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Selectivity is one of the most fundamental concepts in natural sciences, and it is also critically
important in various technological, industrial, and medical applications. Although there are many
experimental methods that allow to separate molecules, frequently they are expensive and not
efficient. Recently, a new method of separation of chemical mixtures based on utilization of channels
and nanopores has been proposed and successfully tested in several systems. However, mechanisms
of selectivity in the molecular transport during the translocation are still not well understood. Here, we
develop a simple theoretical approach to explain the origin of selectivity in molecular fluxes through
channels. Our method utilizes discrete-state stochastic models that take into account all relevant
chemical transitions and can be solved analytically. More specifically, we analyze channels with
one and two binding sites employed for separating mixtures of two types of molecules. The effects
of the symmetry and the strength of the molecular-pore interactions are examined. It is found that
for one-site binding channels, the differences in the strength of interactions for two species drive the
separation. At the same time, in more realistic two-site systems, the symmetry of interaction potential
becomes also important. The most efficient separation is predicted when the specific binding site is
located near the entrance to the nanopore. In addition, the selectivity is higher for large entrance
rates into the channel. It is also found that the molecular transport is more selective for repulsive
interactions than for attractive interactions. The physical-chemical origin of the observed phenomena
is discussed. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906234]

I. INTRODUCTION

Our understanding of complex processes in chemistry,
physics, and biology to a large degree depends on the
ability to study individual components of the systems. This
requires separation processes, which rely on fundamental
concept of selectivity that controls how mixtures of different
species can be separated based on specific chemical and
physical properties of constituent molecules.1 In addition,
separation is one of the most important technological steps
in major industrial processes, and it is also relevant for
food production and for medicine. Currently, there are
many experimental techniques for separations, including
chromatography, electrophoresis, distillation, precipitation,
and many others.2 However, in many situations, the majority of
them are inefficient, expensive, and unpredictable, especially
for mixtures of molecules with very similar chemical
properties, or they might even damage the molecules
undergoing separation.2 These observations stimulated a
search for new experimental approaches and for better
understanding selectivity mechanisms. Transport through
channels and pores has been recently proposed as a method
for separating molecular mixtures. Several artificial molecular
pore systems, which behave similarly to biological channels,
have been developed and successfully tested.4–9 The main
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idea of this method is to mimic biological systems where very
efficient, fast, and robust separations are achieved on a large
scale in many cellular systems.3 However, the theoretical
picture of selectivity mechanisms during the molecular
transport through nanopores remains unclear. Moreover, we
do not understand how biological channels achieve highly
efficient separation of molecular mixtures.

Molecular transport through channels is a complex
process that involves various physical and chemical inter-
actions between different types of molecules as well as
interactions with pores, solvent molecules, and applied
external fields. It was investigated theoretically employing
various methods.10–18 In continuum models,11,12,17 the
molecular translocation through the channel is viewed as
a one-dimensional diffusion in the effective potential created
by a complex network of intermolecular and molecular/pore
interactions. Interactions are typically modeled as square-well
potentials that occupy the whole volume of the channel, and
in most cases, uniform coarse-grained potentials are utilized.
These simplifications allow to obtain quantitative results for
channel-facilitated molecular transport. A different approach
is based on discrete-state stochastic models in which the
transport dynamics is analyzed as a set of chemical transitions
between specific binding sites in the pore.13,14,16 Mapping
these chemical-kinetic models to a single particle one-
dimensional motion along the periodic lattices provides a full
dynamic description of the permeation through the pore.13,14
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Both continuum and discrete-state stochastic methods are
closely related to each other.12 However, it could be argued
that the discrete-state stochastic models probably are more
convenient for investigating channel-facilitated molecular
transport, because the input parameters in these models
are chemical rates that can be independently measured in
experiments. For the continuum models, the overall effective
potentials cannot be obtained so easily from the experiments.
These potentials must be approximated or calculated using
full atomistic simulations, which currently cannot be done
with a high precision.14

Surprisingly, there are only few theoretical studies that
aim to understand the selectivity mechanisms in the molecular
translocation through pores.16,17 Furthermore, the results
obtained in these studies seem to be controversial. Reference
16 argues that the transport of particles that are strongly
trapped in the channel is enhanced by the presence of the
weakly trapped competing molecules. Similarly, Bauer and
Nadler17 suggest that in the mixtures of molecules that can
attractively bind to the pore and inert molecules, the transport
of binding species is increased by adding inert molecules
to the system. These conclusions are hard to understand.
Imagine the situation of very strong attractive interactions for
one type of molecules. In this case, the molecules interacting
with the channel will be trapped for a long time inside,
and varying the amount of the competing molecules will
have no effect on dynamics of the system. This discussion
suggests that we need a better theoretical analysis of the
molecular separation in channel-facilitated transport. In this
work, we develop a simple discrete-state stochastic method
for analyzing mechanisms of selectivity during the molecular
transport through the nanopores. Several theoretical models
are solved exactly, providing a full dynamic description of
the separation processes and clarifying the physical-chemical
foundations of the selectivity mechanisms.

II. THEORETICAL METHOD

To analyze molecular separations during the transport
through channels, we consider a system presented in Fig. 1. A
mixture of molecules A with a concentration cA and molecules
B with a concentration cB is moving through a single channel
from the left chamber to the right chamber, see Fig. 1(a). Our
idea is to view the molecular translocation as an effectively
one-dimensional motion along the discrete lattice of binding

sites (Fig. 1(b)). There are N binding sites and they correspond
to spatial positions inside the channel where molecules reside
longer due to stronger interactions with the pore. The molecule
A (B) can enter into the channel with the rate u0 = kA

oncA
(α0= kB

oncB), as shown in Fig. 1(b). Inside the nanopore, the
molecule A at the binding site j ( j = 1, 2, . . ., N) can move
forward to the neighboring site j+1 with the rate u j, while the
backward transition to the site j −1 is taking place with the
rate w j. Similarly, the transition rates for the molecule B from
the site j are given by the rates α j and β j, respectively, see
Fig. 1(b). Every binding site cannot be occupied by more than
one particle. To simplify our calculations, we also assume that
the concentrations of molecules in the right chamber are zero
so that there are no fluxes into the channel from the right,
leading to w0= β0= 0. It corresponds to the situation when the
molecules that already translocated are immediately removed
from the system, while the molecular concentrations before
the channel are kept constant at all times. Note also that our
analysis can be extended for the case when there are finite
concentrations of molecules A and B in the right chamber.

To quantify the molecular separation in the nanopore
transport, we introduce a new function S that we call a
selectivity parameter,

S =
JA
JB
cA
cB

, (1)

where JA and JB are exit currents from the channel for
molecules A and B, respectively. The physical meaning
of this parameter is that it gives a relative change in the
concentration of exiting molecules in comparison with a
composition of the mixture that enters the nanopore. For
S = 1, there is no separation since the chemical composition
of the molecular mixture at the pore exit is the same as
in the bulk. S > 1 indicates that the mixture exiting the
channel is rich in component A. Similarly, S < 1 indicates that
molecules B are moving preferentially through the pore, and
the mixture that exit the channel is richer in the compound
B. The selectivity parameter S is a very convenient measure
of separation from the experimental point of view because
molecular concentrations before and after the nanopore can
be easily measured.

A discrete-state stochastic approach provides an explicit
framework for evaluating all dynamic properties for molecules
translocating through the channel.13,14 The most important

FIG. 1. (a) A schematic view of a molecular transport of
a mixture of A (red) and B (green) molecules through
a single channel. Particles move from the left chamber
to the right chamber. (b) A corresponding discrete-state
stochastic model with N binding sites. A dashed box
indicates the channel boundaries. Red and green curves
describe the free-energy profiles for translocating A and
B molecules, respectively.
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quantity in this analysis is a probability Pi
j(t) of finding the

molecule i (i = A or B) at the binding site j ( j = 1, 2, . . . ,N) at
time t. Its temporal evolution is controlled by a set of master
equations, which can be written for the case of no A− A,
A−B, and B−B interactions (including the exclusions) as

dPA
j (t)

dt
= u j−1PA

j−1(t)+w j+1PA
j+1(t)− (u j+w j)PA

j (t), (2)

for molecules A, and

dPB
j (t)

dt
= α j−1PB

j−1(t)+ β j+1PB
j+1(t)− (α j+ β j)PB

j (t), (3)

for molecules B. In addition, the function

P0(t)≡ PN+1(t)= 1−
N
j=1


PA
j (t)+PB

j (t)


(4)

describes a probability to find the nanopore completely
empty at time t. It is important to note that for realistic
molecular transport with interactions, the expressions are
much more complicated. Explicit details of calculations for
specific channels are given below.

To investigate the effect of interactions between molecules
and channels, we assume that one of the binding sites (say the
site k) is different from others. At this site, the molecule A
(B) interacts with the nanopore with energy ϵ A (ϵB) stronger
than at other binding sites. The case of positive ϵ i (i = A or B)
corresponds to attraction, while for ϵ i < 0, the channel repels
more the molecule A or B at this location. The transition rates
into and out of the specific site differ from other binding sites
because they must obey the detailed balance conditions.13,14

It leads to
u′
k−1

w ′
k

=
uk−1

wk
xA,

u′
k

w ′
k+1
=

uk

wk+1

1
xA

, (5)

for the molecule A, where

xA= exp(βϵ A). (6)

Here, the transition rates uk−1, uk, wk, and wk+1 describe the
uniform channel without specific interactions (ϵ A = ϵB = 0),
while u′

k−1, u′
k
, w ′

k
, and w ′

k+1 are real transition rates for ϵ A, 0
and ϵB , 0. To describe dynamics of the system, we need
explicit expressions for all rates and it can be shown that13,14

u′k−1= uk−1xθA, u′k = ukxθ−1
A , w ′k = wkxθ−1

A ,

w ′k+1= wk+1xθA,
(7)

where the parameter 0 ≤ θ ≤ 1 describes the change in
transitions rates due to the interaction energy ϵ A. It has a
physical meaning of the relative distance to a transition state
for each chemical process.13,14 Generally, the parameter θ
might depend on the interaction energies, but to simplify
calculations, we assume that it is a constant.

Similar analysis can be done for the molecules B. The
detailed balance condition at the specific site reads as

α′
k−1

β′
k

=
αk−1

βk
xB,

α′
k

β′
k+1
=

αk

βk+1

1
xB

, (8)

with

xB = exp(βϵB). (9)

The transition rates into and out of the specific site for
molecules B are given by

α′k−1= αk−1xθB, α′k = αkxθ−1
B , β′k = βkxθ−1

B ,

β′k+1= βk+1xθB.
(10)

Here, for simplicity, we assume that the coefficient θ is the
same for both molecules A and B. Our calculations can
be expanded to account for different parameters θ. But the
physical picture of the separation most probably does not
depend on this, and we choose the simplest case in order
explain better the selectivity mechanisms.

In the discrete-state models for the transport in the channel
with N binding sites, the number of different molecular
configurations is 3N because each site can be found in one
of three possible states: it can be occupied by the molecule
A, molecule B, or it can be empty. It is difficult to solve
this problem for arbitrary N . However, we can obtain exact
analytical solutions for small N = 1 and N = 2. It allows us to
understand better molecular separation in the nanopores.

A. Channels with one binding site

We start our theoretical analysis by considering the
simplest model with only one binding site in the channel, i.e.,
with N = 1. There are three possible states in the system. We
define probabilities to find the pore occupied by the molecule
A, by the molecule B, or to be empty at time t as PA(t), PB(t),
or P0(t), respectively. The corresponding kinetic scheme for
the system is shown in Fig. 2. To simplify calculations, let
us assume that the entrance rate constants for both types of
molecules are the same, kA

on= kB
on≡ kon. It corresponds to the

situation when these molecules are similar in their chemical
nature. This means that there is a certain type of similarity that
gives comparable entrance rates but different interactions with
the channel. In addition, we take uk = wk = αk = βk ≡ u, which
means that the transition rates inside the uniform channels

FIG. 2. A discrete-state stochastic model for a transport of a molecular
mixture across a channel with one binding site. (a) An effective free-energy
landscape for translocation of molecules A. (b) An effective free-energy
landscape for translocation of molecules B. (c) A kinetic scheme for the
model. Boxes describe different states of the channel, while arrows show
possible transitions between states.
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(when ϵ A = ϵB = 0) in both directions are the same for both
molecules A and B. Then, the specific values of transition
rates in this model are given by

u′0= koncAxθA, u′1= uxθ−1
A , w ′1= uxθ−1

A (11)

and

α′0= koncBxθB, α′1= uxθ−1
B , β′1= uxθ−1

B . (12)

Since the channel might be found in one of three different
configurations, its dynamics is governed by a set of three
master equations,

dP0(t)
dt
= (u′1+w ′1)PA(t)+ (α′1+ β′1)PB(t)− (u′0+α′0)P0(t),

(13)

dPA(t)
dt

= u′0P0(t)− (u′1+w ′1)PA(t), (14)

dPB(t)
dt

= α′0P0(t)− (α′1+ β′1)PB(t). (15)

This set of equations obeys the normalization condition
PA(t)+ PB(t)+ P0(t) = 1 at all times. We are interested in
the stationary-state properties of the system when dPi(t)

dt
= 0

for i = A, B, or 0. Then, these master equations can be solved
to produce the steady-state probabilities of different channel
configurations,

P0 =
(u′1+w ′1)(α′1+ β′1)

(u′1+w ′1)(α′1+ β′1)+u′0(α′1+ β′1)+α′0(u′1+w ′1)
, (16)

PA =
u′0(α′1+ β′1)

(u′1+w ′1)(α′1+ β′1)+u′0(α′1+ β′1)+α′0(u′1+w ′1)
, (17)

PB =
α′0(u′1+w ′1)

(u′1+w ′1)(α′1+ β′1)+u′0(α′1+ β′1)+α′0(u′1+w ′1)
. (18)

After applying Eqs. (11) and (12), these expressions can be
simplified into

P0=
2u

2u+ kon(cAxA+cBxB) , (19)

PA=
koncAxA

2u+ kon(cAxA+cBxB) , (20)

PB =
koncBxB

2u+ kon(cAxA+cBxB) . (21)

One can see that for large entrance rates (koncA,koncB≫ u),
the probability to find the channel occupied is high, while for
large exiting rates (u≫ koncA, koncB), it is usually empty.

To evaluate the effectiveness of the separation in this
system requires the stationary-state fluxes for A and B,

JA= u′0P0= u′1PA, JB = α′0P0= α′1PB. (22)

Employing Eqs. (19)-(21), the molecular fluxes are

JA=
ukoncAxθA

2u+ kon(cAxA+cBxB) , JB =
ukoncBxθB

2u+ kon(cAxA+cBxB) .
(23)

The selectivity parameter is

S =
JA
JB
cA
cB

=

(
xA

xB

)θ
= exp(βθ∆ϵ), (24)

where ∆ϵ = ϵ A−ϵB. Clearly, that in this model, the selectivity
is fully controlled by the difference in molecule/pore
interactions. The larger the difference, the better separation
might be achieved. In addition, it also depends on the
parameter θ. The selectivity is very sensitive to interactions
for θ→ 1, while for θ = 0, there will be no separation. These
observations can be explained if we notice that for θ = 1, the
exiting rates from the channel are the same for both types of
molecules, as shown in Eqs. (11) and (12), while the entrance
rates are strongly influenced by interactions. At the same time,
for θ = 0, the ratio of the particles current through the system
is not affected by the interactions as one might conclude from
Eq. (22).

This theoretical method is also useful for understanding
of how the presence of one type of molecules influences the
dynamics of other type of molecules. Suppose, we do not have
molecules B in our mixture, i.e., cB = 0. Then, the molecular
flux for particles A is equal to

JA(cB = 0)= ukoncAxθA
2u+ koncAxA

. (25)

Comparing with Eq. (23), we conclude that

JA(cB = 0)
JA

=
2u+ kon(cAxA+cBxB)

2u+ koncAxA
> 1. (26)

This is an important result since it indicates that adding the
molecules B to the system always lowers the flux of the
molecules A. This is because it increases the probability for
the pore to be occupied by any particle, which obviously
decreases the entering molecular flux of particles A.

B. Channels with two binding sites

A more realistic situation is when channels have more
than one binding site so that multiple species can be found
simultaneously in the nanopore. To model these systems, we
analyze a channel with two binding sites (N = 2), as shown
in Fig. 3. In this case, dynamic properties depend on which
site has specific interactions between the molecules and the
pore. Let us start with the case when the second site (near
the exit) is a specific one. We again assume that the entrance
rate constants for both species are the same, kA

on= kB
on≡ kon.

Also, we take the exit rates back to the left chamber to be the

FIG. 3. A discrete-state stochastic model for a transport of a molecular
mixture across a channel with two binding sites. Special site is near the
exit. (a) The free-energy profile for translocation of A molecules. (b) The
free-energy profile for translocation of B molecules.
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FIG. 4. A kinetic scheme for the nanopore with two
binding sites where the second site is special. Boxes
describe different states of the channel, while arrows
show possible transitions between states.

same, i.e., w1= β1= u. The transition rates into and out of the
specific site can be written as

u′1= uxθA, u′2= uxθ−1
A , w ′2= uxθ−1

A (27)

and

α′1= uxθB, α′2= uxθ−1
B , β′2= uxθ−1

B . (28)

The entrance rates are given by

u0= koncA, α0= koncB. (29)

In the channel with two binding sites, there are 9 possible
states depending on the occupancy and we label them as (i, j)
for i, j = A, B, or 0. The kinetic scheme with all possible
transitions is presented in Fig. 4. We introduce probability
functions P(i, j; t) of finding the nanopore in the state (i, j) at
time t (i, j = 0, A, or B). In order to fully describe the dynamics
of the system at long times, we solve the corresponding master
equation in the limit of t→ ∞ (see Appendix for details).

The molecular fluxes are

JA= u′2[P(0, A)+P(A, A)+P(B, A)], (30)

and

JB = α′2[P(0, B)+P(B, B)+P(A, B)]. (31)

Then, the current for molecules A is

JA= uxθ−1
A


1+

kon(cA+cB)
u(1+ xθ−1

A
)


P(0, A), (32)

while for molecules B, it is

JB = uxθ−1
B


1+

kon(cA+cB)
u(1+ xθ−1

B )


P(0, B). (33)

From the detailed calculations in the Appendix, we derive that

P(0, A)
P(0, B) =

cA
cB

1+xθ
B

xB+x
θ
B

+
u(2/xB+xθ−1

B
)

kon(cA+cB)
1+xθ

A

xA+x
θ
A

+
u(2/xA+xθ−1

A
)

kon(cA+cB)
. (34)

Then, the expression for the selectivity parameter for N = 2
model with the specific site at i = 2, which we label as S2, is

given by

S2 =

(
xA

xB

)θ 
kon(cA+cB)+u(1+ xθ−1

A )
kon(cA+cB)+u(1+ xθ−1

B )


×


kon(cA+cB)(1+ xθB)+u(1+ xθ−1
B )(2+ xθB)

kon(cA+cB)(1+ xθ
A
)+u(1+ xθ−1

A
)(2+ xθ

A
)

. (35)

Comparing Eqs. (24) and (35), one can clearly see that in the
channel with two binding sites, in contrast to the single-site
channel, the selectivity is not determined only by interactions
between the molecules and the pore. It is interesting to consider
the situation when both molecules strongly attract to the pore,
xA≫ 1 and xB≫ 1. Then, Eq. (34) gives us

P(0, A)
P(0, B) ≃

cA
cB

(
xB

xA

)θ−1

, (36)

which leads to a surprising conclusion that in this limit, the
molecular transport is not selective at all, S2 ≃ 1. It can be
understood by noting that the second specific site is always
occupied by molecules. The stronger the attraction for the
species A, the more probable to find them at this site in
comparison with the species B. But the rate out of this site
is inversely proportional to the strength of the interaction. As
a result of this compensation effect, the particle current for
both type of molecules is the same [see Eqs. (32) and (33)]
and the separation cannot be achieved. A different situation is
observed for strong repulsions (xA≪ 1 and xB≪ 1). In this
case, the selectivity parameter is given by

S2≃
(

xA

xB

)θ
, (37)

which suggests a very efficient separation during the
molecular translocation through the channel. Thus, selectivity
mechanisms work better for repulsive interactions between
the molecules and the pore.

We can also investigate the effect of the entrance rates
on selectivity. For high entrance rates, kon(cA+ cB)≫ u, the
expression for the selectivity parameter is quite simple,

S2≃
(

xA

xB

)θ 1+ xθB
1+ xθ

A

. (38)



044705-6 Agah, Pasquali, and Kolomeisky J. Chem. Phys. 142, 044705 (2015)

FIG. 5. The selectivity parameter as a function of
the difference in molecular interactions with the pore for
the channel with N = 2 binding sites. The second bind-
ing site is the specific one. Here, we define u0 = koncA

= koncB as the entrance rate into the channel. The fol-
lowing parameters were used in calculations: θ = 0.5,
cA = cB, and ϵB = 0.

In the opposite limit of low entrance rates, kon(cA+ cB)≪ u,
surprisingly, the expression is only slightly different,

S2≃
(

xA

xB

)θ 2+ xθB
2+ xθ

A

. (39)

These results suggest that changing the concentration of
molecules before the channel and/or entrance rate constants
does not affect much the selectivity. This is because the main
events are taking place at the second site which is not close to
the entrance.

It is also useful to consider the case of ϵB = 0, i.e., xB = 1.
The selectivity parameter is equal then to

S2 = xθA



kon(cA+cB)+u(1+ xθ−1
A )

kon(cA+cB)+2u



×


2kon(cA+cB)+6u
kon(cA+cB)(1+ xθ

A
)+u(1+ xθ−1

A
)(2+ xθ

A
)

, (40)

and it is presented in Fig. 5 for high and low entrance rates. We
can see that for the repulsion between the molecule A and the
pore, the separation is quite efficient for all possible entrance
rates. In this case, the passing through the second site is a
rate-limiting step for the molecules A, which does not depend
on how fast they entered the channel. For attractive interactions
between the molecules A and the pore, the selectivity is not
so efficient. It can be derived from Eq. (40) that 2 ≤ S2 ≤ 3.
The modest separation values can be explained using the
same compensation mechanism as we argued above. The
selectivity parameter S2 is slightly larger for smaller entrance
rates because in this case, the relative flux of molecules A is
also slightly larger than the flux of the molecules B as one
might conclude from Eqs. (32) and (33).

Now, let us analyze a channel with two binding sites
where specific interactions are taking place in the first site,
near the entrance. Fig. 6 shows the free-energy profiles for
translocation of molecules A and B via such nanopore. As
before, the entrance rate constants for both species are taken to

be the same, kA
on= kB

on≡ kon. We also assume that the exit rates
into the right chamber are the same for both type of particles,
i.e., u2= α2= u. Transitions into and out of the special site are
modified as compared with dynamics in the uniform channel.
The corresponding transition rates are obtained using the
detailed balance arguments and they are given by

u′0= koncAxθA, u′1= uxθ−1
A ,w ′1= uxθ−1

A ,w ′2= uxθA (41)
and

α′0= koncBxθB, α′1= uxθ−1
B , β′1= uxθ−1

B , β′2= uxθA. (42)

Depending on the occupation of the bindings sites, the
channel can be found in one of 9 possible configurations
(i, j) (for i, j = 0, A, or B). Each of them is specified by the
probability functions P(i, j;t). The overall kinetic scheme for
this model is presented in Fig. 7. Again, we are interested in
the long-time dynamics of the system which can be obtained
after solving the corresponding master equations at t → ∞
and obtaining the stationary-state probability functions P(i, j)
(i, j = 0, A, or B). The details of the calculations are given in
the Appendix.

The particle currents in this model can be written as

JA= u′1P(A, 0)−w ′2P(0, A) (43)

for the molecules A, while for the molecules B, we have

JB = α′1P(B, 0)− β′2P(0, B). (44)

As shown in the Appendix, these molecular fluxes are equal
to

JA= u

1+

koncBxθB
u(1+ xθ−1

B ) +
koncAxθA

u(1+ xθ−1
A

)


P(0, A) (45)

for molecules A and

JB = u

1+

koncBxθB
u(1+ xθ−1

B ) +
koncAxθA

u(1+ xθ−1
A

)


P(0, B) (46)

for molecules B. In addition, it can be found that

P(0, A)
P(0, B) =

cA
cB


1+ 2

xθ
B

(
1+

koncBxθ
B

u(1+xθ−1
B

) +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncB(xθ−1
B
−xθ−1

A
)

u(1+xθ−1
B

)(1+xθ−1
A

)




1+ 2

xθ
A

(
1+

koncBxθ
B

u(1+xθ−1
B

) +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncA(xθ−1
A
−xθ−1

B
)

u(1+xθ−1
B

)(1+xθ−1
A

)

 . (47)
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FIG. 6. A discrete-state stochastic model for a transport of a molecular
mixture across a channel with two binding sites. The specific site is near the
entrance. (a) The free-energy profile for translocation of A molecules. (b) The
free-energy profile for translocation of B molecules.

The selectivity parameter for N = 2 channel with the
specific site at the entrance, S1, is given by

S1=
JA/JB
cA/cB

=
P(0, A)
P(0, B)

cB
cA

, (48)

which from Eq. (47) produces the final expression,

S1=


1+ 2

xθ
B

(
1+

koncBxθ
B

u(1+xθ−1
B

) +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncB(xθ−1
B
−xθ−1

A
)

u(1+xθ−1
B

)(1+xθ−1
A

)




1+ 2

xθ
A

(
1+

koncBxθ
B

u(1+xθ−1
B

) +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncA(xθ−1
A
−xθ−1

B
)

u(1+xθ−1
B

)(1+xθ−1
A

)

 .

(49)

One can see that this expression is different from the selectivity
parameter S2 as given by Eq. (35). It leads us to an important
conclusion that a symmetry of molecular interactions with the
pore influences the selectivity mechanisms in the transport
through channels.

For strong positive attractive interactions for both
molecules (xA≫ 1 and xB≫ 1), the selectivity parameter
S1 simplifies into

S1≃
1+ 2koncB

u
+

2koncA
u

(
xA
xB

)θ
1+ 2koncA

u
+

2koncB
u

(
xB
xA

)θ . (50)

The analysis of this equation suggests that in this case, the

separation is not efficient at low entrance rates. For large
entrance rates, it becomes

S1≃
cB+cA

(
xA
xB

)θ
cA+cB

(
xB
xA

)θ . (51)

In the opposite limit of strong repulsions (xA→ 0 and xB→ 0),
we obtain

S1≃
(

xA

xB

)θ
. (52)

It means that in this case, the selectivity mechanisms are quite
efficient and they are fully dominated by the difference in
interactions between molecules and pores.

It is instructive also to consider a situation when there is
no additional interactions for molecules B (ϵB = 0 and xB = 1).
In this case, the selectivity parameter can be written as

S1=


1+2

(
1+ koncB

2u +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncB(1−xθ−1
A

)
2u(1+xθ−1

A
)




1+ 2

xθ
A

(
1+ koncB

2u +
koncAxθ

A

u(1+xθ−1
A

)

)
+

koncA(xθ−1
A
−1)

2u(1+xθ−1
A

)

 . (53)

The results of S1 as a function of the molecular interactions
with the pore for various entrance rates are presented in Fig. 8.
The molecular separation is efficient for repulsive interactions
(for molecules A) for all ranges of entrance rates. However,
for attractive interactions, the selectivity mechanisms work
better for larger entrance rates because the first site in the
channel is the location of strong interactions, and the relative
increase in the entrance rate for molecules A is much larger.

Our calculations indicate that the symmetry of the
molecular/pore interactions is the important factor in the
separation processes. Let us analyze this observation in more
detail by comparing the selectivity parameters for N = 2
channels with different location of the specific sites. This
would correspond to varying the symmetry of interaction
potential. The results are presented in Figs. 9 and 10. At
repulsive interactions, the molecular separations are equally
effective for all ranges of the entrance rates independently of
the location of the specific site. However, the behavior is very
different for attractive interactions. The selectivity parameter

FIG. 7. A kinetic scheme for the
nanopore with two binding sites where
the first site is specific. Boxes describe
different states of the channel, while ar-
rows show possible transitions between
states.
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FIG. 8. The selectivity parameter as a function of the difference in molecular
interactions with the pore for the channel with N = 2 binding sites. The
first binding site is a specific one. Here, we define u0 = koncA = koncB

as the entrance rate into the channel. The following parameters were used in
calculations: θ = 0.5, cA = cB, and ϵB = 0.

S1 grows without a bound, while S2 reaches a saturation,
and S1≫ S2 for large positive interactions. It means that the
selectivity mechanisms are very effective when the specific
site is near the entrance and the efficiency is not high when
the specific site is near the exit. In addition, the most efficient
separations can be achieved for high entrance rates into the
nanopore. These observation can be understood using the
following arguments. For the channel with the specific site
near the exit, increasing the strength of interaction with the
molecules A will not increase their flux if there is a molecule
B in the first site. But for the nanopore with the specific
site near the entrance, such increase will definitely accelerate
the entrance of molecules A into the channel because both
molecules can enter independently of each other. This effect
is stronger for larger entrance rates.

FIG. 9. Comparison of selectivity parameters as a function of the interaction
strength for varying potential symmetry at large entrance rates. Parameters
used in calculations are θ = 0.5, cA = cB, u/u0 = 0.1, and ϵB = 0.

FIG. 10. Comparison of selectivity parameters as a function of the interaction
strength for varying potential symmetry at low entrance rates. Parameters
used in calculations are θ = 0.5, cA = cB, u/u0 = 10, and ϵB = 0.

III. SUMMARY AND CONCLUSIONS

We developed a theoretical framework for analyzing
selectivity mechanisms in the molecular transport through
the channels. Our approach employs discrete-state stochastic
models that view the translocation as a set of chemical
transitions between binding sites in the pore. Because these
models can be solved analytically, it allows us to investigate
the microscopic origin of separation processes during the
translocation via channels.

More specifically, we analyzed selectivity mechanisms
in nanopores with one and two binding sites at stationary-
state conditions. Our calculations indicate that the strength
of molecular interactions and the symmetry of interaction
potentials are main factors that govern the molecular
selectivity processes. It is found that adding the second
type of molecules to the system always decreases the flux
of the first type of molecules. For one-site channels, only the
strength of interactions is important in driving the separation,
while for more realistic two-site channels, the symmetry also
starts to play an important role. We find that the selectivity
is very efficient for repulsive interactions. For attractions,
the dynamics is different depending on the position of the
specific binding site. The molecular separation is fast and
efficient when stronger attractions are found at the site near
the entrance, while it shows a saturating behavior as a function
of the interaction strength when the special binding sites is
near the exit. We argue that this result is due to the fact that
the entrance rates are affected stronger when the specific site
is near the entrance. It is also found that selectivity is more
efficient for large entrance rates. Our analysis illustrates the
fundamental connection between the potential symmetry and
the strength of interactions in the channel-facilitated molecular
separation phenomena.

The main advantage of our approach is the ability to
explicitly evaluate all dynamic properties in the molecular
transport via nanopores. This allows us to provide clear
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physical-chemical explanations of these complex phenomena.
However, it is important to note that our analytical method
is limited by the small number of binding sites in the
channel because the number of equations in the system
scales exponentially with the number of the binding sites.
In addition, our method neglects many realistic features of
the channel transport, such as intermolecular interactions,
molecules passing over each other, conformational changes
in molecules and pores, that might strongly affect selectivity
mechanisms. It will be important to compare our approach
with more advanced theoretical and computational methods,
as well as to test it in experimental systems.
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APPENDIX: DETAILED CALCULATIONS
FOR CHANNELS WITH N = 2 BINDING SITES

In this Appendix, we present detailed derivations of the
equations and relations used in the main text for the molecular
separations in two-site nanopores.

1. N = 2 channels: The special site is at the exit

The dynamics of this system is governed by master
equations for temporal evolution of the probabilities functions
P(i, j;t) (i, j = 0, A or B),

dP(0,0;t)
dt

= u′2P(0, A;t)+α′2P(0, B;t)
+u[P(A,0;t)+P(B,0;t)]
−(u0+α0)P(0,0;t), (A1)

dP(A,0;t)
dt

= u0P(0,0;t)+u′2P(A,A;t)+w ′2P(0, A;t)
+α′2P(A,B;t)− (u′1+u)P(A,0;t), (A2)

dP(B,0;t)
dt

= α0P(0,0;t)+α′2P(B,B;t)+ β′2P(0, B;t)
+u′2P(B,A;t)− (α′1+u)P(B,0;t), (A3)

dP(0, A;t)
dt

= u′1P(A,0;t)+u[P(A,A;t)+P(B,A;t)]
−(u0+α0+w

′
2+u′2)P(0, A;t), (A4)

dP(0, B;t)
dt

= α′1P(B,0;t)+u[P(B,B;t)+P(A,B;t)]
−(u0+α0+ β

′
2+α

′
2)P(0, B;t), (A5)

dP(A,A;t)
dt

= u0P(0, A;t)− (u+u′2)P(A,A;t), (A6)

dP(B,A;t)
dt

= α0P(0, A;t)− (u+u′2)P(B,A;t), (A7)

dP(A,B;t)
dt

= u0P(0, B;t)− (u+α′2)P(A,B;t), (A8)

dP(B,B;t)
dt

= α0P(0, B;t)− (u+α′2)P(B,B;t). (A9)

In addition, we have a normalization condition,

P(0,0;t)+P(A,0;t)+P(B,0;t)+P(0, A;t)
+P(0, B;t)+P(A,A;t)+P(B,A;t)
+P(A,B;t)+P(B,B;t)= 1. (A10)

At large times, the system reaches the stationary state,
and we derive from Eqs. (A6)–(A9),

P(A,B)= u0

u+α′2
P(0, B), P(B,A)= α0

u+u′2
P(0, A),

P(A,A)= u0

u+u′2
P(0, A), P(B,B)= α0

u+α′2
P(0, B).

(A11)

Then, substituting these expressions into Eqs. (A2) and (A3),
we obtain

P(A,0)=

u′2(u0+α0)
u′1(u+u′2)

+
u′2+w

′
2

u′1


P(0, A) (A12)

and

P(B,0)=

α′2(u0+α0)
α′1(u+α′2)

+
α′2+ β

′
2

α′1


P(0, B). (A13)

At the same time, Eq. (A1) yields the following expression:

P(0,0) =

u(u′2+w ′2)+u′1u

′
2

u′1(u0+α0) +
uu′2

u′1(u+u′2)


P(0, A)

+


u(α′2+ β′2)+α′1α′2

α′1(u0+α0) +
uα′2

α′1(u+α′2)


P(0, B).
(A14)

Now, with the help of Eq. (A11), we can rewrite the particle
currents in Eqs. (30) and (31) in the following form:

JA= u′2


1+

u0+α0

u+u′2


P(0, A) (A15)

and

JB = α′2


1+

u0+α0

u+α′2


P(0, B). (A16)

These expressions lead directly to Eqs. (32) and (33) in the
main text.

It is also important to consider the ratio of stationary
probability functions, and from the above expressions, we
derive

P(0, A)
P(0, B) =

u0

α0


u(α′2+β′2)+α′1α′2

α′1(u0+α0) +
(u+α′1)α′2
α′1(u+α′2)




u(u′2+w′2)+u′1u′2

u′1(u0+α0) +
(u+u′1)u′2
u′1(u+u′2)

 . (A17)

From this equation, we obtain Eq. (34) in the main text after
substituting the explicit expressions for the transition rates.

2. N = 2 channels: The special site is at the entrance

The master equations for this system are given by

dP(0,0;t)
dt

= w ′1P(A,0;t)+ β′1P(B,0;t)
+u[P(0, A;t)+P(0, B;t)]
−(u′0+α′0)P(0,0;t), (A18)
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dP(A,0;t)
dt

= u′0P(0,0;t)+w ′2P(0, A;t)
+u[P(A,A;t)P(A,B;t)]
−(u′1+w ′1)P(A,0;t), (A19)

dP(B,0;t)
dt

= α′0P(0,0;t)+ β′2P(0, B;t)
+u[P(B,B;t)+P(B,A;t)]
−(α′1+ β′1)P(B,0;t), (A20)

dP(0, A;t)
dt

= u′1P(A,0;t)+w ′1P(A,A;t)+ β′1P(B,A;t)
−(u0+α0+w

′
2+u)P(0, A;t), (A21)

dP(0, B;t)
dt

= α′1P(B,0;t)+ β′1P(B,B;t)+w ′1P(A,B;t)
−(u0+α0+ β

′
2+u)P(0, B;t), (A22)

dP(A,A;t)
dt

= u′0P(0, A;t)− (u+w ′1)P(A,A;t), (A23)

dP(B,A;t)
dt

= α′0P(0, A;t)− (u+ β′1)P(B,A;t), (A24)

dP(A,B;t)
dt

= u′0P(0, B;t)− (u+w ′1)P(A,B;t), (A25)

dP(B,B;t)
dt

= α′0P(0, B;t)− (u+ β′1)P(B,B;t). (A26)

Solving these equations at large times produces the following
relations for the stationary-state probability functions:

P(A,B)= u′0
u+w ′1

P(0, B),P(B,A)= α′0
u+ β′1

P(0, A),

P(A,A)= u′0
u+w ′1

P(0, A),P(B,B)= α′0
u+ β′1

P(0, B)
(A27)

and

P(A,0)=

u+w ′2

u′1
+

uK
u′1


P(0, A), (A28)

P(B,0)=

u+ β′2
α′1
+

uK
α′1


P(0, B), (A29)

where an auxiliary function K is defined as

K ≡
α′0

u+ β′1
+

u′0
u+w ′1

. (A30)

From Eq. (A18), we also obtain that

P(0,0) =

uα′1+w

′
1(u+ β′2)

α′1(u′0+α′0)
+

uw ′1K
α′1(u′0+α′0)


P(0, A)

+


uu′1+ β

′
1(u+w ′2)

u′1(u′0+α′0)
+

uβ′1K
u′1(u′0+α′0)


P(0, B). (A31)

Using these results in Eqs. (43) and (44) produces

JA= u(K +1)P(0, A), JB = u(K +1)P(0, B). (A32)

This is what was utilized in Eqs. (32) and (33) in the main
text. In addition, one can calculate the important ratio of the
probability functions,

P(0, A)
P(0, B) =

β′1β
′
2

α′0α
′
1
+

(α′1+β′1)u(K+1)
α′0α

′
1

+
u(β′1−w′1)

(u+β′1)(u+w′1)
w′1w

′
2

u′0u
′
1
+

(u′1+w′1)u(K+1)
u′0u
′
1

+
u(w′1−β′1)

(u+β′1)(u+w′1)
. (A33)

This equation leads directly to Eq. (47).
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