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Analysis of complex networks has been widely used as a powerful tool for investigating various
physical, chemical, and biological processes. To understand the emergent properties of these com-
plex systems, one of the most basic issues is to determine the structure and topology of the underlying
networks. Recently, a new theoretical approach based on first-passage analysis has been developed
for investigating the relationship between structure and dynamic properties for network systems with
exponential dwell time distributions. However, many real phenomena involve transitions with non-
exponential waiting times. We extend the first-passage method to uncover the structure of distinct
pathways in complex networks with non-exponential dwell time distributions. It is found that the
analysis of early time dynamics provides explicit information on the length of the pathways associ-
ated to their dynamic properties. It reveals a universal relationship that we have condensed in one
general equation, which relates the number of intermediate states on the shortest path to the early
time behavior of the first-passage distributions. Our theoretical predictions are confirmed by exten-
sive Monte Carlo simulations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4874113]

I. INTRODUCTION

Complex networks consisting of discrete states con-
nected by dynamic transitions have been successfully
applied for investigating many physical, chemical, and bio-
logical processes.1–5 Since the functioning of these complex
systems is strongly influenced by their structures, the most
important step in theoretical analysis is to determine the topol-
ogy of underlying networks. Despite recent strong advances
in understanding the dynamical and structural properties of
complex chemical and biological networks,6–14 revealing the
hidden structures of networks and their relations to dynamics
remains a challenging task. One of the main reasons for this
is a relatively small number of theoretical methods that can be
employed.

Significant experimental progress in measuring dynamic
properties of various chemical and biological processes has
been reported. For many complex systems specific events be-
tween two arbitrary states can be measured with high tem-
poral resolution.15, 16 Although the underlying structural in-
formation is contained in those experimental measurements,
it is very difficult to extract it and to determine the unique
mechanism of the process. It was realized that the analy-
sis of distributions of such events is connected with a first-
passage problem,19–21 which is a powerful method success-
fully applied to many stochastic chemical and biological
problems.17, 18 Other theoretical methods for uncovering net-
work structures, including hidden Markov models22, 23 and the
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absorbing boundary method,24 have been developed recently.
However, their practical application is limited to small net-
works and systems where one has prior knowledge of some
details of the network structure.

Recently, a new theoretical approach to determine the re-
lationship between structural and dynamic properties of com-
plex networks has been developed based on the first-passage
idea.25, 26 At early time, the probability density of the first-
passage time between two states on a linear network has been
found to follow a power law behavior.25 It was proposed that
similar relationships hold for general complex networks, and
it was supported by Monte Carlo computer simulations. Later,
the conjecture was proved to be correct for the network of
any topology by deriving the Taylor series of first-passage
time probability density using graph theory methods.26 It was
found that the smallest number of intermediate states be-
tween two arbitrary states of the network is given by the
corresponding exponent of the power law function. By ap-
plying this theoretical method for several motor protein sys-
tems, it was argued that it might be especially useful for ana-
lyzing single-molecule experiments in various chemical and
biological systems.25 However, this approach explicitly as-
sumed that all dynamic transitions between states are Poisso-
nian, i.e., the corresponding dwell times on each single state
are exponential. However, there is a large number of natu-
ral and industrial processes that involve non-exponential wait-
ing times.27–30 For example, coupling of mechanical degrees
of freedom with chemical processes in motor proteins might
lead to non-exponential waiting time distributions.28 More
generally, when a given state has an internal structure, for
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instance, a smaller sub-network of states, we should expect
non-exponential dwell time distributions and violations of the
Markov property. Since this is a more general case than sys-
tems modeled by Markov chains, it is important to extend the
first-passage approach for investigating these more complex
systems.

In this article, we study the coupling between struc-
ture and dynamic properties of complex networks with non-
exponential dwell time distributions for each transition. We
have found a universal identity that connects dynamic infor-
mation, which can be obtained from experimental measure-
ments, with the number of states along the selected path as a
first step to unveil the complete structure of the complex net-
work. It is shown that this general result reduces to previously
found relations25, 26 for exponential dwell times. Our theoret-
ical predictions are supported by Monte Carlo computer sim-
ulations for several networks with different topology.

II. RESULTS

A. Laplace transforms of the first-passage
distribution functions

We consider a general network composed of a series of
discrete states k which form the state space of the network σ .
We identify the state i ∈ σ as the initial state and the state
j ∈ σ as the final state for which we would like to know the
distribution fij(t) of the first-passage times when starting from
the state i. We associate to each state k ∈ σ a set of tran-
sition probabilities 0 ≤ Pk� ≤ 1 to reach any of the states
� ∈ σ in the state space of the network in one step. The nor-
malization condition

∑
� ∈ σ Pk� = 1 must hold for these transi-

tion probabilities and Pkk = 0. The matrix P whose elements
are the Pk� is thus the embedded Markov chain in discrete
time.

We now assign to each state k a general dwell time prob-
ability density φk(t) in the following form:

φk(t) = Ck (t/t0)α exp (−ak(t/t0)γk ) , (1)

where Ck has a dimension of inverse time (s−1) and is fixed by
the normalization. The parameters ak, γ k are both larger than
zero and can depend on the state k. We initially restrict our
analysis to the case where the parameter α is the same for all
states of the network and satisfies α > −1. In the following,
we assume that t0 = 1 s. For γ k = 1 and α = 0 we recover the
exponential waiting times from previous studies.25, 26 Equa-
tion (10) is, in essence, a mathematical generalization of the
Gamma distribution, which can be obtained by setting γ k =
1. We have allowed for the possibility to take γ k �= 1 in or-
der to have the most general dwell time distribution that we
are able to treat mathematically with the method described in
this work. Apart from the Gamma distribution, which arises
naturally in many stochastic natural phenomena or as the con-
volution of several exponential dwell times, other choices for
the value of γ k > 0 do not have an obvious physical or chem-
ical origin.

Now consider a first-passage time from the initial state
i to the final state j for general networks as shown in Fig. 1.
Since we are using the more general dwell time distributions

FIG. 1. A schematic view of a general network. The nodes represent indi-
vidual states of the system and the arrows describe reversible transitions be-
tween states. The red vertex i is the initial state and the green vertexes jk
(k = 0, 1, 2, 3) correspond to the final states investigated in this work. Other
states are shown in blue. There are many different paths between the initial
and any final state in this network, but the shortest path is always unique for
this scheme.

(1), we cannot use the approach based on the chemical Master
equation to derive the first passage time. Let τ ij be the random
number that gives the first-passage time from the state i to the
state j, and tik1 be the time from i to any of its nearest neigh-
bors k1. With the assumptions given above, the time to reach
any of the neighbors is independent of the neighbor and is dis-
tributed according to (1). We will thus put tik1 = ti . We also
define τk1j as the first-passage time from each of the neighbors
of i to the final state j. These times are related by

τij = ti + τk1j , (2)

if k1 is the first state visited by the process after leaving the
state i. In terms of the Laplace transforms from Eq. (2) we
obtain

Fij (s) = Di(s)Fk1j (s) , (3)

under the condition that k1 is the first visited state. Here we
have defined Fij (s) = ∫ ∞

0 e−stfij (t)dt . Each neighbor k1 of
the state i can be visited with the corresponding probability
Pik1 after leaving state i. Therefore, the final Laplace trans-
forms of the first-passage time from i to j is given by

Fij (s) =
∑
〈k1i〉

Di(s)Pik1Fk1j (s), (4)

where Di(s) is the Laplace transform of the dwell time distri-
bution density at state i defined as,

Di(s) =
∫ ∞

0
e−stφi(t)dt . (5)
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Note that the notation
∑

〈k1i〉 means a sum over all k1 that are
neighbors of the state i, i.e., they can be reached from the state
i in a single transition.

In Eq. (2) we split the random time to go from the state i
to the state j as the time to reach one of the first neighbors of
the state i plus the first-passage time to reach the state j from
this neighboring state. In terms of Laplace transforms it is
expressed as the product of the respective functions as given
in Eq. (3). Since the first-passage time from any k1 to j can
also be split into a dwell time to be in k1 and the first-passage
time to one of its neighbors, one can extend the expansion in
Eq. (4) into sums of products,

Fij (s) =
∑
〈k1i〉

· · ·
∑

〈k�k�−1〉
Di(s)Dk1 (s) · · ·Dk�−1 (s)

×Pik1Pk1k2 · · · Pk�−1k�
Fk�j (s), (6)

where � can be arbitrarily large and
∑

〈kbka〉 means a sum over
all kb that are neighbors of the state ka.

B. The universal identity for the shortest path

We assume that the shortest path from the state i to the
state j is unique in the network and it has exactly m intermedi-
ate states. Notice that the sums in Eq. (6) stop whenever they
reach the final state j. Thus, as � → ∞, Eq. (6) will be split
into an infinite sum of generic terms like

Gn(s) = Pik1Pk1k2 · · · PknjDi(s)Dk1 (s) · · · Dkn
(s), (7)

where k1, k2, . . ., kn are the state members of an arbitrary ran-
dom walk from the state i to state j and n is the length of the
walk. The dwell time distribution densities φk(t) from Eq. (1)
have the following asymptotic behavior at early times t → 0:

φk(t) ∼ Ckt
α + o(tα), (8)

where the second term goes to zero faster than the first term.
Recall that early times correspond to large Laplace variables
(s → ∞). Therefore, the Laplace transforms Dk(s) of the φk(t)
for all states k ∈ σ at large s can be written as

Dk(s) ∼ Bks
−(α+1) + o(s−(α+1)), (9)

where Bk is some constant. Then, the Laplace transform Gn(s)
in Eq. (7) is simply given by

Gn(s) ∼ Bns
−(n+1)(α+1) + o(s−(n+1)(α+1)) (10)

for large s with Bn being another constant. Thus, under the
assumption that there exists a unique shortest path with m in-
termediate states between the state i and the state j, this path
gives a contribution similar to Eq. (10). One can see that,
apart from a multiplicative constant, the expression of (10) for
n = m necessarily dominates the expansion in Eq. (4) at large s
since m is the smallest possible value that n can take. It yields
the asymptotic result,

Fij (s) ∼ Bms−(m+1)(α+1) + o(s−(m+1)(α+1)) (11)

in the limit of s → ∞. Other paths with larger number of in-
termediate states have contributions of smaller order of mag-
nitude. Then, by inverting the Laplace transform, the asymp-

totic behavior of the probability density fij(t) at early times
can be obtained as

fij (t) ∼ Amt (m+1)(α+1)−1 , (12)

where Am is a constant. It suggests that the first-passage time
probability function fij(t) at early times has a power-law de-
pendence (∼tβ), which is similar to results derived in previous
studies with exponential waiting times.25, 26 The correspond-
ing exponent β satisfies the equation

β = (m + 1)(α + 1) − 1 . (13)

Note that this exponent does not depend on the parameter γ k

and it reproduces the known identity β = m for continuous
time Markov chains, i.e., if α = 0.25, 26 One important con-
sequence of Eq. (13) is that for any given β, derived for in-
stance after fitting experimental data, the number of interme-
diate states m and the parameter α cannot be chosen arbitrarily
and independently from each other. Therefore, Eq. (13) de-
livers a strong constraint that couples the structural properties
along the pathway and the dynamical properties at the level of
the individual dwell times. As a side remark, using the gen-
eral expansion given in Eq. (6) it is easy to see how Eq. (13)
can be generalized when the parameter α does depend on the
state k. Using the same method that relates early times to large
s we indeed obtain

β = (αi + 1) + (αk1 + 1) + · · · + (αkm
+ 1) − 1 , (14)

where αi is the parameter α associated to the initial state i and
αk�

is the parameter α associated to the state k�.

C. Numerical test with Monte Carlo simulations

To test our theoretical prediction, Eq. (13), we performed
a series of computer simulations, analyzing complex networks
presented in Fig. 1. Many distinct paths with varied numbers
of intermediate states exist between the initial state and any
of the final states in the system. For the four final states jk
with k = 0, 1, 2, 3 considered in the network, the numbers of
intermediate states m for the shortest paths starting from the
initial state i are given by 0, 1, 2, and 3, respectively. Equation
(13) suggests that the relationship between α, β, and m does
not depend on other parameters such as ak, γ k which appear in
Eq. (1). Therefore, we simply set ak = γ k = 1. We fix, instead,
the parameter α in Eq. (1) to take one of the two possible
values, α = 0.5 and α = 1, as examples. Each state in the
network shown in Fig. 1 is labeled by a number starting from
1 to 11.

Since we want to compare our results both in the case of
exponential (Markov) and non-exponential dwell times, we
first proceed by creating a continuous time Markov chain by
assigning transition rates between connected states. We as-
sume that the transition rate from the state k to the state �

rk� = 0.5 s−1 for k < � and rk� = 0.1 s−1 if k > �. The transi-
tion probabilities from the state k to one of its neighbors � is
given by

Pk� = rk�∑
〈nk〉 rkn

, (15)
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FIG. 2. First-passage time probability densities for the network shown in
Fig. 1 with the parameter α = 0.5. The initial state i is the red vertex i and
the final states are green vertexes labeled from j0 to j3 as given in Fig. 1. The
main figure shows the probability densities at early times and the inset gives
the probability densities over all times. The data from computer simulations
are presented by different symbols for various final states. The solid lines
correspond to the linear fits of the simulation results. The number m of inter-
mediate states for the shortest path between the initial and final states and the
slope for each curve are also indicated.

where the notation
∑

〈nk〉 means a sum over all n that are
neighbors of the state k. The probability matrix (15) defines
our embedded discrete time chain introduced in Sec. II A. No-
tice that the continuous time chain thus created corresponds
to the case of α = 0 and γ k = 1, but with varying parameters
ak depending on the transition rates from the state k to their
neighbors.

To proceed to the non-exponential dwell times, we in-
stead consider the embedded chain (15) and define the dwell
times according to the distribution (1). We first consider the
case when α = 0.5 for the dwell time distribution at each
state of the network. The first-passage time probability densi-
ties starting from the initial state i to the final state jk with k
= 0, 1, 2, 3 are presented in Fig. 2. The early time behavior of
the probability densities is shown in the main figure on log-
log scale, while the inset gives the full time picture. The solid
lines in Fig. 2 correspond to linear fits of the logarithm of the
simulation results at early times, i.e., before the distribution
reaches its maximum value (hereafter we will refer to the lin-
ear fit of the logarithm of the distribution simply as linear fit).
The slopes of these solid lines approximate the values of β

as expressed in Eq. (13). The number m of the intermediate
states for the shortest path between the initial state i and final
state jk with k = 0, 1, 2, 3 is also indicated in Fig. 2. From
Eq. (13) with α = 0.5 we expect that the corresponding value
for β is equal to 0.5, 2, 3.5, 5 with m varied from 0, 1, 2 to
3, respectively. The slopes obtained from the linear fit of the
early times in Fig. 2 are close to the expected values calcu-
lated from Eq. (13). Similarly as was observed before,25 the
slopes are slightly smaller than the expected values of β as
given by Eq. (13). However, as discussed below, we notice
that the slopes approach the expected values as the time span
used for fitting is reduced. One can see that the number of in-
termediate states for the shortest path between the initial and
the final states can be derived from the slope of first-passage

FIG. 3. First-passage time probability densities for the network shown in
Fig. 1 with the parameter α = 1. The initial state and the final states are same
as discussed in Fig. 2. The main figure shows the probability densities at early
times and the inset gives the probability densities at all times. The data from
computer simulations are presented by different symbols for various final
states. The solid lines correspond to linear fittings of the simulation results.
The number m of intermediate states for the shortest path between the initial
and final states and also the slope for each curve are also indicated.

time densities at early times. As shown in Fig. 2, the slope in-
creases with the number of intermediate states, in agreement
with the prediction of Eq. (13).

To test further predictions from Eq. (13) we calculated
the first-passage probability densities using α = 1 for the net-
works shown in Fig. 1. As presented in Fig. 3, the slope for
the solid lines from linear fit increases with the number of
intermediate states for the shortest path between the initial
and final states, fully supporting our theoretical predictions.
Compared with Fig. 2, we can also find that the corresponding
slopes with the same number m of intermediate states become
larger as the value of α increased from 0.5 to 1, which is again
consistent with Eq. (13). The expected values for β are equal
to 1, 3, 5, and 7 for α = 1 when the number m of interme-
diate states on the shortest path between the initial and final
states takes the values 0, 1, 2, and 3, respectively. One can see
that the slopes obtained from linear fits (Fig. 3) are close to
the expected values. For a fixed value of α we can also deter-
mine the number of intermediate states on the shortest path
between any two states on a complex network from the early
time behavior. For α = 1, a slope between 0 and 1 means m
= 0, i.e., there are no intermediate states in the shortest path
between the two states. A slope between 1 and 3 means there
is one intermediate state, i.e., m = 1. These arguments can be
extended to any number of intermediate states (see Fig. 3).

For the network in Fig. 1 we analyzed the case
with exponential dwell time distributions, as was discussed
previously,25, 26 and obtained the corresponding first-passage
time probability densities from the initial state i to final states
jk. The results are presented in Fig. 4. In this case, where
α = 0, Eq. (13) reduces into a simple form, β = m, as was
found in previous studies.25, 26 Following the procedure de-
scribed above, one can obtain the number of intermediate
states for the shortest path directly from the early time be-
havior of the first-passage time probabilities (see Fig. 4). The
probability density is an exponentially decaying function of
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FIG. 4. First-passage time probability densities for the network shown in
Fig. 1 with exponential dwell time distribution at each state corresponding to
the case with α = 0. The initial state and the final states are same as discussed
in Fig. 2. The main figure shows the probability densities at early times and
the inset gives the probability densities at all times. The data from computer
simulations are presented by different symbols for various final states. The
solid lines correspond to linear fittings of simulation results. The dotted line
describes the slope equal to zero for m = 0. The number m of intermediate
states for the shortest path between the initial and final states and also the
slope for each curve are also indicated.

time if the final state is one of the neighbors of the initial
state, and the corresponding slope has a value close to zero
(Fig. 4). As the number of the intermediate states becomes
larger, a rising phase followed by a decaying phase appears
in the probability density function, as demonstrated in Fig. 4.
We also find that the slope of the fitting curves is very close
to the expected value of β for each case as discussed above.
The number m of intermediate states can even be obtained di-
rectly by rounding to the upper integer of the slope for each
linear fitting curve, as indicated in Fig. 4. The same results
were found previously.25 However, the number m of the inter-
mediate states between two states of a complex network with
general dwell time distributions cannot be read out directly

FIG. 6. The slope from the linear fit of first-passage time probability densi-
ties as a function of the time range used for the fitting. The red dots are the
slopes from Fig. 5. The purple arrow points to the expected value of β as
calculated from Eq. (13).

from these fittings, but one can still easily obtain them using
Eq. (13) as discussed above.

Analyzing first-passage distribution functions for various
sets of parameters, one can notice that slopes obtained by lin-
ear fitting of the first-passage distributions at early times are
always smaller than suggested by Eq. (13). It is found that pre-
dictions from Eq. (13) are getting more accurate with decreas-
ing the time interval utilized for fitting. It is not surprising
since our theoretical conclusions were obtained in the limit of
t → 0. To illustrate this, let us consider the network shown
in Fig. 1 with the initial state i, the final state j1, and the pa-
rameter α = 1. Different slopes obtained by linear fittings of
first-passage probability functions for varying time intervals
are given in Fig. 5. As we reduce the time range the corre-
sponding slope values increase monotonically. In order to see
this trend clearly these slopes are also presented in Fig. 6. For
this case there is 1 intermediate state (m = 1) and Eq. (13)

(a) (b) (c)

(d) (e) (f)

FIG. 5. First-passage time probability densities for the network shown in Fig. 1 with the initial state i, the final state j1, and the parameter α = 1 at early times.
The data from computer simulations are presented by red open circles. The blue solid lines correspond to linear fittings of the simulation results. We considered
different time ranges for linear fittings of the probability densities. The simulation data shown are same in all figures but the time range used for the linear fitting
is reduced from (a) to (f), and the value of the slope from each fitting is also indicated.
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predicts the slope should be equal to 3. The fitted slope val-
ues approach this number fast as the size of the time segment
decreases, supporting our theoretical arguments.

III. DISCUSSION AND CONCLUSIONS

We investigated the relationship between topology and
dynamic properties of general networks via theoretical analy-
sis of first-passage probability distribution functions for var-
ious transition events. In contrast to previous studies25, 26

where simple exponential dwell time distributions were as-
sumed, more general dwell time probabilities were used in
this work. Using analytical calculations based on asymptotic
analysis of Laplace transforms it is shown that there is a uni-
versal behavior of the first-passage distribution functions at
early times. It is specified by a power-law temporal depen-
dence of the probability functions for events starting and fin-
ishing at different sites of the network. We found that the ex-
ponent of the power-law is directly related to the number of
intermediate states on the shortest path connecting the initial
and the final states. For purely exponential waiting times this
exponent simply reduces to the number of intermediate states,
as was already shown before.25, 26 In general case, the expo-
nent depends on details of transition dynamics at each site.
Furthermore, our analysis suggests that the universal behavior
of first-passage probability function is observed if the power-
law component of waiting time distributions is the same for
all states on the network.

The physical mechanism of this universal behavior can
be easily explained using the following arguments. At early
times, only trajectories that follow the shortest path between
the specified start and end states can be observed since the
system should pause at each intermediate state. This argu-
ment is more precise the shorter the time for observations, and
the arrival dynamics should reflect the number of intermedi-
ate states. Even for very fast transitions, i.e., for very short
dwell times at some sites, there is a time when this univer-
sal behavior should be observed. In other words, this dynamic
picture is independent of the absolute values of the average
dwell times at each state.25, 26 The reversibility of individual
transitions and therefore the probability that one path is taken
instead of another also does not play any role at this level of
analysis.

Our theoretical ideas were tested in extensive Monte
Carlo simulations for various networks with different param-
eters to describe the non-exponential waiting times. In all
cases it was found that analytical predictions correctly de-
scribe first-passage arrival dynamics at early times. The analy-
sis also shows that the agreement with theoretical calculations
is asymptotic in time: decreasing the time segment for extract-
ing the universal exponents leads to convergence to predicted
values. It supports the universal nature of presented theoreti-
cal results, and it also provides a direct method for connecting

structural and dynamic properties for any network. The most
significant outcome of this study is the development of an ex-
plicit theoretical framework for analyzing complex physical,
chemical, and biological processes in order to extract relevant
microscopic information. It will be critically important to test
our theoretical predictions in real experimental systems.
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