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Complex Markov models are widely used and powerful predictive tools to analyze stochastic bio-
chemical processes. However, when the network of states is unknown, it is necessary to extract
information from the data to partially build the network and estimate the values of the rates. The
short-time behavior of the first-passage time distributions between two states in linear chains has
been shown recently to behave as a power of time with an exponent equal to the number of in-
termediate states. For a general Markov model we derive the complete Taylor expansion of the
first-passage time distribution between two arbitrary states. By combining algebraic methods and
graph theory approaches it is shown that the first term of the Taylor expansion is determined by
the shortest path from the initial state to the final state. When this path is unique, we prove that
the coefficient of the first term can be written in terms of the product of the transition rates along
the path. It is argued that the application of our results to first-return times may be used to esti-
mate the dependence of rates on external parameters in experimentally measured time distributions.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863997]

I. INTRODUCTION

Many processes in stochastic chemical kinetics are mod-
eled in terms of Markov chains, i.e., by chemical transitions
on a network of discrete states representing the biochemi-
cal states of a complex process.1 Prominent examples are
given by enzymatic reactions leading to the movement of mo-
tor proteins2–4 or properties of single molecule reactions on
complex substrates.5–7 This is especially important for under-
standing dynamics of biological molecular motors since there
are many problems associated with the determination of the
time distributions until certain states have been reached by
the process. These problems are closely connected with first-
passage events and their distributions can be obtained in terms
of absorption times. Application of this technique to analy-
sis of kinesin mechanical steps8, 9 and to general bimolecular
chemical reactions10 have revealed deep mechanistic details
into the nature of these systems, which usually escape our at-
tention when only mean values are considered.

Despite the tremendous advances8, 11, 12 in the application
of theoretical methods to compute first-passage times, there
is a much harder problem that concerns the reconstruction
of the network of states from the experimental knowledge of
the time distributions. A first step towards the solution of this
problem was taken recently when it was shown that on lin-
ear (or 1D) networks of states the early temporal behavior
of the probability density behaves like a polynomial with the
exponent equal to the number of intermediate states between
the initial and the absorbing state.13 Thus, under the assump-
tion of a linear network of states, it would be sufficient to fit
the probability function of the first passage time between two

a)Electronic mail: angelo.valleriani@mpikg.mpg.de

experimentally accessible states to determine the number of
intermediate states.

However, the assumption of a linear network of states is
rather restrictive and the question arises as to whether this re-
sult remains valid also for more complex networks. It has been
suggested and numerically supported that similar relations ex-
ist for general network systems.13 In this paper, we address
this problem analytically for any type of network without any
restriction on the rates, by solving the forward Master equa-
tion in terms of phase-type distributions.14 Being the expo-
nential of the infinitesimal generator of the Markov chain, the
phase type distribution allows us to explicitly write the entire
Taylor series of the first-passage time probability density and
thus to identify both the power of the first term and its coeffi-
cient, which are expressed in terms of the product of rates. It
is found that the coefficients of the expansion are associated
to walks and paths on the network of states. The first term of
the expansion corresponds to the shortest path from the initial
to the chosen absorbing state.

II. RESULTS

There is one important observation, which will be used
throughout this manuscript, that the first-passage times can
be very efficiently computed as absorption times. For the pur-
pose of simplifying calculations, the network of states that we
consider is modified in such a way that the state to be visited
becomes an absorbing state of the process. While this trick
does not change anything on the nature of the first-passage
times it allows us to use a set of very powerful tools aimed at
computing the absorption times. The first part of this section,
therefore, is devoted to the derivation of the full Taylor series
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of the absorption time probability density into one specific ab-
sorbing state. The applications of the general result to some
typical cases arising in the modeling of stochastic biochemi-
cal processes is presented in the second part.

A. Absorption time for a process starting in i
and absorbing in one of several absorbing states

We consider a Markov chain X(t) on the state space
σ ≡ σ 0∪σ A, composed of a subset σ 0 = {0, 1, . . . , n − 1}
of transient states, and a subset σ A = {n, n + 1, . . . , N} of
absorbing states. The infinitesimal generator of the process is
a block matrix

Q =
(

S0 SA

0a×n 0a×a

)
, (1)

where a = N − n + 1 is the number of absorbing states, the
off-diagonal elements of the n × n matrix S0 are the transition
rates between the transient states, and the n × a matrix SA

contains the transition rates from the transient to the absorbing
states. Therefore, the element (i, k) of the matrix Q, denoted
as qik, governs the infinitesimal transitions

Pr{X(t + τ ) = k | X(t) = i} = qikτ + o(τ ), (2)

for τ infinitesimal. The diagonal elements of Q are negative
or zero and are fixed to satisfy the usual summation property∑

k∈σ qik = 0 for any i.
Hereafter, we consider processes that start in the state i,

i.e., X(0) = i, and we look for the probabilities

Pik(t) = Pr{X(t) = k | X(0) = i}, (3)

for any i, k ∈ σ , by solving the corresponding forward Master
equation:

d �P
dt

= �P · Q. (4)

This equation is supplemented with the initial condition that
�P (0) is a row vector of length N + 1 defined on σ with all

zeros except at the element corresponding to the state i. In
terms of phase-type distributions,9, 10, 14 the general solution
of the Master equation is thus given by

�P (t) = �P (0)
∞∑

�=1

t�

�!
Q� ≡ �P (0) exp(Qt). (5)

It can be split into the solution for the transient states σ 0 and
the solution for the absorbing states σ A due to the block form
of the infinitesimal generator Q.

Together with the initial condition X(0) = i ∈ σ 0 we con-
sider an absorbing state j ∈ σ A (see Fig. 1 for an illustration).
The probability Pij(t) to find the process in the absorbing state
j at time t is given by the corresponding component of the
solution vector computed in Eq. (5). By exploiting the block
form of the matrix Q in Eq. (5), we obtain

Pij (t) = �ei

[
S−1

0 (exp(S0t) − 1d)SA

]�e�
j , (6)

where �ei is a n-dimensional row unit vector defined on σ 0

with all zeros except at element i, whereas �e�
j is a column

unit vector defined in σ A with all zeros except at the element

FIG. 1. A generic network with absorbing states. The green vertices repre-
sent absorbing states. The arrows pointing towards them from the transient
states indicate that these transitions are irreversible. The initial state, in red,
is one of the transient states, which are otherwise yellow. The transitions be-
tween the transient states are bi-directional. In this network there are several
paths from the state i to the state j, but one path that has only one interme-
diate state is the shortest one. According to our theory, therefore, here the
short-time behavior of the probability density function of the absorption time
is linear.

corresponding to state j. The matrix 1d is a n × n unit matrix
(all zeros except in the diagonal, where it has all ones).

1. Exact full Taylor series of the absorption time

The limit for t → ∞ of Pij(t) gives the probability uij

that a process starting in i is absorbed in j. By taking the limit
t → ∞ of the matrix in the square brackets of (6), one obtains
the matrix

U = −(S0)−1SA, (7)

of all absorption probabilities from any transient state to any
absorbing state. Therefore, we obtain

uij = lim
t→∞ Pij (t) = �eiU�e�

j , (8)

as the element of the matrix U corresponding to the absorption
probability from the transient state i to the absorbing state j.
This indicates that the probability of absorption in j must be
taken properly into account, in order to define the probability
density ρ ij of the random time Tij that the process starting in
i is conditioned to be absorbed in j. It can be shown8 that the
probability density must be normalized by the probability of
absorption uij given in (8), namely,

ρij (t) = 1

uij

�ei[exp(S0t)SA]�e�
j , (9)

where we recall that �ei is a n-dimensional row vector, �e�
j is

a column vector of length equal to the rank of σ A with a one
corresponding to the state j, S0 is a n × n matrix, and SA is
a n × a dimensional matrix. In addition, we obtain also the
average absorption time from i to j as

E[Tij ] = − 1

uij

�ei[(S0)−1U]�e�
j , (10)



064101-3 Valleriani, Li, and Kolomeisky J. Chem. Phys. 140, 064101 (2014)

which is a simple result based only on the matrix algebra not
requiring any integration.

The Taylor series of ρ ij(t) is given by expanding Eq. (9)
as

ρij (t) = 1

uij

∞∑
m=0

tm

m!
�ei

[
Sm

0 · SA

]�e�
j , (11)

where the explicit form of the generic terms is

ρij (t) = qij

uij

+ t

uij

n−1∑
k1=0

qik1qk1j + . . .

+ t�

uij �!

n−1∑
k1=0

· · ·
n−1∑
k�=0

qik1qk1k2 · · · qk�j + . . . . (12)

In this equation, the terms have a graph theoretical interpreta-
tion, which is an extremely valuable observation. It is impor-
tant to stress that the expression (12) shows that each coeffi-
cient of the Taylor series can be written explicitly as a sum of
the products of the transition rates.

2. Graph theoretical interpretation of the coefficients
in the Taylor series

The graph G associated with the Markov chain X has the
states σ of the process as vertices. The elements aik of the
adjacency matrix A are defined as

aik =
{

1 if qik 	= 0

0 otherwise
, (13)

for any i, k ∈ σ . We will say that the vertex k is a neighbor
of the vertex i if there is a directed edge that connects i to k,
namely, if aik = 1. Herewith we do not impose any restriction
on the neighborhood relationship, but it must be noticed that
by the definition of the absorbing state if j ∈ σ A then ajk = 0
for any k ∈ σ . Therefore, the vertices associated to states in
σ A have only incoming edges. A walk on G starting in i and
ending in j is an alternating sequence of edges and vertices,
where the same vertex and the same edge may be visited once
or more times. On the network G, a walk can contain self-
loops as well. A path from i to j is instead a special walk
without loops where each state visited on the path is visited
only one time.

The generic term of the expansion (12),

qik1qk1k2 · · · qk�j , (14)

for k1, . . . , k� ∈ σ 0 is different from zero only if each term
in the product is different from zero. If (14) is different from
zero, then there exists a walk made of � + 1 steps from state
i to state j through the states k1, . . . , k�. If instead the generic
term (14) is zero, it means that at least one of the rates in
the product is zero. In this case, that precise walk through the
states k1, . . . , k� does not exist. In summary, each single term
in each of the coefficients of the expansion (12) corresponds
to a walk on the state space. In particular, the generic term
(14) describes a walk through � states, which may include
cycles and self loops and is directly associated to the power �

of the Taylor series. As a consequence, the coefficient of each
�th power of the Taylor series is the sum of all contributions
from walks through exactly � states, some of which possibly
visited more than one time.

3. The shortest path contributes to the coefficient
of the first term in the Taylor expansion

If the process X could transit directly from state i to state
j, i.e., if qij > 0, then the states i and j would be directly con-
nected, i.e., aij = 1, and the first contribution to the Taylor
series (12) of ρ ij would be the zero order term. If the states
i and j are not directly connected, i.e., aij = 0, the zeroth-
order term is absent and the first order term might give the
first contribution. The first-order term in the expansion of ρ ij

will contribute only if the state j is a neighbor of at least one
state k that is a neighbor of state i, i.e., if there is at least one
state k directly connected to state j and which can be reached
from state i in one step. If there is no such intermediate state,
the first-order term will be zero as well.

By direct inspection of the expansion (12) we notice that
the first contribution to the Taylor series of ρ ij must come
from a path and in particular it will be the shortest path that
connects the state i with the state j. If the shortest path con-
sists of m + 1 steps, it involves m intermediate states and
contributes with the power tm to the Taylor expansion. If the
shortest path is unique, the coefficient of the mth term gives
the product of the rates along this path divided by the absorp-
tion probability uij, as in (12), thus indicating that at short
times we have the asymptotic behavior

ρij (t) ∼
(

qik1qk1k2 · · · qkmj

uij

)
tm

m!
+ . . . , (15)

by neglecting higher order terms for small t.
If the shortest path is not unique, the coefficient is a sum

of the product of the rates along several distinct paths, which
may share some sub-paths. If the term tm is the first contri-
bution to the Taylor series of ρ ij then all other higher order
terms t�, for � > m, do also contribute. Notice that apart from
the absorption probability uij, the first term as in (15) is the
product of the forward transition rates along the path from i
to j. This result is very general, because it holds regardless of
the values of the backward rates.

To illustrate that Eq. (15) describes the short-time behav-
ior of the probability density of the absorption time correctly,
a generic network with three absorbing states as shown in
Fig. 2 is discussed as a simple example. Different numbers
of intermediate states are chosen for the shortest pathway of
reaching the absorbing states j0, j1, and j2 starting from the
initial state i which are 0, 1, and 2, respectively. We sim-
ply choose 0.5/s for the forward rates from the initial state
to the absorbing states and 0.1/s for the backward rates. The
probability densities of the absorption time for these three ab-
sorbing states can be calculated exactly from Eq. (9) which
are shown in Fig. 3 as solid lines. The probabilities uij of ab-
sorption are equal to 0.486829, 0.402722, and 0.110449, for
the absorbing states j0, j1, and j2, respectively. According to
Eq. (15), the asymptotic behavior at short times for the proba-
bility densities of the three absorption times will be described
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FIG. 2. A generic network with three absorbing states. The number of inter-
mediate states from initial state i to absorbing states j0, j1, and j2 for the short-
est pathway is 0, 1, and 2, respectively. According to our theory, therefore,
the leading term of the probability density function of the absorption time is
constant, linear, and quadratic for these three cases at short time scales.

by expressions 0.5/uij0 , 0.25t/uij1 , and 0.125t2/(2uij2 ), re-
spectively, shown as dotted lines in Fig. 3. The dotted and
solid lines agree perfectly with each other for the three cases
thus indicating that Eq. (15) correctly predicts the asymptotic
behavior of the probability density of the absorption time.

B. First-passage and first-return times

In Sec. II A we have derived the general theory concern-
ing the absorption times. In this section we argue instead that
the technique with absorbing states is useful to compute sev-
eral important properties such as the distributions of the first
passage times and of the first-return times. The starting point
here is a Markov chain Y without absorbing states, which has

FIG. 3. The probability density functions of the absorption time for the three
absorbing states as shown in Fig. 2. The probability density at short times
is shown in the main figure and the full probability density is indicated in
the inset. The solid lines are from exact analytical solutions described by
Eq. (9) and the dotted lines are just given by the leading term of the prob-
ability density functions as described by Eq. (15). The blue, red, and green
curves correspond to the absorbing states j0, j1, and j2, respectively.

a regular behavior including a well-defined steady state. Let
Q be the infinitesimal generator of Y and let σ 0 = {0, 1, . . . ,
n − 1} be the state space of the process. All processes consid-
ered here will start from the initial state i ∈ σ 0. Furthermore,
in our derivations we will make no restrictions on the tran-
sition rates. In particular, we will in general assume that all
transitions are reversible.

1. First passage time to j �= i

Let j 	= i be another state for which we would like to know
the distribution of the first passage time starting from i.

To study this problem, we enlarge the state space of the
process by adding one absorbing state j′ and by redirecting all
rates intended to j towards j′, instead. An illustration of this
procedure is shown in Fig. 4. This defines a new Markov chain
X, whose infinitesimal generator Q′ has the same form as (1)
with σ A = {j′} and a = 1. The probability density fij(t) of
the first passage time is thus given by the probability density
ρij ′ of the absorption time in j′ starting from i. Given that q ′

kj ′

= qkj and using the results obtained above we therefore have

fij (t) = qij + t

n−1∑
k1=0

qik1qk1j + . . .

+ t�

�!

n−1∑
k1=0

· · ·
n−1∑
k�=0

qik1qk1k2 · · · qk�j + . . . , (16)

which is almost identical to (12) with the difference that the
probability of absorption in j′ is one. If the shortest path from
i to j′ is unique and has length m, then the first term of the
expansion of fij is given by

fij (t) ∼ (qik1qk1k2 · · · qkmj )
tm

m!
+ . . . , (17)

by neglecting higher order terms for small t. Thus, it indicates
that the first coefficient is strictly proportional to the product
of the intermediate rates.

FIG. 4. A network transformation to compute the first-passage times as ab-
sorption times. In panel (a) we have a regular network of states without the
absorbing states. To compute the distribution of the first-passage times from
i to j, the incoming transitions into the state j are redirected towards a new
state j′, thus leading to the network in panel (b). The first-passage time from
i to j on the network (a) has the same distribution as the absorption time from
i to j′ in the network (b).
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FIG. 5. A network transformation to compute the first-passage times as ab-
sorption times by considering only trajectories that are not allowed to return
to the initial state i. In panel (a) we have a regular network of states with-
out absorbing states. To compute the distribution of the first-passage time in
j excluding i, one needs to exclude all trajectories returning to i. To do this,
the incoming transitions into state j are redirected towards a new state j′ and
the incoming transitions into i are redirected towards an additional absorbing
state i′, thus leading to the network in panel (b). The condition that the pro-
cess should not return to i is taken into account by computing the probability
that the process is absorbed in j′. This restriction changes the weight of all
terms in the sum, which needs to be divided by the absorption probability
in j′.

2. First passage time to j without returns to i

One could notice that the expansion (16) includes all
terms that start in i and finish in j′. So it includes also those
walks on the network of states which visit state i once or more
times before arriving at the state j′. Although these walks are
not involved in the shortest path from i to j′, their weight in
the normalization has an influence on the coefficient of the
first term (17) of the expansion.

To consider only those realizations of the process that
visit state j′ before returning to state i, we need to proceed as
follows. We create a second absorbing state i′ towards which
we redirect all transitions that are originally directed towards
state i and we consider a process X with two absorbing states
σ A = {j′, i′}, with initial condition in i (see Fig. 5 for an illus-
tration). At this point, the first-passage time in j conditioned
that the process is not allowed to return to i has a probability
density function fij\i with a simple application of Eq. (12),

fij\i = qij

uij ′
+ t

uij ′

n−1∑
k1=0

qik1qk1j + . . .

+ t�

uij ′�!

n−1∑
k1=0

· · ·
n−1∑
k�=0

qik1qk1k2 · · · qk�j + . . . , (18)

where all intermediate states are different from i, i.e., k� 	= i,
and uij ′ is the absorption probability in j′, which is the same
as the probability to visit the state j before returning to the
state i.

3. First-return times in i

We consider here again the condition discussed at the be-
ginning of Sec. II B for the Markov chain Y without absorbing
states with the infinitesimal generator Q on the state space σ 0

FIG. 6. A network transformation to compute the first-return times as ab-
sorption times. Starting from a generic network in panel (a), the incoming
transitions into state i are redirected towards a new state i′, which becomes
a new absorbing state. This leads to the network in panel (b). All processes
starting in i will eventually be absorbed in i′. The first-return time has the
same distribution as the absorption time from i to i′. From this example it is
also clear that the first contribution to the Taylor series of the return times is
given by paths of length two, through the neighbors of the state i. Therefore,
in physically relevant conditions the short-time behavior of the return-time
probability density is linear.

= {0, 1, . . . , n − 1}. We let i ∈ σ 0 be the initial condition
of the process and we are interested in the computation of the
probability density of the first-return times in i. This is ac-
complished by considering the arguments from Sec. II B by
setting j = i. The absorbing state i′ receives the edges that are
otherwise directed towards i (see Fig. 6 for the illustration).
Therefore, the first-return time probability density ri is equal
to the absorption time probability density ρii ′ according to
Eq. (12) by setting uii ′ = 1 and qki ′ = qki .

Under the physically relevant assumption that there are
no irreversible transitions, however, the first term of the ex-
pansion of ri is certainly linear. Indeed, a transition back to i
from any neighbor of i must be possible. This gives the first
term of the expansion

ri(t) ∼
(∑

k

qikqki

)
t + . . . , (19)

where non-zero contributions to the sum come exclusively
from those states that are neighbors of i. If the state i is ac-
cessible experimentally under a variety of external conditions,
the short-time behavior of the return time probability density
may reveal important dependencies of the rates on the varying
parameters.

III. SUMMARY AND CONCLUSIONS

It is shown that for a general Markov chain the distribu-
tion of the first-passage times from a state i to any other state
j can be computed as the distribution of absorption times after
a suitable modification of the state space. We therefore fo-
cused our attention on the absorption time distribution from
an initial state to a chosen absorbing state in the presence
of other absorbing states. There, by using exact methods, we
have been able to analytically compute the complete Taylor
series of the absorption time distribution. It has been found
that each coefficient of the series can be written explicitly as
a sum of the products of the transition rates.
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By employing graph theory methods, we also determined
that each term in the coefficients of the expansion corresponds
to a walk that includes cycles and self-loops in the state space.
This allowed us to show that the number of states visited dur-
ing each walk corresponds exactly to the power of the cor-
responding term of the Taylor series. Furthermore, it was ar-
gued that the first term of the Taylor series must correspond to
a specific path. In particular, since the first term of the Taylor
series corresponds to the smallest power of the series, the co-
efficient corresponds to the shortest path on the network be-
tween the initial and the absorbing state. If the shortest path is
unique, we have shown that the coefficient of the first term of
the Taylor series can be written in terms of the product of the
rates along this path. In addition, it was found that this general
framework can be easily adapted to several other situations. It
includes the first-passage time from a recurrent to another re-
current state, with or without visiting the initial state, and the
return time to any given experimentally accessible state.

It is important to note that our results are independent on
the network’s topology. We believe that the explicit expres-
sion of the coefficients in terms of the rates could be practi-
cally used to selectively determine the functional dependency
of the rates on the external parameters from the experimental
data. In this respect, a particularly useful result concerns the
return time to a fixed initial condition. In this case, indeed,
there is always only one intermediate state and the short-
time expansion of the probability density must be linear so
that the only unknown is the coefficient. It will be very valu-
able if these theoretical predictions could be tested in single-
molecule experimental measurements for complex biochem-
ical systems. From the practical point of view, however, the
determination of the number of states along the shortest path
may require highly resolved data at small times.
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