1, x > xc and m far from the
ends of DNA, the dependence of the probability on the target
position becomes extremely weak.

In the model with irreversible dissociations, the search
times are associated with the conditional mean-first passage
times that can be calculated by utilizing the expression τn =
− dAFn(s)

ds
|s=0/�n, which leads to

τn = 1√
k2 + 4uk ln ȳ

∂(I (n, a) − I (m, a))

∂a

∣∣∣∣
a=1

(20)

with an auxiliary function, I(z, a), given by I (z, a)
= ln

(
ȳ(1+L−z)a + ȳ(z−L)a

)
for n > m and I (z)

= ln
(
ȳ(1−z)a + ȳza

)
for n < m. The explicit expression

for the average search time, Tm is quite complex. But it
is useful again to consider separately the limiting cases of
extremely slow detachments, x < xc (i.e., ȳ → 1), and fast
dissociations, x > xc (i.e., ȳ < 1). For small x, we obtain

Tm(L) � (L2 − 3Lm + 3m2)/3u. (21)

For large x, Eq. (20) can be simplified (for 1 < m, n < L

with L 
 1) to yield τn � |m − n|/
(
u
√

x2 + 4x
)

, which
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FIG. 3. Average search time as a function of the DNA chain length. The
target is always in the middle of the chain. Solid curves are analytical results,
while symbols are from Monte Carlo computer simulations. For simplicity, u
= 1 s−1 is assumed for all calculations.

leads to

Tm(L) = m(m − 1) + (L − m + 1)(L − m)

2Lu
√

x2 + 4x
. (22)

For large DNA segments, these results give us the quadratic
scaling, T ∝ L2, for x < xc and the linear scaling, T ∝ L, for
x > xc. The fastest search is again achieved when the target is
in the middle of DNA, although the effect of target positioning
on the search time is now weaker, as expected from Eq. (11)
(see Fig. 2).

III. DISCUSSIONS AND SUMMARY

The computer simulation results and analytical curves
for average search times are presented in Figs. 2 and 3. The
most surprising result from our theoretical analysis is a linear
scaling of Tm as a function of DNA length L for the system
with irreversible detachments (see Fig. 3). This observation
is counter-intuitive since in the system with the unbiased dif-
fusion the L2 scaling for the search times is expected. How-
ever, in our system the simple diffusion is modified by irre-
versible dissociations that effectively remove slow hopping
molecules. Only proteins that move fast enough (or start close
enough) will reach the target. For a given protein molecule,
there are many trajectories to reach the target. But since the
lifetime of the protein on DNA is limited, only short-time tra-
jectories with the biased motion in the direction of the target
will mostly contribute to the mean search time. The dissocia-
tions work here as an effective potential that drives the protein
molecules away from the starting position, and the system can
be described better as diffusion in this effective field. There-
fore, we have a driven diffusion motion that leads to the lin-
ear scaling, as observed in our case. For cellular DNA lengths
(L ∼ 10

6 − 109 bases), it might lead to 6–9 orders of magni-
tude acceleration over the purely diffusive scanning mecha-
nism, although the probability of reaching the target will be
much smaller. It is also interesting to note that for the fixed
x = k/u, the linear scaling is found only when the length of
the DNA chain is long enough (L > 1/

√
x) to observe disso-

ciations. The crossover behavior for x = 0.01, when the slope
in the log-log plot changes from 2 to 1 (see Fig. 3) clearly
illustrates this point. Another important point here is that the
linear scaling is still observed when the dissociations become
reversible. It is also interesting to note that similar linear scal-
ing has been observed in unrelated processes of formation of
signaling molecules profiles during biological development
processes.34

In conclusion, we have investigated theoretically two
possible mechanisms of acceleration of single protein search
for specific targets on DNA molecules. Using first-passage
analysis for simplified discrete-state stochastic models, it has
been shown that putting the target site in the middle of the
DNA segment might accelerate the search up to four times
in the case without detachments, and up to two times for
the situation with dissociations. Much stronger effect is pre-
dicted for the protein molecule that might irreversibly disso-
ciate from the DNA chain. Detachments eliminate slow mov-
ing molecules and create an effective potential that drives the
surviving proteins away from the starting positions. This ef-
fective field leads to unexpected linear scaling in the protein
motion on DNA, significantly accelerating the overall search
process. Our theoretical results are fully supported by Monte
Carlo computer simulations. Although the presented theoreti-
cal models probably capture some physical/chemical features
of the protein search for targets on DNA, they are oversimpli-
fied, hence neglecting many important properties of protein
search such as sequence dependence, electrostatic effects and
the role of protein, and DNA conformational changes. The
relevance of the presented mechanisms to in vivo systems
is also unclear. Recent data on positioning of nucleosomes
and other DNA-binding proteins in yeast indicate preference
for specific positions on DNA,32 and in many cases binding
sites for transcription factors are in the middle of DNA seg-
ments between bound nucleosomes.33 But it is not known if
this specificity is related to speeding up the protein search on
DNA. It will be important to test these ideas in more advanced
experiments and in more microscopic theoretical calculations.
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