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The majority of chemical and biological processes can be viewed as complex networks of states
connected by dynamic transitions. It is fundamentally important to determine the structure of these
networks in order to fully understand the mechanisms of underlying processes. A new theoreti-
cal method of obtaining topologies and dynamic properties of complex networks, which utilizes
a first-passage analysis, is developed. Our approach is based on a hypothesis that full temporal
distributions of events between two arbitrary states contain full information on number of inter-
mediate states, pathways, and transitions that lie between initial and final states. Several types of
network systems are analyzed analytically and numerically. It is found that the approach is success-
ful in determining structural and dynamic properties, providing a direct way of getting topology
and mechanisms of general chemical network systems. The application of the method is illustrated
on two examples of experimental studies of motor protein systems. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4824392]

I. INTRODUCTION

Most chemical and biological systems can be described
as complex networks of states.1–5 To understand how these
systems function one needs to determine the structure and
rates in these networks. In recent years, significant exper-
imental and theoretical advances in investigating mecha-
nisms of complex chemical and biological systems have been
achieved.6–15 It is now possible to monitor various chemical
and biological systems with a single-molecule precision and
a high temporal and spatial resolutions.6–11 Current theoreti-
cal methods also allow to calculate many molecular proper-
ties with a high accuracy.12–15 However, a comprehensive de-
termination of structure-function relations for many systems
remains an unsolved task.

To understand the difficulty of this issue let us consider
a general scheme of a chemical system that has an underly-
ing complex network of dynamically connected states—see
Fig. 1. A typical experimental measurement probes some
complex event that starts from a state i and ends up at a
state j (Fig. 1). As a result, experiments produce distribu-
tions of these events, and mechanisms for underlying chem-
ical processes are proposed based on analysis of these data.
However, this is an example of inverse problems that are
difficult to solve since more than one mechanism could fit
the measured distributions. In addition, although all informa-
tion about mechanisms of complex processes is contained in
these distributions, in most cases only the first moments, mean
dwell times, are analyzed.

It has been recognized that studies of distributions of
events for networks are associated with a first-passage prob-
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lem in stochastic processes.16, 17 The mathematical analysis
of first-passage processes is well developed,18, 19 however it
is rarely used for understanding complex systems. A more
popular approach is to utilize Monte Carlo computer simula-
tions to generate distributions and compare them with exper-
iments. However, some minimal information on the structure
of the network is needed and a computational cost becomes
prohibitive for large networks. In many cases, more produc-
tive is a matrix method that has been used in ion-channel
measurements.20–22 But it does not work for complex systems
with multiple transitions. Recently, a new absorbing bound-
ary method has been proposed for understanding dynamics of
molecular motors.23 Although the method is powerful, it re-
quires some knowledge of the network topology and it is not
efficient in obtaining average values such as mean times.23

In this article, we develop a new method to predict struc-
tural and dynamic information of the underlying chemical
and biological networks by analyzing distributions of events
without assuming any specific model. We propose the follow-
ing hypothesis: dwell-time distributions of events between two
states as a function of time contain all information on the lo-
cal structure of the network and dynamic transitions between
these states. The idea here is that at short times the distribu-
tion is dominated by events that follow the shortest pathway
(in terms of the number of intermediate states) between states.
At transient times the effect of other pathways starts to build
up, and for large times dynamics is averaged over all possi-
ble pathways that reach the final state. Analyzing such distri-
butions at all times for events between various states should
provide a model-independent information on the whole net-
work. In this work, the hypothesis is tested via exact analyt-
ical calculations and computer simulations for several types
of networks. In addition, the method is applied for analyzing
dynamics of two motor protein systems.
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FIG. 1. A schematic view of a general chemical network. Nodes correspond
to individual states and arrows describe possible transitions. Experimental
measurements typically provide the information on distribution events that
start at some initial state i and finish at some final state j.

II. RESULTS

A. First-passage analysis of dwell-time distributions
for homogeneous One-Dimensional (1D) networks

We consider first a simplified 1D network of discrete
states j = 0, . . . , N, as shown in Fig. 2(a). For real processes
it corresponds to dynamics of motor proteins,12, 24 polymer
translocation,7 or protein folding.6 Suppose that at time t = 0
the molecule is in a state j = m. The system can transfer to the

FIG. 2. A schematic view of network systems: (a) a sequential 1D network;
(b) 1D network with irreversible detachments; (c) 1D network with a branch;
(d) a network with two parallel segments.

state j = m + 1 with a rate um, while the backward transition
rate to the state j = m − 1 is given by wm. We are interested
in obtaining a distribution function that describes reaching the
left end state (j = 0) or the right end state (j = N) for the first
time. Specifically, a first-passage probability function fN, m(t)
is defined as a probability that the system starting at time
t = 0 in the state m will reach the right end state N at time
t for the first time before reaching the left end state j = 0. In
a similar way we define a first-passage probability function
f0, m(t) to reach the left end. Let us concentrate on the fN, m(t)
function, and all results for f0, m(t) can be obtained from sym-
metry arguments (changing m → N − m and um → wm). The
temporal evolution of these probability functions can be de-
scribed by backward master equations,16, 17

∂fN,m(t)

∂t
= umfN,m+1(t) + wmfN,m−1(t)

− (um + wm)fN,m(t), (1)

with the following boundary conditions:

fN,0(t) = 0, for all t,

fN,N (t) = δ(t), (2)

fN,m(0) = 0, for 1 ≤ m ≤ N − 1.

The main idea of our approach is to utilize Laplace transforms
of distribution functions defined as

f̃N,m(s) =
∫ ∞

0
e−stfN,m(t)dt. (3)

Due to the boundary conditions we have

f̃N,N (s) = 1, f̃N,0(s) = 0. (4)

To illustrate the power of the method consider a simpler situ-
ation with homogeneous transition rates, um = u and wm = w

for all m. Then the backward master equation (1) in the
Laplace presentation can be written as

sf̃N,m = uf̃N,m+1 + wf̃N,m−1 − (u + w)f̃N,m. (5)

One could define an auxiliary function a(s) = s + u + w, and
Eq. (5) simplifies into the following:

af̃N,m = uf̃N,m+1 + wf̃N,m−1. (6)

This equation can be easily solved by assuming that the gen-
eral form of the solution is f̃N,m = Axm with unknown pa-
rameters A and x to be found from the substitution of this
ansatz into Eq. (6). It leads to a very compact formula,

f̃N,m(s) = xm
1 − xm

2

xN
1 − xN

2

, (7)

where

x1 = a + √
a2 − 4uw

2u
, x2 = a − √

a2 − 4uw

2u
. (8)

For a special case of w = 0 one can show that x1 = s+u
u

and
x2 = 0, yielding

f̃N,m(s) =
(

u

s + u

)N−m

, (9)
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which can be easily inverted to obtain the expected first-
passage distribution function

fN,m(t) = uN−mtN−m−1e−ut

(N − m − 1)!
. (10)

The advantage of using Laplace transforms is that all dy-
namic properties at all times can be calculated explicitly. For
example, the overall probability to reach the state N, known
as a splitting probability,16, 17 is given by

�N,m =
∫ ∞

0
fN,m(t)dt = f̃N,m(s = 0). (11)

The conditional mean first-passage time, which is measured
in experiments as a mean dwell time, is defined as

τN,m = τm(1)

�N,m

, with τm(1) = −df̃N,m(s)

ds
|s=0. (12)

Similar expressions can be obtained for any other dynamic
properties of the system.

For simple 1D networks with homogeneous transition
rates in one direction um = u and no backward transition
wm = 0, a simple expression for the first-passage distribution
function at early times can be obtained from Eq. (10),

ln fN,m(t) � (N − m − 1) ln t + C, (13)

where the exponential part in Eq. (10) is close to 1 and can be
neglected at t � 1 and C is a time-independent constant. This
is an important result since it shows a linear relation (on log-
log scale) between the first passage distribution and time, and
the slope gives the number of intermediate states between the
initial and final states. It suggests that dwell-time distributions
can be used as a tool for determining the network structure.

To prove this idea further, computer simulations have
been performed to model the homogeneous 1D network with
transition rates um = u = 5.0 s−1 and wm = 0. The first-
passage distributions are shown in Fig. 3(a) for all times and
in Fig. 3(b) at early times for different initial states 1 ≤ m
≤ 8 with final state N = 10. For the special case with m = 9,
the distribution gives an exponential decay as expected for
the absence of intermediate states. As shown in Fig. 3(a) the
analytical predictions from Eq. (10) [dashed lines] agree per-
fectly with the simulation results. The solid lines in Fig. 3(b)

(a) (b)

FIG. 3. First passage distributions for a homogeneous 1D network with only
forward transitions. The position of the initial state m is varied from 1 to
8 and the final state is N = 10. (a) First-passage distributions at all times.
(b) First-passage distributions at early times. Symbols correspond to com-
puter simulations. The dashed lines in (a) are given by the analytical expres-
sion from Eq. (10), while the solid lines in (b) are from linear fittings of the
simulation data. The slope for each curve in (b) is also indicated.

are given by linear fittings of simulation data at small times
and the slope of the line (on log-log scale) goes down as the
number of intermediate states between the initial and final
states decreases. The slopes are very close to expected val-
ues (N − m − 1), and rounding to the upper integer for each
slope gives the exact number of intermediate states. The rea-
son for a slightly smaller value of the slope for each curve
from the fittings is the effect of the exponential term that con-
tributes more to the distribution with increasing time. Expres-
sions similar to Eq. (10) have been proposed earlier for sim-
ple networks as in Fig. 2(a),25 where a perturbation theory
was applied with transitions from the probed states ignored
and only an approximate expression was obtained. Here, in
our work an exact expression for the first-passage distribu-
tion functions is derived without any assumptions, and more
general and realistic networks are discussed. The early tempo-
ral behavior of the distribution function can also be obtained
from the limiting s → ∞ behavior of corresponding Laplace
transform. Then, for the homogeneous case from Eq. (7) with
um = u �= 0, and wm = w �= 0, it can be shown that

f̃N,m(s) �
(

u

s + u + w

)N−m

, (14)

which corresponds to

fN,m(t) � uN−mtN−m−1e−(u+w)t

(N − m − 1)!
(15)

at early times. Again, the structural information of the net-
work for simple 1D networks with homogeneous transition
rate is contained in the power law dependence of the first-
passage distribution which can be obtained from a simple
analysis of distribution function at early times.

B. First-passage analysis of dwell-time distributions
for inhomogeneous one-dimensional networks

Our method can be used for arbitrary networks, and it will
be shown analytically by considering a general inhomoge-
neous 1D network system in Fig. 2(a). In this case, the back-
ward master equations in the Laplace presentation are given
by

amf̃N,m = umf̃N,m+1 + wmf̃N,m−1, (16)

a1f̃N,1 = u1f̃N,2, (17)

aN−1f̃N,N−1 = uN−1 + wN−1f̃N,N−2, (18)

where

am = s + um + wm. (19)

There are no known exact solutions for inhomogeneous 1D
networks, but stimulated by results for homogeneous systems,
we propose the following ansatz for Laplace transforms of the
distribution functions:

f̃N,m(s) =
∑m−1

K=0 αK (m)sK∑N−1
K=0 αK (N )sK

, (20)
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where αK(m) are unknown coefficients. It suggests that the
Laplace transforms of distribution functions can be viewed as
ratios of two polynomials with respect to the variable s. Sev-
eral examples to support this are provided in the Appendix. It
is important to note that the coefficients αK(m) can be deter-
mined self-consistently from Eq. (1) which allows us to de-
termine explicitly all dynamic properties of the system. Fur-
thermore, the limiting behavior of distribution functions (for
s → ∞ and s → 0) can be obtained knowing only few of co-
efficients αK(m), which significantly simplifies calculations.
For example, one can show (see the Appendix) that splitting
probabilities and mean dwell times to reach the final state N
are given by

�N,m = α0(m)

α0(N )
, τN,m = α1(N )

α0(N )
− α1(m)

α0(m)
. (21)

For 1D networks with inhomogeneous rates [see
Fig. 2(a)] the analysis yields a power law dependence of first-
passage distributions at early times (see the Appendix for
details),

fN,m(t) �
∏N−1

j=m uj

(N − m − 1)!
tN−m−1. (22)

This result fully agrees with the hypothesis, allowing to de-
termine the number of intermediate states. Note also, that the
prefactor in Eq. (22) contains the information on forward tran-
sition rates, and the exponent does not depend on transitions
rates. The relative values of transitions rates only specify the
range of the applicability of Eq. (22). To test the predictions
from Eq. (22) computer simulations have been performed.
The first-passage distributions are presented in Fig. 4(a) for
all times and in Fig. 4(b) at early times for different initial
states m and the final state N = 10. The transition rates wm

(a)

(c) (d)

(b)

FIG. 4. First passage distributions for inhomogeneous 1D networks. The ini-
tial state m is varied from 1 to 8, and the final state is N = 10. Set of random
rates is used for simulations. (a) and (b) Distributions for 1D inhomogeneous
network shown in Fig. 2(a). (c) and (d) Distributions for 1D network with
irreversible detachments as shown in Fig. 2(b). (a) and (c) First-passage dis-
tributions for all times. (b) and (d) First-passage distributions at early times.
Symbols correspond to computer simulations. The solid lines in (b) and
(d) are from linear fittings of the simulation data. The slope for each curve in
(b) and (d) is also indicated.

and um are randomly chosen. The solid lines in Fig. 4(b) come
from linear fittings of the simulations at small t. Again, a de-
crease of the slope of the distribution function with smaller
number of intermediate states is observed, as predicted by
Eq. (22). Rounding the fitted values of the slope to the upper
integer gives the number of intermediate states. The analysis
can also be extended to another limit when t → ∞, with the
first-passage distribution producing (see the Appendix)

fN,m(t) � �N,m

τN,m

exp(−t/τN,m). (23)

It shows how dynamic properties of networks can be obtained
from large-time behavior of dwell-time distributions. It is im-
portant to note that these properties are averaged over many
pathways connecting initial and final states so that the impor-
tant information on the networks can also be obtained in this
limit.

C. Effect of irreversible transitions

To show the applicability of our method for more realis-
tic systems consider a 1D network with irreversible detach-
ments as illustrated in Fig. 2(b). This situation corresponds to
fluorescence measurements of protein folding6 when photon
blinking phenomena can be viewed as irreversible dissocia-
tions from the network. Defining δm as an irreversible detach-
ment rate from the state m, we can write backward master
equations for evolution of first-passage probabilities fN, m(t) in
the following form:

∂fN,m(t)

∂t
= umfN,m+1(t) + wmfN,m−1(t)

− (um + wm + δm)fN,m(t), (24)

with corresponding boundary conditions given by Eq. (2), as
explained above.

We start first with a simple case of 1D networks with con-
stant irreversible detachments, i.e., all detachment rates are
equal δm = δ. The main difference of the networks with irre-
versible detachments in comparison with simple 1D networks
without detachments is the fact the probabilities fN, m(t) are not
conserved. This suggests the way to obtain analytic solutions
by mapping the model with detachments into the model with-
out detachments. It can be done by defining a first-passage
probability function for surviving particle that is a conserved
quantity,

FN,m(t) = fN,m(t)eδt . (25)

Substituting this into the backward master equations (24) we
obtain the equation for FN, m(t),

∂FN,m(t)

∂t
= umFN,m+1(t) + wmFN,m−1(t)

− (um + wm)FN,m(t), (26)

which is identical as Eq. (1) describing an inhomogeneous
system without detachments. The Laplace transforms of the
original and surviving first-passage probabilities are related
as

f̃N,m(s) = F̃N,m(s + δ). (27)
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Using this approach the model can be solved analytically and
all dynamic properties can be calculated. The asymptotic be-
havior of first-passage distribution function for t → 0 is given
by

fN,m(t) = FN,m(t)e−δt �
∏N−1

j=m uj

(N − m − 1)!
tN−m−1e−δt

�
∏N−1

j=m uj

(N − m − 1)!
tN−m−1, (28)

which is same as Eq. (22). Therefore, the early temporal be-
havior of the first-passage distributions is not modified by the
irreversible dissociation processes with a constant detachment
rate.

For a more general case with position dependent disso-
ciation rates it has been shown earlier by one of us that the
model with the irreversible detachments can be mapped into
the model without detachments by utilizing a matrix renor-
malization approach.29 Calculations indicate that the power
law dependence of first-passage distribution function similar
to Eq. (22) is again found at early times (see the Appendix
for details). This power law dependence is also supported
by computer simulations as indicated in Figs. 4(c) and 4(d).
These results for 1D networks with detachments clearly sup-
port our hypothesis that the number of intermediate states in
complex networks can be determined by analyzing dwell-time
distributions at t → 0.

D. Analysis of first-passage events for networks
with different topology

In order to demonstrate the application of the method
to more complex systems, two network models with differ-
ent topology, as presented in Figs. 2(c) and 2(d), are also
analyzed. One of the systems (Fig. 2(c)) has a set of states
that branches out of the main pathway, while another sys-
tem (Fig. 2(d)) has two parallel segments of states. For these
two cases analytical results cannot be obtained easily, so we
mainly focus on computer simulations. The first-passage dis-
tribution function for the 1D network with the branched states
are shown in Figs. 5(a) and 5(b) for different initial states.
The branch with two states is connected to the state m = 5 on
the main pathway. One could see that for 1 ≤ m ≤ 5 there
are several distinct pathways. However, distribution func-
tions again have a power law dependence at early times (see
Fig. 5(b)), and the slopes are given by the number of inter-
mediate states in the shortest pathway to the final destination.
The presence of the branched states does not affect the net-
work dynamics at early times, while the effect of the branch
can be seen on long-time behavior of distribution functions
(compare Figs. 4(a) and 5(a)).

For the network system with two parallel segments
(Fig. 2(d)) we assumed that the loop starts at the site
m = 3, and then two different cases of having 2 or 3 states
in the upper segment have been analyzed. First-passage dis-
tribution functions for initial states m = 2, 3, and 4 and the
final state N = 10 have been computed and presented in
Figs. 5(c) and 5(d). As for all considered networks, the power
law dependence of the distribution functions at early times

(a)

(c) (d)

(b)

FIG. 5. First passage distributions for network models with complex topol-
ogy. (a) and (b) First-passage distributions for a network with one branch as
shown in Fig. 2(c). (c) and (d) First-passage distributions for a network with
two parallel segments as shown in Fig. 2(d). (a) and (c) First-passage dis-
tributions in full time regime. (b) and (d) First-passage distributions at early
times. The distribution functions for different initial states with m = 1–5 and
the final state N = 10 are shown. For the network with two parallel segments
the distribution functions for initial states with m = 2–4 and the final state N
= 10 are shown. Symbols correspond to computer simulations. Set of random
rates is used for simulations. The solid lines in (b) and (d) are from linear fit-
tings of the simulation data. The slope for each curve in (b) and (d) is also
indicated.

is observed (see Fig. 5(d)), and the slopes yield the number
of intermediate states on the shortest pathway between ini-
tial and final states. The loop topology does not modify net-
work dynamics at short times, while the effect of the network
structure can only be seen at large times since in this case the
dwell-time distributions are obtained by averaging over of all
possible pathways between initial and final states. These re-
sults for both networks with complex geometry again support
the hypothesis.

E. Application of the method for studying motor
protein dynamics

It is important to test our method by analyzing real pro-
cesses, and two motor protein systems26, 27 have been chosen
as examples. Myong et al.26 have investigated the DNA un-
winding by virus NS3 helicase using single-molecule fluores-
cence analysis. Discrete steps of 3 base pairs (bp) have been
observed and the corresponding dwell time histograms were
also obtained with a rising phase at the beginning followed by
a phase with decay. These observations indicate that a 3-bp
transition is not the elementary step during the DNA unwind-
ing. The distributions at the rising phase are shown in Fig. 6
(as demonstrated by circles and triangles). They can be fitted
by linear curves (on log-log scale) as indicated in Fig. 6, sup-
porting the power law dependence at early times. Our method
predicts that the slopes of these curves give the number of
intermediate states in the shortest pathway. The obtained val-
ues, 1.89 and 1.49, indicate the existence of two more hidden
biochemical states during the unwinding of DNA. Then one
concludes that the 3-bp transition is very likely composed of
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FIG. 6. Dwell time distributions for myosin-V’s 74-nm steps (squares) from
Ref. 27 and for steps in DNA unwinding by helicase NS3 (circles and trian-
gles for different lengths of DNA) from Ref. 26 at early times. The lines are
linear fits of experimental observations on log-log scale. The slopes for each
curve are also indicated in the figure.

three elementary steps, and it is tempting to assign each step
with a 1 bp length. However, one has to be careful here since
this analysis only provides the number of intermediate states
and not their spatial positions. Myong et al.26 has proposed a
similar mechanism of DNA unwinding by helicase with 1 bp
per step but their analysis is based on a less realistic model
that assumes irreversible equal-rate transitions. In contrast,
our method is model independent.

A second example is related to studies of myosin-V
molecules. Myosin-V are dimeric motor proteins that walk
along actin filaments with a step size of 37 nm.28 Two alter-
native stepping models have been proposed.27 In the “inch-
worm” mechanism the advancement of one motor head is
followed by the motion of the second one. In the “hand-over-
hand” mechanism each motor head makes a 74 nm step in the
alternating fashion. The dynamics of myosin-V has been stud-
ied by attaching a single fluorescent label to different parts of
the protein molecule.27 For a dye close to one motor head,
the two different stepping mechanisms either give uniform
37 nm steps for the “inchworm” model or alternating 74 nm
and 0 nm steps for the “hand-over-hand” model. Experiments
have found only 74 nm steps and a dwell time distribution
for these steps was also obtained, producing a rising phase
at the beginning followed by a phase with decay. The distri-
butions measured in Ref. 27 at the rising phase is shown as
open squares in Fig. 6. Again, the distributions were fitted by
a linear curve (on log-log scale) with a slope of ≈0.82, as
shown by the solid line in Fig. 6. The slope value is close
to 1, indicating the existence of one more intermediate state
corresponding to the motion of the other motor protein head
that is not fluorescently labeled under the “hand-over-hand”
mechanisms.

III. DISCUSSION

A new theoretical approach to predict the structural and
dynamic properties of complex chemical and biological net-
works via first-passage analysis of data on distributions of
events is developed. It is based on the hypothesis that the
first-passage distributions of events are fully specified by lo-
cal topology and dynamics of underlying networks. Exact an-
alytical calculations and Monte Carlo simulations are per-
formed for several networks. A power law dependence of
first-passage distribution at early times is found in all cases,

and the corresponding exponent reflects the number of inter-
mediate states in the shortest pathway between the initial and
final states. At large times our approach predicts that distri-
butions decay exponentially as a function of time with pa-
rameters that depend on the probability and the mean dwell
time to reach the final state. The microscopic origin of the
method can be explained using the following arguments. In
the network at early times only the fastest events are recorded
and they proceed via the shortest link between initial and fi-
nal states. Thus the first-passage distribution at early times
corresponds to trajectories along the shortest path in terms
of the number of intermediate states. In contrast, the dynam-
ics of reaching the final state at large times is averaged out
over many pathways connecting two states. Using this ap-
proach, our analysis of short-time arrival dynamics from dis-
tribution functions indicates the existence of two intermedi-
ate biochemical states for each DNA unwinding step by NS3
helicase and one intermediate state for stepping of myosin-
V molecules, supporting the “hand-over-hand” stepping
mechanisms.

In principle, our approach is capable to determine full
structural and dynamic information of networks if experi-
mental information on distributions of events is available.
To obtain the full structure many events with varying ini-
tial and final states must be analyzed. However, in the ap-
plication of the method there are still questions. In this work
mostly the information on short-time dynamics of distribu-
tion functions has been utilized. We argued that the behavior
of distribution functions at large times provides the informa-
tion on mean dwell times and probabilities to reach the fi-
nal state. However it is not clear how to obtain explicit in-
formation from these average properties. In addition, more
theoretical studies are needed to clarify how distribution of
events depends on the underlying topology of the network.
Despite these issues, it seems that the presented method might
be a powerful tool for uncovering mechanisms of complex
processes.

Recently, a new method to investigate similar prob-
lems, which is based on information theory approach, was
proposed.30 However, this method was only employed for
very simple networks described by multi-exponential dwell
time distributions and only in the limit of large times. Fur-
thermore, only approximate values for the number of hidden
states could be obtained. In contrast, our method is much sim-
pler and it provides an exact number of hidden states from
early times.
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APPENDIX: DETAILED THEORETICAL
CALCULATIONS

This appendix consists of several parts with detailed
derivations of the equations and relations used in the main
text.
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1. Inhomogeneous 1D networks

The backward master equations for a general inhomoge-
neous 1D network model presented in Fig. 2(a) in the Laplace
presentation are given by Eqs. (16)–(18) in the main text. In
order to solve these equations we suggest the following ansatz
for Laplace transform of distribution function as explained in
the main text:

f̃N,m(s) =
∑m−1

K=0 αK (m)sK∑N−1
K=0 αK (N )sK

, (A1)

where αK(m) are some unknown coefficients. Equation (A1)
satisfies boundary conditions for m = N. It suggests that the
Laplace transforms of distribution functions can be viewed as
ratios of two polynomials with respect to the variable s. For
example, for the simplest case N = 2 and m = 1 it can be
shown that

f̃2,1(s) = u1

s + u1 + w1
, (A2)

which agrees with the ansatz [see Eq. (A1)]. Inverting this
expression yields the corresponding first-passage distribution
function,

f2,1(t) = u1 exp[−(u1 + w1)t]. (A3)

Also for the case N = 3 with m = 1 or m = 2 one can find

f̃3,1(s) = u1u2

s2 + s(u1 + u2 + w1 + w2) + u1u2 + w1u2 + w1w2
,

(A4)

and

f̃3,2(s) = u2s + u1u2 + w1u2

s2 + s(u1 + u2 + w1 + w2) + u1u2 + w1u2 + w1w2
,

(A5)

which also agree with the ansatz [see Eq. (A1)]. These expres-
sions can also be inverted analytically.

The coefficients αk(m) are determined self-consistently
from backward master equations, which provides a direct way
to obtain explicitly all dynamic properties of the system. For a
general case with m = 1, the expression for Eq. (A1) is given
by

f̃N,1(s) = α0(1)∑N−1
K=0 αK (N )sK

. (A6)

Then, combining this relation with Eq. (17) in the main text
we obtain

α0(1)(s + u1 + w1) = u1(α0(2) + α1(2)s). (A7)

It can be proved for general conditions that α0(1) = 1, which
simplifies many calculations. Specifically, from Eq. (A7) we
derive

α1(2) = 1/u1, α0(2) = u1 + w1

u1
. (A8)

Similarly, for a general m, one can obtain the following ex-
pressions:

α0(m) =
⎛
⎝1 +

m−1∑
K=1

K∏
j=1

wj

uj

⎞
⎠ , (A9)

αm−1(m) =
m−1∏
j=1

1

uj

. (A10)

Using Eqs. (16) and (A1) and considering only terms propor-
tional to s leads to

α0(m) + α1(m)(um + wm) = umα1(m + 1) + wmα1(m − 1).
(A11)

Let us define a new auxiliary function,

�(1)
m = α1(m + 1) − α1(m), (A12)

then it can be shown that

α0(m) = um�(1)
m − wm�

(1)
m−1, (A13)

where α0(m) are known from Eq. (A9). The general solution
of Eq. (A13) is given by

�(1)
m =

m∑
K=1

⎛
⎝α0(K)

uK

m∏
j=K+1

wj

uj

⎞
⎠ , (A14)

which leads to

α1(m) =
m−1∑
l=1

�
(1)
l =

m−1∑
l=1

⎡
⎣ l∑

K=1

⎛
⎝α0(K)

uK

l∏
j=K+1

wj

uj

⎞
⎠

⎤
⎦.

(A15)

Similarly, from Eqs. (16) and (A1), considering the coef-
ficients for the terms proportional to sK, one finds

αK−1(m) + αK (m)(um + wm)

= umαK (m + 1) + wmαK (m − 1). (A16)

Using the same procedure as above, the expression for the
coefficient αK(m) can be written as

αK (m) =
m−1∑
i=K

⎡
⎣ i∑

l=K

⎛
⎝αK−1(l)

ul

i∏
j=l+1

wj

uj

⎞
⎠

⎤
⎦ . (A17)

This result is important since it indicates that the coefficient
αK(m) can be determined from αK − 1(m). Therefore, all co-
efficients αK(m) can be calculated iteratively because we al-
ready determined the expressions for α0(m). Then the Laplace
transform f̃N,m(s) of distribution function can be derived from
Eq. (A1) and the distribution function can be obtained from
the inverse Laplace transforms. In fact, to calculate many dy-
namic properties, we do not need to know all coefficients
αK(m). For example, the splitting probability �N, m is simply
given by

�N,m = f̃N,m(s = 0) = α0(m)

α0(N )
=

1 + ∑m−1
K=1

∏K
j=1

wj

uj

1 + ∑N−1
K=1

∏K
j=1

wj

uj

,

(A18)

which agrees with known expressions in the literature.16 For
1D networks with homogeneous transition rates wm = w and
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um = m, the splitting probability can be written in the simpler
form,

�N,m = f̃N,m(s = 0) = 1 − γ m

1 − γ N
, (A19)

where γ = u
w

.
From Eq. (12) the general expression for the mean first-

passage time to exit at the site N is given by

τm(1) =
∫ ∞

0
tfN,m(t)dt = −df̃N,m(s)

ds
|s=0

= α0(m)α1(N ) − α1(m)α0(N )

α0(N )2
. (A20)

And for the conditional mean first-passage time we obtain

τN,m = τm(1)

�N,m

= α1(N )

α0(N )
− α1(m)

α0(m)
. (A21)

For the special case with wj = 0 from Eq. (A9) one can show
that all coefficients α0(m) are given by

α0(m) = α0(1) = 1. (A22)

From Eq. (A18) the splitting probability is given by �N, m

= 1. The coefficient α1(m) can be then written as

α1(m) =
m−1∑
i=1

1

ui

, (A23)

which gives the conditional mean first-passage time τN, m,

τN,m = α1(N ) − α1(m) =
N−1∑
i=m

1

ui

. (A24)

Let us consider another special case with w1 = 0 that cor-
responds to a reflecting boundary condition. It can be shown
that in this case the coefficient α0(m) is equal to

α0(m) = 1, (A25)

for all m. And the coefficient α1(m) is given by

α1(m) =
m−1∑
K=1

�
(1)
K , (A26)

with

�
(1)
K =

K∑
i=1

⎛
⎝ 1

ui

K∏
j=i+1

wj

uj

⎞
⎠ . (A27)

Therefore, the conditional mean first-passage time τN, m can
be written as

τN,m =
N−1∑
K=m

⎛
⎝ K∑

i=1

1

ui

K∏
j=i+1

wj

uj

⎞
⎠ . (A28)

From simple 1D networks with inhomogeneous transi-
tion rates, it is useful to consider the asymptotics for f̃N,m(s).

For s → ∞, which corresponds to t � 1, we have

f̃N,m(s) � αm−1(m)

αN−1(N )
sm−N =

∏m−1
j=1

1
uj∏N−1

j=1
1
uj

1

sN−m

=
N−1∏
j=m

uj

1

sN−m
, (A29)

where Eq. (A10) was used to obtain the final expression
above. Then, the first-passage distribution function at small
t → 0 is given by

fN,m(t) �
∏N−1

j=m uj

(N − m − 1)!
tN−m−1, (A30)

which is Eq. (22) in the main text. Again, we obtained a power
law dependence of the first-passage distribution at early times.
For another limit with s → 0 or t → ∞, we find

f̃N,m(s) � α0(m) + α1(m)s

α0(N ) + α1(N )s
� α0(m)

α0(N )

1

1 +
[

α1(N)
α0(N) − α1(m)

α0(m)

]
s
,

(A31)

which leads to the first-passage distribution function for
t → ∞ as

fN,m(t) � �N,m

τN,m

e
− t

τN,m , (A32)

where �N, m and τN, m are given by Eqs. (A18) and (A21),
respectively. The equation above corresponds to Eq. (23) in
the main text.

2. Effect of irreversible transitions

For 1D networks with irreversible detachments from the
main pathway, as illustrated in Fig. 2(b), the general back-
ward master equations for evolution of first-passage proba-
bilities of reaching the state N for the first time at time t
starting from the state m at t = 0 are given by Eq. (24) in
the main text. For a general inhomogeneous case of 1D net-
works with dissociations, it has been shown earlier that the
model with irreversible detachments can be mapped into the
model without detachments by utilizing a matrix renormal-
ization approach.29 We can define a first-passage probability
function FN, m(t) as

FN,m(t) = fN,m(t)eλt+γm, (A33)

where λ and γ m will be fixed so that FN, m(t) satisfies the
“renormalized,” backward master equations

∂FN,m(t)

∂t
= ũmFN,m+1(t) + w̃mFN,m−1(t)

− (ũm + w̃m)FN,m(t), (A34)

with properly “renormalized” rates ũm and w̃m. By substitut-
ing Eq. (A33) in Eq. (24) one can obtain

∂FN,m(t)

∂t
= umeγm−γm+1FN,m+1(t)

+ wmeγm−γm−1FN,m−1(t)

− (um + wm + δm − λ)FN,m(t). (A35)
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Comparing the corresponding terms in Eqs. (A34) and (A35),
we derive the following expressions:

ũm = umψm+1/ψm,

w̃m = wmψm−1/ψm, (A36)

−wmψm−1 + (um + wm + δm)ψm − umψm+1 = λψm,

where ψm = exp (−γ m). The expression for λ and ψm can
be determined by solving the eigenvalue equation Mψ = λ

ψ , where M is a N × N matrix and ψ is the column vector
[ψm]. Similarly, the asymptotic behavior of first-passage dis-
tribution function for t → 0 is given by

fN,m(t) = FN,m(t)e−λtψm �
∏N−1

j=m uj

(N − m − 1)!
ψNtN−m−1,

(A37)

which also shows a power law dependence at small t.
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