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The process of protein search for specific binding sites on DNA is fundamentally important since
it marks the beginning of all major biological processes. We present a theoretical investigation that
probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein
search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis,
which takes into account the most relevant physical-chemical processes, a full analytical description
of the search dynamics is obtained. It is found that, contrary to existing views, the protein search
is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics
might be affected by the chemical composition near the target site. The physical origins of these phe-
nomena are discussed. Our results suggest that biological processes might be effectively regulated by
modifying chemical composition, symmetry, and heterogeneity of a genome. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4937938]

I. INTRODUCTION

Many biological processes are initiated by proteins
binding to specific target sequences on DNA. In particular,
this process is responsible for transferring and maintaining the
genetic information contained in DNA.1–3 It was recognized
long time ago that finding these specific binding sites could
be quite a complicated task due to a large number of
other nonspecific sites (≃106–109) and low concentration
of relevant proteins. But experiments suggest that many
proteins find their targets much faster than expected from
3D bulk diffusion estimates.4–8 This surprising phenomenon
is known as a facilitated diffusion. A significant progress in
explaining facilitated diffusion processes has been achieved
in recent years due to multiple experimental and theoretical
advances.5–33 However, the detailed mechanisms of the protein
search for targets on DNA remain not well understood.7,8,23

It is now widely accepted that proteins searching for
the specific binding sites on DNA at some conditions might
alternate between 3D and 1D search modes.5,7–9,11 This means
that the protein molecule binds nonspecifically to DNA, then
slides along the chain, unbinds, and repeats the scanning
cycle several times until it finds the target. Recent single-
molecule experiments that can visualize the dynamics of
individual molecules support this picture.12,15,16,21,27,28 These
observations also underline the critical role of protein-DNA
interactions in the facilitated diffusion. Since DNA molecule
is a heterogeneous biopolymer, the sequence symmetry and
its chemical composition must be an important factor in
the protein search for targets. However, how specifically the
sequence heterogeneity influences the protein search dynamics
remains a controversial problem.

Most theoretical studies of the protein search dynamics
ignore the sequence heterogeneity by assuming that the
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DNA chain is a homogeneous polymer.5,8 But there are
several investigations that explicitly consider the search on
random DNA sequences.7,34–36 Comparing this process with
a motion in the random potential, it was shown that the
heterogeneous character of the chain leads to larger search
times in comparison with a homogeneous case. But later it was
argued that this result is not applicable to the protein search.23

It is just an artifact of the continuum approximation, which
assumed that the protein can reach the target only via DNA
sliding, neglecting 3D associations and dissociations events.23

A more advanced computational study of the sequence
heterogeneity also found that it usually slows down the
facilitated diffusion by creating traps.38 However, it was also
suggested that the properly positioned traps in the funnel shape
near the target can accelerate the protein search.38 At the same
time, it is not clear if such funnel distributions are observed
in real systems. Furthermore, recent theoretical studies of
Lukatsky and co-workers39–42 suggested that the sequence
symmetry creates additional effective interactions between
DNA and protein molecules. Using methods of equilibrium
statistical mechanics, it was found that more homogeneous
segments of DNA effectively attract proteins stronger than the
heterogeneous segments. However, the role of these effective
interactions in the protein search for targets on DNA has
not been tested yet. Another motivation for investigating the
effects of DNA sequences in the protein search in real cells
comes from the recent study on nucleosome positioning in
eukaryotic DNA.37

In this article, we present a theoretical approach that
allows us to investigate explicitly the effect of sequence
heterogeneity in the protein search for targets on DNA. It
is based on a discrete-state stochastic method which takes
into account the most relevant physical-chemical processes
of the protein search by analyzing first-passage events in the
system.23,30 The advantage of this method is that it provides
a full analytical description of the facilitated diffusion. One
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of the main results of this approach is a development of the
general dynamic phase diagram for the target search.23 Three
dynamic search regimes were identified depending on the
different length scales in the system. For a protein sliding
length λ, defined as an average distance that the protein
scans the DNA molecule in one searching cycle, larger than
the size of the DNA chain L, the protein molecule always
stays on DNA and performs 1D search with a random-walk
dynamics. This leads to a quadratic scaling of the search times
as a function of the DNA length. When the sliding length is
smaller than the length of DNA but larger than the target size,
which is taken to be equal to unity (1 < λ < L), the protein is
searching by combining 3D and 1D motions. In this sliding
regime, the linear scaling of the search times is observed. A
different dynamic phase is found for the case of the sliding
length smaller than the target size, λ < 1. This means that the
protein can bind to DNA, but it cannot diffuse along the chain.
Here, the search is accomplished only via 3D association and
dissociation events without sliding along the DNA molecule.
This also leads to the linear scaling in the search times as a
function of the DNA length.

II. THEORETICAL METHOD

In our model, we consider a single DNA molecule with
L + 1 binding sites and a single protein molecule, as shown in
Fig. 1. It is convenient to utilize a single-molecule view of the
search dynamics, while the multi-particle description of the

FIG. 1. (a) A general scheme of the protein search. The DNA chain consists
of L nonspecific binding sites and one specific site that is a target for the
search. A protein, coming from the solution, can bind to any site on DNA
with the association rate per one segment given by k

(i)
on with i = A or B.

When attached, the protein can diffuse along the DNA with the rate ui (i = A

or B), and it can dissociate into the solution with the rate k
(i)
off (i = A or B).

The search is finished when the protein binds to the target site at the position
m = L/2+1. (b) A fully symmetric AB block copolymer DNA sequence. (c)
Pseudo-random alternating sequences with different compositions near the
target.

process with a dependence on the concentrations of proteins
and DNA can be easily obtained.31,33 One of the binding sites
is a target, and for convenience, we put it in the middle of the
chain, i.e., m = L/2 + 1. To model the sequence heterogeneity,
we assume that each monomer in the DNA chain can be in
one of two chemical states, A or B (see Fig. 1). When the
protein is bound to the segment A (B), it interacts with energy
εA (εB), and ε = εA − εB ≥ 0. This means that the protein
attracts stronger to the B sites. The protein molecule can
diffuse along DNA with the rate uA ≡ u (uB = ue−ε, where ε
is measured in kBT units). Here, we assume that, independent
of the chemical state of their neighbors, moving out of the
sites A is characterized by the rate uA, while the diffusion out
of the sites B is given by uB. The units for diffusional rates
are squared length per unit time.

The protein search starts in the solution that we label as a
state 0 (see Fig. 1). We assume here that the DNA molecule is
coiled and the protein diffusion in the surrounding solution is
very fast so that all parts of DNA can be reached with equal
probability. Then, the protein molecule can bind to any site
A or B on DNA with the corresponding rates kA

on ≡ kon or
kB

on = koneθε. Similarly, the dissociations from the DNA chain
are described by the rates kA

off ≡ koff and kB
off = koffe(θ−1)ε.

Here, the parameter 0 ≤ θ ≤ 1 specifies how the protein-DNA
interaction energy is distributed between the association and
dissociation transitions. The physical meaning of this is that
the protein molecule tends to bind faster and to dissociate
slower from the sites B, as compared with A sites, because
it interacts stronger with B sites. The parameter θ quantify
these effects. We also assume that the binding to the target
is given by k (T )

on = kon. Since we are dealing with single
molecules, the units for association and dissociation transition
rates are s−1. To test the effect of the sequence symmetry
and heterogeneity, we consider the protein search on two
different types of the DNA molecules, see Figs. 1(b) and
1(c). One of them consists of two homogeneous segments
of only A and only B subunits separated by the target
(Fig. 1(b)). Another one is the biopolymer with alternating A
and B sites, as presented in Fig. 1(c). The block copolymer
(Fig. 1(b)) has a more homogeneous sequence, while the
alternating polymers (Fig. 1(c)) are more heterogeneous. It is
important to note that in both cases, the overall interaction
between the protein and DNA is the same (the overall
chemical composition in both cases is identical), and thus,
our analysis probes only the effect of the heterogeneity. This
is different from previous theoretical studies where the effect
of sequence heterogeneity was coupled with the protein-DNA
interactions.38

To describe the target search dynamics, let us introduce a
function Fn(t), which is defined as a first-passage probability
to reach the target, if at t = 0, the protein was at the site
n (n = 1,2, . . . ,L + 1 corresponds to the starting on DNA
and n = 0 is for the beginning of the process from the bulk
solution). The temporal evolution of this quantity can be
described by the backward master equations,23

dFn(t)
dt

= un[Fn−1(t) + Fn+1(t)] + k (n)
off F0(t) − (2un + k (n)

off )Fn(t),
(1)
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for 1 < n < L + 1, while at the boundaries,

dF1(t)
dt

= u1F2(t) + k (1)
offF0(t) − (u1 + k (1)

off )F1(t), (2)

dFL+1(t)
dt

= uL+1FL(t) + k (L+1)
off F0(t) − (uL+1 + k (L+1)

off )FL+1(t).
(3)

In the bulk solution, we also have

dF0(t)
dt

=

L+1
n=1

k (n)
on Fn(t) − F0(t)

L+1
n=1

k (n)
on . (4)

It is convenient to analyze these equations in the Laplace

space using a transformation Fn(s) =
∞
0

Fn(t) e−stdt. Then,

all probabilities can be found explicitly, which leads to the
full dynamic description of the search process. The details
of the calculations are presented in Appendices A–C. More
specifically, the mean first-passage time to reach the target
starting from the solution is given by T0 ≡ − ∂ F0(s)

∂s
|s=0, and

other dynamic properties can be also written explicitly. This
framework allows us to compare the search dynamics on
DNA with different sequences. Similar expressions for the
mean first-passage times can be found for AB alternating
DNA chains, as shown in Appendices A–C.

III. RESULTS AND DISCUSSION

We start our analysis by considering more homogeneous
block copolymer sequences (see Fig. 1(b)). In this case, the
expressions for the mean search times are given by

T0 =
koff + kon

�(L/2 − PA) + eε(L/2 − PB)�
konkoff (1 + PA + eθεPB) , (5)

where

P(i) =
x1−L/2
i − x1+L/2

i

(1 − xi)(x1+L/2
i + x−L/2

i ) , (6)

xi =
2ui + k (i)

off −

(2ui + k (i)

off )2 − 4u2
i

2ui
, (7)

for i = A and B. When there is no difference between sites
A and B (ε = 0), we recover the search times for the
homogeneous DNA as was obtained earlier.23 The results
for heterogeneous block copolymer are presented in Fig. 2.
Again, three dynamic search phases are clearly observed.
Increasing the strength of interactions with B subunits make
the search in the random-walk regime much slower. This is
because the protein gets effectively trapped on B sites for the
sliding length larger than the DNA length, i.e., for λ > L.
Because of the strong interactions with the B sites, the protein
molecule prefers to be found on the B segment where it slowly
diffuses along the DNA.

To consider the search on more heterogeneous sequences,
we employ the pseudo-random alternating sequences as shown
in Fig. 1(c). They mimic the real random situations quite well,
and analytical calculations can be performed for these cases.
To prove that the alternating sequences approximate well
real random biopolymers, we tested this in Monte Carlo

FIG. 2. Average times to find the target for block copolymer DNA sequence
as a function of the scanning length λ =


u/koff . The transition rates are

u = 105 s−1 and kon= 0.1 s−1. The DNA length is L = 1000, and we vary the
energy difference ε (in units of kBT ) for the interaction between the protein
and A and B subunits on DNA.

simulations by generating random sequences. As one can see
from Fig. 3, there is no difference in dynamic properties for the
search on real random sequences and on alternating sequences,
justifying our approximation. Another interesting observation
from Fig. 3 is that the chemical composition near the target
might also affect the search dynamics. This can be found only
for the intermediate sliding regime (1 < λ < L) because in
this case, the probability fluxes to the target site from the
solution and from the DNA are comparable. Modifying the
composition of the sites near the target can change the amount
of the flux coming from the DNA chain. The flux is larger for
BTB sequences (2 B subunits around the target), leading to the
smaller search times. This is because the protein molecule
attracts stronger to B sites and it has a higher probability to be

FIG. 3. Comparison of the search times for alternating sequences with ran-
dom sequences generated in Monte Carlo computer simulations. The transi-
tion rates are u = 105 s−1 and kon= 0.1 s−1. The DNA length is L = 1000, the
loading parameter is θ = 0.5, and two different interaction strengths, ε = 10
and ε = 5, are probed.
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found here and eventually to go the target. At the same time,
the flux is smaller for ATA sequences (2 A subunits around
the target) with weaker interactions to A sites, which yields
slower search dynamics. For ATB sequences, as expected, the
intermediate dynamics is observed.

Now we can quantify the effect of sequence heterogeneity
in the protein search for the specific binding sites on DNA. The
results in Fig. 4 present a ratio of the search times for block
copolymer sequences, which are less heterogeneous, and for
various alternating sequences, which are more heterogeneous,
as a function of the sliding length on DNA. One can see that
the effect of the sequence heterogeneity depends on the nature
of the dynamic search phase. In the jumping regime (λ < 1),
the symmetry of the sequence does not play any role. This
is because in this case, the process is taking place only via
associations and dissociations (3D search), and the structure of
the DNA chain is not important. The situation is different for
the intermediate sliding regime (3D+1D search, 1 < λ < L)
where in most cases, the search on alternating sequences is
faster. This can be explained by noting that the search time
in this dynamic phase is proportional to L/λ,23 which gives
the average number of cycles before the protein can find the
target. In the block copolymer sequence, the protein mostly
comes to the target from the B segment because of stronger
interactions with these sites. In the alternating sequences,
the protein can reach the target from both sides. It can be
shown analytically (see Appendices A–C) that the scanning
length on the alternating segment is larger than the scanning
length for the B segment, i.e., λAB > λB. Then, the search
time is obviously faster for the alternating sequence because
L/λAB < L/λB. The only deviation from this picture is found
in ATA sequences where for small range of parameters, the
search is slower than in the block copolymer sequence. The
effect of the chemical composition near the target, as discussed
above, is responsible for this.

In the random-walk regime (1D search, λ > L), the effect
of the sequence heterogeneity is even stronger: the protein

FIG. 4. The ratio of the search times for the alternating DNA sequences
and for the block copolymer DNA sequences as a function of the scanning
length λ =


u/koff . Three different chemical compositions near the target are

distinguished, namely, ATA, ATB, BTB. The transition rates are u = 105 s−1

and kon= 0.1 s−1. The DNA length is L = 1000, the loading parameter is
θ = 0.5, and the energy difference of interactions for the protein with A and
B sites is ε = 5.

molecule finds the specific binding site up to 2 times faster for
more heterogeneous DNA chains. To understand this behavior,
we note that in this case, the mean first-passage time to reach
the target is a sum of residence times on the DNA sites.
Because the target is in the middle of the chain, the mean time
to reach the target from the block copolymer sequence will
be T0 ≃ (L/4)τB, where τB is the residence time at the site B.
The protein prefers to start the search at any position on the B
segment with equal probability, i.e., the distance to the target
varies from 0 to L/2. Then, the average starting position of the
protein is L/4 sites away from the target. For the alternating
sequences, the average distance to the target is approximately
the same, but the chemical composition of intermediate sites
is different, yielding, T0 ≃ (L/8)τB + (L/8)τA. Obviously, the
protein spends much less time on A subunits, and this leads to
faster search for the alternating DNA sequences. For τA ≪ τB,
this also explains the factor of 2 in the search speed. In this
case, the B subunits can be viewed as traps. Thus, in the
dynamic phases where the structure of DNA is important,
the sequence heterogeneity almost always accelerates the
protein search for targets. The stronger the contribution of
1D search modes, the stronger the effect of the sequence
heterogeneity.

One could also suggest that the effects of sequence
heterogeneity discussed in our work can be experimentally
tested by varying the ionic strength of the solution in which the
protein search is taking place. This will modify the strength of
the protein-DNA attractive electrostatic interactions, leading
to changes in dynamic behavior of the system.

IV. SUMMARY AND CONCLUSIONS

We presented a theoretical analysis of DNA sequence
symmetry and heterogeneity in the protein search process.
Using analytical solutions of the discrete-state stochastic
models that accounts for most important physical-chemical
processes in the system, we obtained a full description of the
search dynamics. It is found that the sequence heterogeneity is
a crucial factor in the facilitated diffusion. Unlike the previous
theoretical and computational models, our approach predicts
that the sequence heterogeneity mostly accelerates the search.
The mechanisms of this phenomenon depend on the nature of
the search regime. It is either the smaller number of search
cycles or the smaller number of trapping sites on the path to
the target. We also found that in the dynamic phase where
the specific binding site can be reached from the solution and
from the DNA chain, the chemical composition near the target
might influence the search dynamics. The search is faster if the
target is surrounded by the subunits which interact stronger
with the protein, providing more opportunities to reach the
target. Our theoretical results not only clarify the fundamental
physics of the protein search dynamics but also suggest that the
biological processes can be effectively regulated by modifying
the sequence symmetry and heterogeneity in DNA, as well
as the chemical composition near the targets. Experiments to
test these predictions should provide a better understanding
of the microscopic mechanisms of complex biological
processes.
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APPENDIX A: BLOCK COPOLYMER DNA SEQUENCE

The central quantity of our calculations is a first-passage
probability defined in the main text. It evolves with time
according to a set of backward master equations,23,30




dF(A)
n (t)
dt

= uA{F(A)
n−1 + F(A)

n+1} + k (A)
off F0 − (2uA + k (A)

off )F(A)
n ,

2 < n < L/2,

dF(A)
1 (t)
dt

= uAF(A)
2 + k (A)

off F0 − (uA + kA
off )F(A)

1 ,

F(A)
m (t) = δ(t).

(A1)

The physical meaning of the last expression is that if we
start at the target, the search process is immediately finished.
Similar expressions could be written for the B segment of the
DNA chain. In addition, in the bulk solution, we have

dF0(t)
dt
= k (A)

on

L/2
n=1

F(A)
n + k (A)

on F(A)
m + k (B)

on

L/2
n=1

F(B)
n

−

k (A)

on + (k (A)
on + k (B)

on )L/2 F0. (A2)

Utilizing the Laplace transformation, F(s) =
∞
0

dte−stF(t), we

can rewrite the backward master equations as




(s + 2uA + k (A)
off )FA

n = uA{F(A)
n−1 +

F(A)
n+1} + k (A)

off
F0,

2 < n < L/2,
(s + uA + k (A)

off )F(A)
1 = uA

F(A)
2 + k (A)

off
F0,

F(A)
m = 1.

(A3)

For the bulk solution, it yields

{s + k (A)
on + (k (A)

on + k (B)
on )L/2}F0

= k (A)
on

L/2
n=1

F(A)
n + k (A)

on + k (B)
on

L/2
n=1

F(B)
n . (A4)

These equations can be solved by assuming that a general
form of the solution is following: F(i)

n = Cixn
i + Di, where

i = A or B. After the substitution of the general form of the
solution into Eq. (A3) and fixing the parameter Di via

Di =
k (i)

off
F0(s)

s + k (i)
off

, (A5)

we obtain that

xi =
s + 2ui + k (i)

off −

(s + 2ui + k (i)

off )2 − 4u2
i

2ui
. (A6)

Therefore, the general solution can be written as

F(i)
n = Ci1xn

i + Ci2x−ni + Di. (A7)
Furthermore, to find the constants Ci1 and Ci2, we should
use the boundary conditions at the sites n = 1 and n = m
= L/2 + 1 for A and B segments. This yields

Ci2 =
1 − Di

xL/2+1
i + x−L/2

i

, Ci2 = Ci1xi. (A8)

Then, the solution can be presented in the form

F(i)
n = (1 − Di) xn

i + x1−n
i

xL/2+1
i + x−L/2

i

+ Di, (A9)

where n = 1, . . . ,L/2 and i = A or B. Substituting the last
expression and Eq. (A5) into Eq. (A4), we can introduce the
auxiliary functions,

P(i)(s) =
L/2
n=1

xn
i + x1−n

i

xL/2+1
i + x−L/2

i

=
x1−L/2
i − x1+L/2

i

(1 − xi)
(
x1+L/2
i + x−L/2

i

) ,
(A10)

with i = A or i = B. Then, after some algebra on the function
F0, we obtain

F0(s) = k (A)
on + k (A)

on PA(s) + k (B)
on PB(s)

s + (k (A)
on + k (B)

on )L/2 + k (A)
on +

k
(A)
on k

(A)
off

s+k
(A)
off

[PA(s) − L/2] + k
(B)
on k

(B)
off

s+k
(B)
off

[PB(s) − L/2]
. (A11)

The mean first-passage time to reach the target if the
initial position of the protein was in the solution can be
calculated as explained in Ref. 23,

T0 ≡ −
∂F0(s)
∂s

�����s=0
, (A12)

which leads to

T0 =

1 + k
(A)
on

k
(A)
off

�
L/2 − PA(0)� + k

(B)
on

k
(B)
off

�
L/2 − PB(0)�

k (A)
on + k (A)

on PA(0) + k (B)
on PB(0)

, (A13)
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or in terms of the energy difference, ε = εA − εB (see the
main text), we have

T0 =
koff + kon

�(L/2 − PA(0)) + eε(L/2 − PB(0))�
konkoff [1 + PA(0) + eθεPB(0)] . (A14)

This result was employed in the main text for the search times
of the block copolymer DNA sequence.

APPENDIX B: ALTERNATING DNA SEQUENCES

In this case, we distinguish three different alternating
DNA sequences depending on the chemical composition
around the target site. So we will classify these sequences
as ATA, ATB, and BTB (see Fig. 1(c)). One can notice that
all these sequences can be constructed from two segments:

ABA . . .ABT and BAB . . .BAT. At the beginning, let us
consider the first segment. As in the previous case, we can
write the set of backward master equations as




dFA
n (t)
dt

= uA{FB
n−1 + FB

n+1} + kA
offF0 − (2uA + kA

off )FA
n ,

n = 3,5,7, . . . ,L/2 − 1,

dFB
n+1(t)
dt

= uB{FA
n + FA

n+2} + kB
offF0 − (2uB + kB

off )FB
n+1,

n + 1 = 2,4,6, . . . ,L/2,

dFA
1 (t)
dt

= uAFB
2 + kA

offF0 − (uA + kA
off )FA

1 ,

FA
m(t) = δ(t). (B1)

Utilizing the Laplace transformation, F(s) =
∞
0

dte−stF(t), we obtain




(
s + 2uA + kA

off

) FA
n = uA{FB

n−1 +
FB
n+1} + kA

off
F0,

n = 3,5,7, . . . ,L/2 − 1,(
s + 2uB + kB

off

) FB
n+1 = uB{FA

n +
FA
n+2} + kB

off
F0,

n + 1 = 2,4,6, . . . ,L/2,(
s + uA + kA

off

) FA
1 = uAFB

2 + kA
off
F0,

FA
m = 1.

(B2)

We will be looking for the solutions in the following form:




F(1)A
n = Cxn + D1, n = 1,3,5, . . . ,L/2 − 1,

F(1)B
n+1 = QCxn+1 + D2,

(B3)

where the upper index “(1)” indicates the first segment. After the substitution of these solutions into Eq. (B2), we find the free
constants D1 and D2 via




(
s + 2uA + kA

off

)
D1 = 2uAD2 + kA

off
F0,(

s + 2uB + kB
off

)
D2 = 2uBD1 + kB

off
F0.

(B4)

This leads to




D1 ≡ F0 f1 = F0

kA
off (s + kB

off + 2uB) + 2uAkB
off

kA
off (s + kB

off + 2uB) + kB
off (s + 2uA) + s [s + 2(uA + uB)] ,

D2 ≡ F0 f2 = F0

kB
off (s + kA

off + 2uA) + 2uBkA
off

kA
off (s + kB

off + 2uB) + kB
off (s + 2uA) + s [s + 2(uA + uB)] ,

(B5)

where we introduced new functions f1 and f2. Furthermore,
we can easily find that

x =
(s + 2uA + kA

off ) −

(s + 2uA + kA

off )2 − 4(uAQ)2
2uAQ

(B6)

and

Q =


uB

uA

(s + 2uA + kA
off )

(s + 2uB + kB
off )

. (B7)

Utilizing the boundary conditions at n = 1 and n = m
= L/2 + 1, the general solution can be written as




F(1)A
n = C1

�
xn + ax1−n� + bx1−n + D1,

n = 1,3,4, . . . ,m − 2,

F(1)B
n+1 = C1Q

�
xn+1 + ax−n

�
+ bQx−n + D2,

(B8)

where

C1 =
(1 − D1) − bx−L/2

xL/2+1 + ax−L/2 (B9)
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and

a =
Q − x
1 −Qx

, b =
D2 − D1

1 −Qx
≡ b0(D2 − D1). (B10)

Therefore, we derived the solution for the segment
ABA . . . ABT . Using the same strategy, we can find the solution
for the segment BAB . . . BAT . In this case, we have to make a
change A↔ B in Eq. (B1) and look for the general solution
in the form




F2B
n = CQxn + D2, n = 1,3,5, . . . ,L/2 − 1,

F2A
n+1 = Cxn+1 + D1.

(B11)

Again using the corresponding boundary conditions at n = 1
and n = m = L/2 + 1, the general solution can be written as




F2B
n = C2Q

�
xn + cx1−n� + dQx1−n + D2,

n = 1,3,5 . . . L/2 − 1,

F2A
n+1 = C2

�
xn+1 + cx−n

�
+ dx−n + D1,

(B12)

where

C2 =
(1 − D2) − dQx−L/2

Q (xL/2+1 + cx−L/2) (B13)

and

c =
1 −Qx
Q − x

=
1
a
, d =

D1 − D2

Q − x
≡ d0(D1 − D2). (B14)

Thus, the expressions for two main segments are determined.
Now we can calculate the probability to reach the target

from the solution applying these expressions. In case when
the DNA chain is made up of different segments (with ATB
junction), we can write the backward master equation in the
following form:

dFAB
0 (t)
dt

= kA
on

L/2−1
n=1,3,5

F(1)A
n + kB

on

L/2
n=2,4,6

F(1)B
n + kA

on
FA
m

+ kB
on

L/2−1
n=1,3,5

F(2)B
n + kA

on

L/2
n=2,4,6

F(2)A
n

−
�
kA

on + (kA
on + kB

on)L/2
� F0. (B15)

After utilizing the Laplace transformation, we get
�
s + kA

on + (kA
on + kB

on)L/2
� FAB

0

= kA
on




L/2−1
n=1,3,5

F(1)A
n +

L/2
n=2,4,6

F(2)A
n



+ kA

on

+ kB
on




L/2
n=2,4,6

F(1)B
n +

L/2−1
n=1,3,5

F(2)B
n



. (B16)

Using Eqs. (B8), (B12), and (B5) and performing some
algebraic transformations leads to the following expression:

FAB
0 =

kA
on + MB + NA

s +
�
kA

on(1 − f1) + kB
on(1 − f2)	 L/2 + kA

on + f1MB + f2NA + f∆AB
, (B17)

where we introduced the auxiliary functions,

MB = kA
onHB + kB

onQRB, NA = kA
onWA/Q + kB

onYA, (B18)

with




HB =
x − xL/2+1 + a

�
x2−L/2 − x2�

(1 − x2) (xL/2+1 + ax−L/2) ,

RB =
x2 − xL/2+2 + a

�
x1−L/2 − x

�

(1 − x2) (xL/2+1 + ax−L/2) .

(B19)

This corresponds to the segment that has B site before the
target and




WA =
x2 − xL/2+2 + c

�
x1−L/2 − x

�

(1 − x2) (xL/2+1 + cx−L/2) ,

YA =
x − xL/2+1 + c

�
x2−L/2 − x2�

(1 − x2) (xL/2+1 + cx−L/2)
(B20)

describes the segment that has A site before the target. In
addition,

∆AB = ∆AA + ∆BB, (B21)

where

∆AA = d0
�(kA

onS0 + kB
onQP0) − x−L/2QNA

�
(B22)

and

∆BB = b0
�
x−L/2MB − (kA

onP0 + kB
onQS0)� . (B23)

The parameters b0 and d0 are defined in Eqs. (B10) and (B14),
correspondingly, and we have

P0 =
x2−L/2 − x2

1 − x2 , S0 =
x1−L/2 − x

1 − x2 . (B24)

Using Eq. (A12), we can find the mean first-passage time
to reach the target if the initial position of the protein was in
the solution. In the case of the alternating DNA sequence with
ATB junction, it is given by

TAB
0 =

1 −
�
kA

on f ′1 + kB
on f ′2

�
L/2 + f ′1MB + f ′2NA + f∆AB

kA
on + MB + NA

,

(B25)

where the functions f1 and f2 ( f = f2 − f1) are defined in
Eq. (B5) and f ′

l
=

df
ds (s = 0) (for l = 1 or 2). They can be

written explicitly as
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f ′1 = −
kB

off + 2(uA + uB)
kA

off

(
kB

off + 2uB

)
+ 2kB

offuA

= −
koffeθε + 2u(1 + eε)

koff
�
koffeθε + 2u(1 + eθε)� ,

f ′2 = −
kA

off + 2(uA + uB)
kA

off

(
kB

off + 2uB

)
+ 2kB

offuA

= −
koffeε + 2u(1 + eε)

koff
�
koffeθε + 2u(1 + eθε)� ,

f ′ = f ′2 − f ′1 =
eθε − eε

koffeθε + 2u(1 + eθε) .

(B26)

Similar expressions for the mean first-passage time can be
found for the ATA junction,

T AA
0 =

1 −
�
kA

on f ′1 + kB
on f ′2

�
L/2 + 2 f ′2NA + 2 f∆AA

kA
on + 2NA

, (B27)

and for the BTB junction,

TBB
0 =

1 −
�
kA

on f ′1 + kB
on f ′2

�
L/2 + 2 f ′1MB + 2 f∆BB

kA
on + 2MB

. (B28)

APPENDIX C: SLIDING LENGTH
FOR ALTERNATING SEQUENCES

Consider a semi-infinite alternating AB sequence. The
dynamics in this system is the same as in the main text for
the DNA sequence of the finite length. Now we estimate the
probability to reach the site n at time t. This function satisfies
the forward master equation and in the case of alternating AB
sequence, we can write




dPA
n (t)
dt

= uB{PB
n−1 + PB

n+1} + kA
onP0 − (2uA + kA

off )PA
n ,

n = 1,3,5, . . . ,

dPB
n+1(t)
dt

= uA{PA
n + PA

n+2} + kB
onP0 − (2uB + kB

off )PB
n+1.

(C1)

For simplicity, we concentrate on the stationary process when
dP/dt = 0. Now the probability depends only on n. We can
obtain Pn by solving




uB

�
PB
n−1 + PB

n+1

�
+ kA

onP0 − (2uA + kA
off )PA

n = 0,
n = 1,3,5, . . . ,

uA

�
PA
n + PA

n+2

�
+ kB

onP0 − (2uB + kB
off )PB

n+1 = 0.

(C2)

We look for the solution in the form




PA
n = A1xn + B1, n = 1,3,5, . . . ,

PB
n+1 = A2xn+1 + B2.

(C3)

The probability function is an exponentially decaying function
of the distance, Pn ∼ exp(−n/λ), and the corresponding
correlation length λ can be estimated as λAB = −1/ log x.
After the substitution of Eq. (C3) into Eq. (C2), we determine

the constants B1 and B2,




2uBB2 + kA
onP0 = (2uA + kA

off )B1,

2uAB1 + kB
onP0 = (2uB + kB

off )B2.
(C4)

Then, dividing the first equation in Eq. (C2) by xn−1 and the
second one by xn, we obtain




A2uB(1 + x2) = A1x(2uA + kA
off ),

A1uA(1 + x2) = A2x(2uB + kB
off ).

(C5)

Thus, the constants A1 and A2 are related with each other, and
we can introduce a new function

Q ≡ A2

A1
=


uA(2uA + kA

off )
uB(2uB + kB

off )
. (C6)

Applying this to Eq. (C5) leads to

x =
2uA + kA

off −

(2uA + kA

off )2 − 4uBQ

2uBQ
. (C7)

Recall that uB = ue−ε and kB
off = koffe(θ−1)ε. Also, for a

homogeneous chain, the correlation length (sliding length)
is equal to λ =


u/koff .43 Therefore, in the continuous limit,

where λ ≫ 1, using simple transformations, we derive

Q = eε


1 + 1/2λ2

1 + eθε/2λ2

λ≫1≃ eε


1 +
1

4λ2

�
1 − eθε

�
, (C8)

and correspondingly,

x ≃ 1 − 1
λ


1 + eθε

2
. (C9)

Finally, we obtain

λAB = −
1

log x
≃
√

2λ
√

1 + eθε
. (C10)

From this, the important conclusion is that λ ≥ λAB ≥ λB

= λe−θε/2.
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