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Fundamental biological processes of development of tissues and organs in multicellular organisms are
governed by various signaling molecules, which are called morphogens. It is known that spatial and
temporal variations in the concentration profiles of signaling molecules, which are frequently referred
as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-
dependent manner. It is widely accepted that the establishment of the morphogen gradients involves
multiple biochemical reactions and diffusion processes. One of the critical elements in the formation
of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical
approach that provides a comprehensive description of the degradation mechanisms. It is based on
the idea that the degradation works as an effective potential that drives the signaling molecules away
from the source region. Utilizing the method of first-passage processes, the dynamics of the formation
of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that
linear degradation processes lead to a dynamic behavior specified by times to form the morphogen
gradients that depend linearly on the distance from the source. This is because the effective potential
due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a
quadratic scaling in the morphogen gradients formation times since the effective potentials are much
weaker. Physical-chemical explanations of these phenomena are presented. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4926461]

I. INTRODUCTION

The development of multicellular organisms is one of
the most important fundamental processes in nature.1–3 The
most critical question here is how a small set of genetically
identical cells in embryos can produce morphologically and
functionally different tissues and organs in fully developed
organisms. The central concept of biological development is
that the observed complex spatial patterning is due to action of
signaling molecules that are also called morphogens.1–8 These
signaling molecules can produce non-uniform concentration
profiles, the so-called morphogen gradients, that via complex
biochemical networks stimulate or suppress specific genes
in embryo cells, depending on their local concentrations. In
recent years, there were multiple experimental and theoretical
investigations on how the morphogen gradients are created and
how they function. This led to several exciting discoveries in
the field.5–24 However, many aspects of the underlying mech-
anisms that result in the formation of the signaling molecules
density profiles remain not fully explained.25

A large variety of approaches to describe the develop-
ment of morphogen gradients have been proposed and dis-
cussed.6,7,25 Many of them follow the original idea of
Turing that the morphogen gradients are resulting from com-
plex reaction-diffusion process.26 The most popular and widely
utilized method to explain the formation of the signaling mole-
cules profiles is known as a synthesis-diffusion-degradation
(SDD) model.7,10,27 In this picture, the process starts with
morphogens being produced at specific localized regions in

the embryo, from which they diffuse along the cells. Signaling
molecules also can be removed from the system after binding
to specific receptors on cells. At large times, this leads to
exponentially decaying concentration profiles which qualita-
tively agree with many experimentally observed morphogen
gradients.7,9–12,27,28

It is widely accepted that the process of degradation or
removal of signaling molecules from the system is critically
important for the development of morphogen gradients.7 This
allows the formation of the stationary profiles of signaling
molecules, ensuring the robustness of the genetic information
transfer in biological development. But specific details of how
the degradation influences the formation of morphogen gradi-
ents are still not well clarified. There are many counter-intuitive
observations that cannot be explained by current theoretical
views. In the classical SDD model it is assumed that the degra-
dation is linear, i.e., the particle flux leaving the system is
proportional to the local concentration of morphogens. It was
shown theoretically that for this model the time to establish
the stationary morphogen gradient at a given location, which
is also known as a local accumulation time (LAT), is a linear
function of the distance from the source.20 This observation
is surprising since for the system with unbiased diffusion of
particles much slower quadratic scaling was expected.20,22 At
the same time, several experiments suggested that in some
cases the establishment of morphogen gradients is associated
with nonlinear degradation mechanisms when the presence of
signaling molecules self-enhances or self-catalyzes its removal
from the system.30–33 Theoretical investigations of temporal
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evolution of the morphogen gradients with nonlinear degrada-
tion suggested that in this case the local accumulation times,
in contrast to linear degradation, scale quadratically with the
distance from the source.30 But the presented mathematical
analysis was rather very complicated, and only bounds for LAT
in several cases were obtained.30

These observations raised several interesting and impor-
tant questions concerning the role of the degradation in regulat-
ing the concentration profiles of signaling molecules. Why the
degradation accelerates the relaxation to the stationary state for
the linear degradation? Why the actions of linear and nonlinear
degradation processes are so different? What is the physical
mechanism of degradation? Recently, one of us proposed an
idea that might resolve some of these issues.22 It was suggested
that the degradation acts as an effective potential that pushes
signaling molecules away from the source region. It means that
the degradation will make the diffusion of morphogen mole-
cules effectively biased. However, only qualitative arguments
have been presented.

In this paper, we extend and generalize the original idea
that the removal of signaling molecules works as the effec-
tive potential. A new quantitative approach that provides a
microscopic view on the role of degradation in the formation
of morphogen gradients is developed. It allows us to explain
the differences between various degradation mechanisms. We
argue that the linear degradation corresponds to a strong poten-
tial, leading to strongly biased motion of the signaling mole-
cules. At the same time, the non-linear degradation creates a
potential that is too weak to modify the underlying random-
walk scaling behavior of the system, affecting only the magni-
tude of fluctuations.

II. THEORETICAL METHOD

Let us start the analysis of degradation mechanisms by
introducing a discrete SDD model as presented in Fig. 1(a).
The cells in the embryo are represented as discrete sites n

FIG. 1. (a) Schematic view of a discrete synthesis-diffusion-degradation
model with unbiased diffusion. (b) Schematic view of equivalent biased-
diffusion model without degradation and with modified diffusion rates. Lat-
tice sites correspond to embryo cells.

≥ 0 on this semi-infinite lattice. The signaling molecules are
produced at the origin (n = 0) with a rate Q. Then morphogens
diffuse along the lattice with a diffusion constant D. At each
lattice site n, the molecule can be degraded with a rate kn.
It is convenient to adopt a single-molecule view of the pro-
cess where the local concentration of signaling molecules is
proportional to a probability to find a morphogen molecule at a
given location.22,29 One can define then Pn(t) as a probability of
finding the morphogen at the site n at time t. These probabilities
evolve with time as described by a set of master equations,

dPn(t)
dt

= DPn+1(t) + DPn−1(t) − (2D + kn)Pn(t), (1)

for n > 0; while at the origin (n = 0) we have

dP0(t)
dt

= Q + DP1(t) − (D + k0)P0(t). (2)

The situation when the degradation rate kn is independent
of the concentration of signaling molecules corresponds to
linear degradation since the total flux that removes morpho-
gens from the system [knPn(t)] is proportional to the concen-
tration. For the case of constant kn = k, this discrete SDD
model with linear degradation was fully analyzed before.22 In
a more general scenario, the degradation rate might depend
on the local concentration, kn = kPm−1

n , where a parameter m
specifies the degree of non-linearity, and this corresponds to
non-linear degradation processes. However, it is not feasible
generally to obtain full analytic solutions for these non-linear
degradation models (with m > 1).

The main idea of our approach is that degradation acts as
an effective potential. This suggests that the original reaction-
diffusion process with degradation is equivalent to a biased
diffusion process in such potential but without degradation, as
shown in Fig. 1(b). To explain the origin of this potential, let us
consider the system in the steady-state limit when a stationary
non-uniform profile P(s)

n is achieved. The degradation leads to a
concentration gradient between any two consecutive sites, and
this gradient can be associated with a difference in the chemical
potentials of the morphogens,

µn+1 − µn = kBT ln P(s)
n+1 − kBT ln P(s)

n . (3)

This can also be viewed as an effective potential that influences
particles that are not degraded. It follows then that this potential
can be evaluated as

Ueff
n = kBT ln P(s)

n . (4)

It is important to note that our system is non-equilibrium so
that equilibrium concepts cannot be applied here. There is a
flux of signaling molecules moving in the positive direction
(see Fig. 1(a)). This is analogous to having a potential acting
on morphogens pushing them away from the origin.

The above arguments indicate that dynamics of a reaction-
diffusion model (Fig. 1(a)) can be approximated by a biased-
diffusion model (see Fig. 1(b)), which is much simpler to
analyze. We assume that the biased-diffusion model has L
(L → ∞) sites, and the molecule starts at the origin at t = 0.
The particle hops to the right, and when it reaches the last
site n = L it instantaneously moves back to the origin n = 0.
For the equivalent biased-diffusion model, we define Πn(t) as



025102-3 Bozorgui, Teimouri, and Kolomeisky J. Chem. Phys. 143, 025102 (2015)

the probability of finding a particle at position n at time t.
These probabilities are also governed by corresponding master
equations,

dΠn(t)
dt

= rn+1Πn+1(t) + gn−1Πn−1(t) − (rn + gn)Πn(t), (5)

for 0 < n < L, while for n = 0 and n = L, we have

dΠ0(t)
dt

= J + r1Π1(t) − g0Π0(t), (6)

dΠL(t)
dt

= gL−1ΠL−1(t) − rLΠL(t) − J, (7)

where J is the flux from the site L back to the origin n = 0.
At large times, the system reaches the stationary state with
the constant flux J across every site. One can also see the
qualitative difference between two models. While the SDD
model achieves the conservation of probability only at the
stationary state, the biased-diffusion model always conserves
the probability. Based on these observations, we expect that
the mapping between two models should work better at large
times, approaching the stationary state.

The diffusion rates gn and rn in the biased-diffusion model
are related to each other via changes in the effective potential.
This can be shown using the detailed balance arguments,34

gn
rn+1

= exp *
,

Ueff
n −Ueff

n+1

kBT
+
-
. (8)

It is important to note that we do not assume the detailed
balance here because the system is out of equilibrium. But
these arguments tell us that the detailed balance is restored
when the system reaches the equilibrium for Ueff

n = Ueff
n+1, and

the transition rates in both directions become equal, i.e., gn
= rn+1. This is a crucial result because it directly couples
the original SDD model with degradation to the new biased-
diffusion model without degradation.

One more step is needed in order to have comparable dy-
namic behaviors in both models. The average residence times
for the particles at each site provide a measure of relevant time
scales in the system. It seems reasonable to require that these
quantities to be the same in both models, leading to

gn + rn = 2D + kn. (9)

Note that Eqs. (8) and (9) uniquely define the forward and
backward rates in the biased-diffusion model.

To understand the mechanisms of formation of morpho-
gen gradients, the relaxation dynamics to a stationary-state
behavior needs to be investigated. This can be done by analyz-
ing the local accumulation times tn, which are defined as times
to reach the stationary-state concentration at the given position
n. The general approach for computing LAT is known,20 but
analytical results can only be obtained for the linear degra-
dation model (m = 1). We propose to use mean first-passage
times τn (MFPT), which are defined as times to reach a given
site for the first time, as a measure of dynamics of establishing
the morphogen gradients. It was shown before that MFPT
approximate very well LAT at large distances from the source,
i.e., for large n.22,35 In addition, the first-passage analysis pro-
vides a clear physical view of the underlying phenomena in the
development of morphogen gradients.

Thus, our method of evaluating the formation of signaling
molecules profiles consists of three steps. First, from the orig-
inal SDD model with degradation the stationary-state profiles
are obtained, from which the effective potentials are explicitly
evaluated. In the second step, the transition rates in the equiva-
lent biased-diffusion model without degradation are computed.
Finally, these rates are utilized for calculating the first-passage
dynamics as a way of describing the approach to the stationary-
state behavior in the system. It is important to note here that this
procedure is not exact since it involves several approximations.

III. LINEAR DEGRADATION

To test our theoretical approach, we start with the simplest
linear degradation model where all dynamic properties are
analytically calculated for all sets of parameters.20,22 The
stationary-state profile for the SDD model can be easily eval-
uated,22

P(s)
n =

2Qxn

k +
√

k2 + 4Dk
, (10)

with x = (2D + k −
√

k2 + 4kD)/2D. This expressions allows
us to estimate the effective potential due to degradation for the
equivalent biased-diffusion model,

Ueff
n

kBT
≃ n ln x. (11)

This potential is linear with a slope that depends on diffusion
and degradation rates. It is also shown in Fig. 5. Employing
these results in Eqs. (8) and (9), we obtain the following
expressions for the forward and backward transition rates:

gn = g =
2D + k
x + 1

, rn+1 = r = x
2D + k
x + 1

. (12)

Note that these rates are independent of the position and the
production rate Q.

In the final step, first-passage dynamics can be evaluated
by using known expressions for MFPT,34

τn =

n−1
i=0

i
j=0

riri−1 · · · r j+1

gigi−1 · · · gj+1gj

=
(x + 1)
(2D + k)

[x(xn − 1) − n(x − 1)]
(x − 1)2 . (13)

It can be easily checked that in the special case of no degra-
dation in the original system, k = 0, this formula reduces to τn
≃ n2/2D at large distances, as expected for a simple unbiased
random walk.

It is possible to compare the obtained mean first-passage
times from Eq. (13) with available analytical expressions for
LAT and for MFPT in the original SDD model.22 But it is more
convenient first to do it for two different dynamic regimes.
In the case when the degradation rate is much faster than
diffusion, k ≫ D, it can be shown that x ≃ D/k, which leads
to τn ≃ n/k. This is in excellent agreement with the exact
results for LAT and MFPT for the original SDD model in this
limit,22 tn = τSDD

n ≃ (n + 1)/k. In the opposite limit of very fast
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diffusion (D ≫ k), we have x ≃ 1 −
√

k/D and Eq. (13) yields

τn ≃ n/
√

kD. (14)

Exact expressions for LAT and MFPT for the original SDD
model give us22

tn ≃
1

2k


1 +

n + 1
√

D/k


, τSDD

n ≃ n/2
√

Dk . (15)

Thus, for large n our method still correctly reproduces the
linear scaling in the local accumulation times, but the ampli-
tude deviates in two times.

The comparison between predicted MFPT for the biased-
diffusion model and for LAT of the original SDD model for
general sets of parameters is given in Fig. 2. One can see that
our method approximates the dynamics of the formation of
morphogen gradient reasonably well. The agreement is better
for larger degradation rates where the effective potentials are
stronger. At the same time, for weaker degradation rates there
are deviations, although the qualitative behavior is correctly

FIG. 2. (a) Ratio of the calculated mean first-passage times in the biased-
diffusion model and the exact analytical results from the original SDD model
with linear degradation as a function of the distance from the source. Different
curves correspond to different values of the degradation and diffusion rates.
(b) The same ratio as a function of the ratio of the degradation rate over
diffusion. Distance from the source is set to n = 104, which exceeds the decay
lengths for all values of the degradation rates.

captured. This is a remarkable result given how simple is the
theory and that it involves several weak approximations. This
also suggests that the method can be reliably applied to more
complex systems with non-linear degradation.

IV. NON-LINEAR DEGRADATION

Here, we apply our method for systems where the forma-
tion of signaling molecules profiles is accompanied by the
non-linear degradation processes with the corresponding rates
kn = kPm−1

n for m = 2,3, . . .. To evaluate the effective potential
we need to estimate the stationary-state concentration profiles.
However, it is not possible to calculate them analytically for
general non-linear discrete SDD models. But we can use the
fact that in the continuum limit (D ≫ kn) original master equa-
tions (1) and (2) can be written as the corresponding non-linear
reaction-diffusion equations,

∂P(n, t)
∂t

= D
∂2P(n, t)

∂n2 − kPm(n, t), (16)

with the boundary condition at the origin

D
∂P
∂n

|n=0 = −Q. (17)

These equations can be solved in the steady-state limit, produc-
ing

P(s)
n ≃

1

(1 + n/λ) 2
m−1

, (18)

where the parameter λ is given by

λ =
1

m − 1

 (2D)m(m + 1)
kQm−1

 1
m+1

. (19)

It can be shown that the continuum P(s)
n describes also quite

well the stationary-state behavior of the general non-linear
discrete SDD models at large distances from the source. This
allows us to approximate the effective potentials for non-linear
degradation as

Ueff
n

kBT
≃ − 2

m − 1
ln(1 + n/λ). (20)

This potential is logarithmic, and the degree of non-linearity
determines its magnitude as illustrated in Fig. 5. It is important
to note here that these potentials are always weaker than the
potential for the linear degradation: see Fig. 5.

Now using Eqs. (8) and (9) one can obtain the expressions
for transition rates in the biased-diffusion model,

gn = D


P(s)
n

P(s)
n+1



0.5

, rn+1 = D


P(s)
n

P(s)
n+1



−0.5

. (21)

In the final step, again utilizing the analytical framework
for the first-passage processes,34 we derive the explicit expres-
sions for the mean first-passage times that approximate the
formation of the morphogen gradients with nonlinear
degradation,
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FIG. 3. Theoretically calculated mean first passage times as a function of the distance from the source for different degrees of non-linearity and for different
values of the degradation rates: (a) m = 2; (b) m = 10.

τn =

n−1
i=0

i
j=0

riri−1 · · · r j+1

gigi−1 · · · gj+1gj

=
1
D

n−1
j=0

[ j( j + 1)] 1
1−m

j
l=0

l
2

m−1 . (22)

It can be shown that this expression asymptotically at large
distances approaches to

τn ≈
(m − 1)
(m + 1)

n2

2D
. (23)

This is an important result since it predicts a quadratic scaling
for all non-linear degradation mechanisms with m > 1. Fur-
thermore, as expected for very large m, which corresponds
effectively to the case without degradation, this formula re-
duces to a known unbiased random-walk dependence.

Our theoretical estimates for the relaxation dynamics in
the establishment of the morphogen gradients for various
models with non-linear degradation are presented in Fig. 3.
One can clearly see that the predicted local accumulation times
approach the quadratic scaling for large n for all possible
ranges of diffusion and degradation rates. The approach is
faster for larger m. The scaling is independent of the degra-
dation mechanisms, and only the amplitude is determined by
the degree of the non-linearity m.

We also compared theoretical predictions with numeri-
cally exact values of LAT for different non-linear degradation
models. The results are presented in Fig. 4. A remarkable
agreement between predicted and exact relaxation times is
found for m = 3. It can be seen that increasing the strength
of the degradation (larger k) improves the agreement even for
small distances from the sources. For m = 10 our theory also
works qualitatively well, although there are bigger quantitative
deviations. It correctly describes the scaling, and increasing the
degradation rate k decreases the magnitude of these deviations.

Analyzing results given in Figs. 3 and 4, we can make
several conclusions about the applicability of the developed
theoretical method for analyzing nonlinear degradation. Our
approach correctly finds the quadratic scaling in the local
accumulation times. It works better for large distances because

the method calculates only the arrival times, which are al-
ways smaller than the correct LAT that also must include
times for some local rearrangements. At large distances, the
contribution from MFPT to LAT becomes dominant.22 One
can also observe that our method works better for stronger
degradation, which corresponds to small m values and/or large
degradation rates k. Most probably, this is due to the fact that
our approach neglects particle fluctuations that are present even
in the absence of degradation. For strong degradations, these
fluctuations become less relevant for dynamic properties of the
signaling molecules.

It is interesting to discuss the physical origin of different
qualitative dynamic behaviors for linear and non-linear degra-
dation mechanisms. It might be related to a presence or absence
of relevant length scales in the system. For linear degrada-
tion, there is the length scale λ defined in such a way that
the stationary concentration of signaling molecules reduces
in e times every λ sites independent of the initial position
and the production rate. This ensures that dynamics in the

FIG. 4. Theoretically calculated mean first passage times (black solid circles)
and the numerically exact results from the SDD model (red open circles) for
the local accumulation times as a function of the distance from the source for
different degrees of non-linearity and for different values of degradation rates.
For all calculations D = 1 is assumed.
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system is uniform everywhere. The situation is different for
non-linear degradation mechanisms. They are characterized
by scale-free power law concentration profiles, and there is
no unique length scale to describe the system. As a result, all
of them can be written in the logarithmic form. This leads to
variable dynamics at different parts of the system. Near the
origin, the degradations are very fast because of large amount
of signaling molecules. But at large distances, the degrada-
tion is very weak since not many morphogens can be found
there.

V. SUMMARY AND CONCLUDING REMARKS

We developed a new theoretical approach to analyze the
mechanisms of degradation in the formation of signaling mole-
cules profiles during the biological development. The method
is quite simple, and it provides a full analytical description for
all ranges of parameters. It is based on the idea that degradation
is similar to the effective potential imposed on morphogen
molecules. The degradation creates the concentration gradient
and this can be viewed as the effect of the potential. This
potential pushes the signaling molecules away from the source
region. This allows us to map the original non-equilibrium
reaction-diffusion process into the non-equilibrium biased-
diffusion model without degradation, which is much easier
to analyze. Finally, utilizing the first-passage approach, the
dynamics of relaxation to stationary morphogen gradients can
be fully described.

Despite the fact that our approach involves several approx-
imations, it works quite well for different models with degra-
dation. We correctly predict the scaling behavior for the local
accumulation times in all cases. As we found for both linear
and non-linear degradation processes, theoretical method is
almost exact for large distances from the source and for faster
degradation rates. At the same time, for short distances and for
slower degradation rates the agreement is mostly qualitative,
although the deviations are relatively small. The effect of the
distance can be explained by recalling that in our method first
arrival times are computed. The correct LAT involves local
rearrangements which become less important for large dis-
tances. The strength and the speed of the degradation influence
our results because the theoretical method neglects the local
particle fluctuations due to underlying random walk dynamics.
These fluctuations are expected to contribute significantly to
dynamic properties for weak and slow degradations, while they
are much less important for strong and fast degradations.

The advantage of our method is not only in the fact that it
gives a fully analytical description of the complex processes
during the development of the morphogen gradients. It also
provides clear physical explanations for the observed phe-
nomena. We can understand now why linear and non-linear
degradations lead to very different dynamic behaviors. For
linear degradation we predict that the effective potential is very
strong (Fig. 5). The morphogens are strongly pushed away
from the source region, and as a result a driven diffusion with
the expected linear scaling is observed. For non-linear degra-
dation processes the effective potentials are much weaker (log-
arithmic versus linear—see Fig. 5). The particles are moved
preferentially in the direction away from the source region, but

FIG. 5. Effective potentials acting on morphogens due to degradation. Linear
degradation corresponds to m = 1, while m = 3 and m = 10 describe different
cases of non-linear degradation. For all calculations, k =D =Q = 1 was
assumed.

the underlying random-walk dynamics is not perturbed much.
As a result, the quadratic scaling is predicted and the effect of
the potential only shows up in the magnitude of fluctuations.
We also argued that the different dynamic properties for linear
and non-linear degradation mechanisms might be related with
the existence or absence of the relevant length scales in the
system. In addition, these findings suggest that the degradation
might be an effective tool for tuning the complex biochemical
and biophysical processes in biological development.

Although the presented method captures main features of
the degradation processes during the formation of morphogen
gradients, it is important to note that our approach is oversim-
plified and it involves many approximations. It will be impor-
tant to test the proposed ideas with more advanced theoretical
methods as well as in the extensive experimental studies.
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