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Molecular search phenomena are observed in a variety of chemical and biological systems. During the
search, the participating particles frequently move in complex inhomogeneous environments with ran-
dom transitions between different dynamic modes. To understand the mechanisms of molecular search
with alternating dynamics, we investigate the search dynamics with stochastic transitions between two
conformations in a one-dimensional discrete-state stochastic model. It is explicitly analyzed using the
first-passage time probability method to obtain a full dynamic description of the search process. A
general dynamic phase diagram is developed. It is found that there are several dynamic regimes in the
molecular search with conformational transitions, and they are determined by the relative values of
the relevant length scales in the system. Theoretical predictions are fully supported by Monte Carlo
computer simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5051035

I. INTRODUCTION

Many chemical and biological processes involve molec-
ular search that frequently takes place in complex inhomo-
geneous media, leading to random changes in the dynamic
properties of the participating particles.1,2 For instance, in
the heterogeneous chemical catalysis, the reacting molecules
alternate between the fluid phase and the solid surface of the
catalyst before the reaction is completed.3 Similar alternating
dynamics is observed in gene activation by proteins, where
the transcription factors associate with specific sequences on
DNA.4 Experimental studies showed that this process is a com-
bination of three-dimensional (3D) diffusion in the bulk solu-
tion and one-dimensional (1D) sliding along the DNA chain.4

Such molecular search processes with alternating dynam-
ics are known as intermittent searches, and in recent years,
they have been intensively studied both experimentally and
theoretically.1,2,5–22

The most intriguing feature of the processes with the
intermittent search is the random switching of the molecules
between different dynamic states. This observation raises sev-
eral fundamental questions on the mechanisms of such com-
plex processes. Why do natural processes frequently exhibit
such complex dynamics? How do these stochastic transi-
tions specifically affect the dynamics? Is the overall dynamics
always accelerated by these alternating dynamics? These ques-
tions have been discussed before, but the overall molecular pic-
ture for the mechanisms of the processes with the intermittent
search remains not fully understood.1,2,15,23

One of the simplest intermittent search systems is the 1D
case where the reacting molecule searches for the target while

Note: This article is part of the Special Topic “Markov Models of Molecular
Kinetics” in J. Chem. Phys.

moving along a line and alternating between several conforma-
tions with different dynamic properties. This model is relevant
for the understanding of how the transcription factors already
bound to DNA can locate the specific target sequences. It was
shown experimentally that the protein-DNA complexes have
different conformations, leading to the variable strength of
the protein-DNA interactions during the search process.24–26

When the protein molecule weakly interacts with the DNA
chain, it can diffuse rapidly, and this is known as a search con-
formation. But the target can be found only in a so-called recog-
nition conformation when the protein interacts stronger with
DNA while diffusing slower. Apparently, alternating between
two conformations might help proteins to find the target faster
at some conditions.27

The molecular search with conformational transitions in
1D systems was theoretically considered before.28–34 In Refs.
28–31, the authors presented a continuum model, where the
searcher diffuses with alternating diffusivity in the continuum
space. However, the analysis was performed only for the search
times at one specific location of the target. In addition, in the
limit of very small diffusivity in the recognition conforma-
tional state, the search times become infinitely large, which
is physically unreasonable. This shows that the application of
this approach for real biological processes is problematic at
these conditions. It has been argued before that a more gen-
eral discrete-state description is required to properly analyze
biochemical search processes.35 In Ref. 32, the search dynam-
ics in both continuous and discrete space was analyzed. It
was assumed that the molecule can switch between the two
regimes: a diffusion conformation from which the target can
be found and a so-called teleportation conformation where
the searcher can jump to any location in the system, but the
target cannot be found. However, the motion in the fast tele-
portation mode was not considered explicitly, and this also
limited the applicability of this model. In Ref. 33, the authors
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considered an infinite lattice of discrete states which are
visited by the searching molecules. But the explicit analysis
was performed only in the limiting cases with the assumption
of conformational equilibrium which restricts the applicability
of this approach to real biological systems. Our previous stud-
ies of this process investigated 1D conformational changes
coupled to the bulk diffusion, and only limiting cases were
analyzed.34

In this paper, we present a general theoretical approach
to describe the molecular search with conformational transi-
tions in one dimension. The searcher molecule stochastically
transitions between two dynamic modes with different hop-
ping rates on the lattice, and it can recognize the target only
in one of the conformational states. Using a method of first-
passage probabilities, a full dynamic description of the system
is obtained, and we concentrate on explicit calculations of the
mean search times. By exploring all parameter ranges, several
dynamic regimes are identified and described. It is argued that
these different regimes are specified by the dominating length
scales in the system. Our theoretical analysis is also supported
by Monte Carlo computer simulations.

The paper is organized as follows. We introduce the model
in Sec. II, and the main results are presented in Sec. III.
In Sec. IV, we identify two limiting cases for which physi-
cally transparent solutions are obtained. Finally, we summarize
and conclude in Sec. V. The details of the calculations are
presented in the Appendix.

II. THEORETICAL MODEL

We consider the search of a single molecule for a target
site in the one-dimensional lattice of discrete sites, as shown
in Fig. 1. While the immobile target is located at a single site
of the lattice, the searcher molecule diffuses along the lat-
tice. During the process, the molecule can randomly switch
between two conformational states: the recognition mode and
the search mode. In the recognition mode (labeled as state 1),
the molecule can recognize the target site, and it moves with
the hopping rate µ1 with equal probability in both directions.
In the search mode (labeled as state 2), it cannot recognize
the target, but its diffusional hopping rate in this state is µ2,
which is generally different from the rate µ1. The stochastic
switching between two conformations follows the exponential

FIG. 1. A schematic view of the molecular search for a target with confor-
mational change. (Top) The molecule switches between two states, and it can
recognize the target only when in state 1. The transition rates between two
states are kon and koff. (Bottom) The hopping rates on the lattice are µ1 and
µ2 depending on the state of molecule.

waiting-time distributions with the rate kon (from the search
mode to the recognition mode) and koff (from the recognition
mode to the search mode); see Fig. 1. The number of lattice
sites is 2L + 1 which is labeled as n = −L, −L + 1, . . ., 0, . . .,
L − 1, L. We consider reflecting boundary conditions on both
sides of the lattice, and for convenience, the target is located
at the center (n = 0), although our analysis can be extended for
any location along the lattice.

To describe the search dynamics in this system, we employ
the method of first-passage probabilities that was successful
in analyzing various problems related to protein search for
targets on DNA.27,34–37 We start by defining the first-passage
time probability density function F i(n, t) to reach the target at
time t given that the molecule was at site n as in the ith state
(i = 1 or 2) at time t = 0. The temporal evolution of the first-
passage probability functions is governed by the backward
master equations,38

∂F1(n, t)
∂t

= µ1[F1(n − 1, t) + F1(n + 1, t)] + koffF2(n, t)

− (2µ1 + koff)F1(n, t), (1)

∂F2(n, t)
∂t

= µ2[F2(n − 1, t) + F2(n + 1, t)] + konF1(n, t)

− (2µ2 + kon)F2(n, t), (2)

for −L < n < L. The physical meaning of these equations is
that all trajectories starting on the site n and reaching the target
can be divided into three groups: going first to the site n − 1,
going first to the site n + 1, or switching first to another confor-
mation in the site n. At the boundaries (n = ±L), the equations
are slightly different to reflect the geometry of these loca-
tions (see the Appendix). The initial condition is F1(n = 0, t)
= δ(t), which means that if the initial position of the molecule
is at the target site in the conformational state 1, it finds the
target instantaneously.

To solve these equations, we apply the Laplace trans-
form, F̃i(n, s) ≡ ∫

∞
0 Fi(n, t) exp(−st)dt, where s is the Laplace

variable. Then the above master equations can be rewritten
as

(s + 2µ1 + koff)F̃1(n, s) = µ1[F̃1(n − 1, s) + F̃1(n + 1, s)]

+ koffF̃2(n, s), (3)

(s + 2µ2 + kon)F̃2(n, s) = µ2[F̃2(n − 1, s) + F̃2(n + 1, s)]

+ konF̃1(n, s). (4)

The equations at the boundary are slightly different; see the
Appendix. The initial condition in the Laplace domain is now
given as F̃1(n = 0) = 1. These coupled second-order dif-
ference equations can be solved by transforming them into
a single fourth-order difference equation. The details of the
calculations are presented in the Appendix. Once we obtain
F̃i(n, s), it is straightforward to compute all dynamic proper-
ties in the system. Let us concentrate on the mean search times,
or mean-first passage times, which can be obtained from

Ti(n) =
∫ ∞

0
tFi(n, t)dt = −

∂F̃i(n, s)
∂s

|s=0. (5)
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III. RESULTS AND DISCUSSION

Our theoretical method allows us to calculate the mean
search times T i(n) for arbitrary kinetic parameters, for any
location of the target, and for any lattice size L. To be specific,
let us put the target in the middle of the lattice (n = 0) and
assume that at t = 0 the molecule with equal probability can
start from any site in the search conformation (i = 2). We will
evaluate the position average search time,

T = 〈T2(n)〉 =
1

2L + 1

L∑
n=−L

T2(n), (6)

for various sets of kinetic parameters. It is important to note
that there are four length scales in the system that are governing
the search dynamics. The first one is the size of the lattice L, the
next one is the size of the target, which takes the single lattice
site, and the last two are scanning lengths λ1 and λ2, which
are defined as λ1 ≡

√
µ1/koff and λ2 ≡

√
µ2/kon. The physical

meaning of these scanning lengths is the average distance that
the molecule moves along the lattice in one conformational
state before switching to the other state.

The results of our calculations for different ranges of
kinetic parameters are presented in Figs. 2 and 3. We start
with investigating the dependence of the search dynamics on
the scanning lengths, and first we consider how the search
time T varies as a function of λ1 in Fig. 2(a). One can iden-
tify three different dynamic regimes here. For λ1 > L, the
results converge and the mean search times become indepen-
dent of the hopping rate in the search conformation µ2 and
the switching rates between the conformations. This result is
easy to understand because for large λ1 the searching molecule
remains mostly in the recognition mode (state 1), and it can find
the target without exploring the search conformation (state 2).
Another dynamic behavior is observed for λ1 < 1. Here the
molecule spends most of the time in the search conformation
(state 2), with very rare switchings to the recognition mode
(state 1). This explains the independence of the mean search
time from the scanning length λ1. Also, in this regime, the
target can be reached mostly by the conformational transition
from the site n = 0 in the search mode, and the faster the
hopping rate µ2, the higher the probability for this to happen
because this site will be visited more frequently. The interme-
diate dynamic behavior is observed between these two limiting
cases, when 1 < λ1 < L, and the search involves scanning of

the lattice in both conformations and frequent changes between
them.

Analyzing the dependence of the mean search time on
the scanning length λ2, as shown in Fig. 2(b), three dynamic
phases are again observed. For λ2 < 1, no dependence on the
scanning length is found because the searcher is mostly in state
1 (recognition), and it can find the target without switching to
another conformation. In addition, the faster you move in this
mode (larger µ1), the sooner the target will be located. The
dynamics is different for λ2 > L because the system spends
most of the time in the search conformation (state 2) from
which the target cannot be located. Decreasing the switching
rate kon (larger λ2) will make finding the target even more
difficult. But at the same time, increasing the hopping rate
µ1 will accelerate the search because after the rare switch to
the recognition mode the target can be found before switching
back to the search mode. The dynamic regime when 1< λ2 < L
exhibits the intermediate dynamic behavior between these two
limiting cases, as expected. In this regime, the mean search
time T can be significantly shorter than those of two other
regimes, and we argue that it is because the searcher molecule
can explore the space fast without much losing its recognition
ability of the target. One can also see this from the fact that
the most optimal conditions for the search are achieved for
the conformational transition rates that is not too slow or too
fast.

In a recent paper,39 the authors analyzed the hOGG1
protein diffusion on a DNA molecule. By using an optimal
estimator of diffusion, they showed that the experimental
data are consistent with the diffusion with switching con-
formation with different diffusivity. It is estimated that the
protein spends a similar time in the fast search mode and
slow recognition mode, and the diffusion constant for the for-
mer is about three to ten times faster than that of the latter.
In our language, kon ' koff and µ2 ' (3 − 10)µ1. Intrigu-
ingly, in our model, for the case of µ2 = 10µ1, the search
time is minimum when kon ' koff, indicating that the pro-
tein moves with the optimal parameters that can minimize
the search time; see Fig. 2(b), blue line. This also opens a
question if other DNA-binding proteins with conformational
transitions search for their target with the optimal kinetic
parameters.

It is interesting to note that the conformational transi-
tions dominate in the intermediate dynamic regimes (1 < λ1,

FIG. 2. The position-averaged mean
search time T as a function of the
scanning lengths λ1 and λ2. (a) Here
kon = µ1 = 10 and three different val-
ues of µ2 are utilized. We varied koff
to change λ1. (b) Here µ2 = 100, koff
= 10, and three different values of µ1
are utilized. We varied kon to change λ2.
The solid lines are from the exact formu-
las, and the symbols are from the Monte
Carlo computer simulations. The lattice
size is 2L + 1 = 101, and the target is at
the center of the lattice.
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FIG. 3. The position-averaged mean
search times T as a function of the hop-
ping rates in different conformations.
(a) Here µ2 = 100 and koff = 1 and
three values of kon are utilized. (b) Here
µ1 = 100 and kon = 1 and three values of
koff are utilized. The solid lines are from
the exact formulas, and the symbols are
from the Monte Carlo computer simula-
tions. The lattice size is 2L + 1 = 101, and
the target is at the center of the lattice.

λ2 < L), but this does not always lead to the most optimal
search dynamics: see the two upper curves in Fig. 2(a) and
the lower curve in Fig. 2(b). It can only happen if switching
helps explore the phase space more rapidly. This suggests that
in the chemical and biological systems with the alternating
dynamics there is an optimal range of the transition rates that
can accelerate the search dynamics. Thus, in contrast to some
widely expressed views, it is generally not valid to claim that
just engaging in the stochastic switching will always accelerate
the search dynamics.

To explore more the dynamic properties of the system with
stochastic switchings between conformations, we calculate the
dependence of the search times on the hopping rates µ1 and
µ2, and the results are presented in Fig. 3. One can see that for
relatively small values of µ1 (hopping rate in the recognition
mode) the mean search times do not depend on them because
in this case the system is mostly found in the search mode and
the target can be reached via the stochastic transition at n =
0 [Fig. 3(a)]. Only for larger values of µ1, the target can also
be reached from sliding along the lattice in the recognition
mode, and increasing µ1 lowers the search time. A different
behavior is observed for the dependence of T as a function of

FIG. 4. Dynamic phase diagram for the molecular search with stochastic con-
formational transitions. The calculations used the lattice size 2L + 1 = 101,
kon = koff = 100, and we varied µ1 and µ2. The color map shows the values
of the position averaged mean search times T. Lines schematically separate
different dynamic regimes.

µ2; see Fig. 3(b). Increasing the hopping rate µ2 (the hopping
rate in the search mode) accelerates the search because the
system can explore faster the overall space, while for large
µ2, the search dynamics becomes independent of the hopping
rate. In this case, other processes (stochastic transition from
the search mode to the recognition mode at the site n = 0) are
the rate-limiting step in the search process. It is also clear that
T is independent of µ2 for large values of λ1; see the lower
curve in Fig. 3(b). This corresponds to the situation when the
molecule is almost always in the recognition mode, and the
target can be found without going into another conformational
state.

Our theoretical analysis fully agrees with Monte Carlo
computer simulations, and it suggests that the dynamic behav-
ior in the system is determined by the relative values of the
several length scales such as the scanning length λ1, λ2, the
size of the system L, and the size of the target site (taken to be
equal to unity). Combining these considerations together, we
develop a general dynamic phase diagram for the molecular
search with stochastic conformational transitions. The results
are presented in Fig. 4. One can see that up to nine dynamic
phases can be identified, showing a very rich behavior even in
the relatively simple system with conformational transitions
between only two modes.

IV. LIMITING CASES

Although our theoretical method provides explicit solu-
tions for all ranges of kinetic parameters, to explain better the
molecular search with alternating dynamics, it is convenient to
consider some limiting cases. In these situations, more trans-
parent analysis can be performed, which might clarify better
the mechanisms of the search processes with stochastic tran-
sitions. There are two cases, corresponding to λ1 � λ2 and
λ2 � λ1, which can be treated this way.

A. λ1 � λ2 case

In this regime, the molecule spends most of the time in the
recognition mode with occasional rare transitions to the search
mode, in which it does not slide and switches back. Then the
dynamics can be well described by assuming µ2 = 0. Using
this result in Eq. (2) leads to

∂F2(n, t)
∂t

= konF1(n, t) − konF2(n, t), (7)
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which in the Laplace domain can be written as

(s + kon)F̃2(n, s) = konF̃1(n, s). (8)

Now analyzing Eqs. (3) and (4) for µ2 = 0 corresponds to
solving a second-order difference equation instead of the
much more complex fourth-order difference equation for the
general situation. A similar analysis has been performed
in previous studies on the protein search for targets on
DNA.27,34,35

We assume that the general solution is of the form
F̃1(n) ' Axn, which leads to a quadratic equation

µ1(s + kon)x2 −
[
s2 + s(2µ1 + kon + koff) + 2µ1kon

]
x

+ µ1(s + kon) = 0, (9)

with roots given by

x1 =
s2 + s(2µ1 + kon + koff) + 2µ1kon −

√
D

2µ1(s + kon)
, x2 = 1/x1,

(10)
while the parameter D is equal to

D =
[
s2 + s(2µ1 + kon + koff) + 2µ1kon

]2
− 4µ2

1(s + kon)2. (11)

Then the general solution is F̃1(n) = A1xn
1 + A2x−n

1 , where x1 is
given by Eq. (10) and A1 and A2 are the unknown coefficients
that can be determined from the boundary conditions. The
final expression for the first-passage probability function (in
the Laplace form) is

F̃1(n) =
x2L+n

1

x2L
1 + 1

+
x−n

1

x2L
1 + 1

. (12)

This yields the following expression for the mean search time
from the site n in the recognition conformation,

T1(n) =
|n|(2L + 1 − |n|)

2µeff1
, (13)

where µeff1 = µ1/(1 + koff/kon). This result has a simple physical
interpretation. It describes the mean first-passage time of find-
ing the target (which is at the origin) starting from the site n by
purely 1D motion in the segment of size (2L + 1) with the effec-
tive hopping rate µeff1. In this regime, the molecule explores
the lattice mostly in the search conformation with the occa-
sional switchings to the immobile recognition mode. At large
times, the system reaches the effective equilibrium between
two conformations because the particle does not slide in the
recognition mode. Therefore the hopping rate is rescaled by
an equilibrium fraction of finding the molecule in the search
configuration, f = kon

kon+koff
.

Finally, it can be shown that the position-average mean
search time is

T =
1

kon
+

1
2L + 1

1
µeff1

L∑
n=1

n(2L + 1 − n). (14)

The first term corresponds to the transition time from state 2
to state 1, and the second term corresponds to 1D search time
with effective hopping rate µeff1. It can be shown that these
results fully agree with exact calculations in the limit of very
small λ2.

B. λ1 � λ2 case

Exact calculations can also be performed in the opposite
limit when the searching molecule moves along the lattice
mostly in the search mode with occasional switchings to the
recognition mode. In this regime, the target is reached only
via the conformational transitions from the site n = 0, and we
can approximate the dynamics as µ1 = 0, modifying Eq. (1)
as

∂F1(n, t)
∂t

= koffF2(n, t) − koffF1(n, t). (15)

Again using the Laplace transformations, the mean search time
T can be explicitly evaluated. The final expression is

T2(n) =
1

2µeff2
|n|(2L − |n| + 1) +

[
2L + 1

kon
+

2L
koff

]
, (16)

where µeff2 = µ2/(1 + kon/koff). Here the first term describes
the mean time to travel from the initial position n to the site
n = 0 in the search conformation, and the second term cor-
responds to the time of conformational transition from state
2 to state 1 and return back to the search conformation. The
number of transitions from state 2 to state 1 is 2L + 1, while
the number of reversed transitions is less by one because the
last transition to the recognition mode is going to be directly
to the target, which ends the search process. It can be shown
explicitly that these results agree with the full solutions in this
limit.

V. SUMMARY AND CONCLUSIONS

We presented a comprehensive theoretical analysis of the
one-dimensional discrete-state stochastic model of the molec-
ular search with random conformational transitions. Stimu-
lated by biological processes of protein-DNA interactions,
this model also serves as a general testing ground for under-
standing the role of the intermittent search phenomena in
complex natural systems. Using the method of first-passage
probabilities, we were able to obtain the explicit quantitative
description of the dynamics for all ranges of kinetic param-
eters. It has been argued that four length scales specify the
dynamic phase diagram in this system. They include the size
of the target site, the size of the system, and the two scan-
ning lengths in different conformations. A general dynamic
phase diagram that describes all possible search behaviors is
constructed. It is found that the stochastic transitions between
two conformations might optimize the search dynamics at
the conditions when the switching leads to a more rapid
exploration of the phase space without too much losing the
recognition ability. Our theoretical calculations also show that
the acceleration does not always happen, indicating that the
intermittent search is not always the most efficient dynamic
regime. In addition, because our model is one-dimensional,
any changes in the dynamic properties cannot be associated
with the “lowering of dimensionality” arguments that are
widely expressed in the literature for the intermittent search
phenomena.5

The presented theoretical model gives a clear picture of
how the stochastic switching is affecting the search dynamics
and clarifies many aspects of the intermittent search process.
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However, it is important to note that this model needs to be
improved to make it more realistic. In particular, one needs to
include the reversible desorption and rebinding events to make
it more applicable to real biological phenomena.30,31,34,39 It
will be interesting to test these theoretical predictions in exper-
imental systems as well as in the more advanced theoretical
descriptions. While the motivation of our model is the sin-
gle protein search for a target, it can be extended to the
case of multiple interacting search molecules, which can help
explain recent studies on the dynamic clustering of activating
transcription factors.40
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APPENDIX: DETAILS OF CALCULATIONS

Here we describe the details of the first-passage probabil-
ity calculations to evaluate the search dynamics. We define the
first-passage time probability density to find the target with the
initial position n at time t = 0 in state i (=1 or 2) as F i(n, t). The
number of lattice sites is 2L + 1, labeled as −L, −L + 1, . . .,
0, . . ., L − 1, L. We consider the target at the center of the
lattice, n = 0. The evolution of F i(n, t) follows the following
backward master equations:34,35

∂F1(n, t)
∂t

= µ1[F1(n − 1, t) + F1(n + 1, t)] + koffF2(n, t)

− (2µ1 + koff)F1(n, t), (A1)

∂F2(n, t)
∂t

= µ2[F2(n − 1, t) + F2(n + 1, t)] + konF1(n, t)

− (2µ2 + kon)F2(n, t), (A2)

for −L < n < +L. At the boundary n = −L, we have

∂F1(−L, t)
∂t

= µ1F1(−L + 1, t) + koffF2(−L, t)

− (µ1 + koff)F1(−L, t), (A3)

∂F2(−L, t)
∂t

= µ2F2(−L + 1, t) + konF1(−L, t)

− (µ2 + kon)F2(−L, t). (A4)

Similar equations can be written for n = L.
Now the Laplace transform, F̃i(n, s) ≡ ∫

∞
0 Fi(n, t)

exp(−st)dt, where s is the Laplace variable, can be applied for
all master equations to transform them from the differential
equations into algebraic equations. This leads to

(s + 2µ1 + koff)F̃1(n) = µ1[F̃1(n − 1) + F̃1(n + 1)] + koffF̃2(n),

(A5)

(s + 2µ2 + kon)F̃2(n) = µ2[F̃2(n − 1) + F̃2(n + 1)] + konF̃1(n).

(A6)

These expressions form a system of two coupled second-order
difference equations. To solve this system, these two equations
can be combined to make them a single fourth-order difference
equation. This procedure yields

F̃1(n) =
(s + 2µ2 + kon)

kon
F̃2(n) −

µ2

kon
[F̃2(n − 1) + F̃2(n + 1)].

(A7)
Substituting this into Eq. (A5) yields

(a1a2 + 2µ1µ2 − konkoff)F̃2(n)

= (a1µ2 + a2µ1)[F̃2(n − 1) + F̃2(n + 1)]

− µ1µ2[F̃2(n − 2) + F̃2(n + 2)], (A8)

where new auxiliary functions are defined as a1 ≡ s + 2µ1 + koff

and a2 ≡ s + 2µ2 + kon. Now, introducing A ≡ a1a2 + 2µ1µ2

− konkoff, B ≡ a1µ2 + a2µ1, and C ≡ µ1µ2, we can rewrite
Eq. (A8) in the more compact form

AF̃2(n) = B[F̃2(n − 1) + F̃2(n + 1)]

−C[F̃2(n − 2) + F̃2(n + 2)]. (A9)

To solve this equation, we assume that the solution is of the
form F̃2(n) = αxn, and substituting this into Eq. (A9) gives a
quartic equation,

Cx4 − Bx3 + Ax2 − Bx + C = 0. (A10)

It can be shown that it has four roots of the form (x1, 1/x1, x2,
1/x2), and xi (i = 1 or 2) might be a complex number. Then the
general solution is F̃2(n) = A1xn

1 + A2x−n
1 + B1xn

2 + B2x−n
2 . We

need to determine the four unknown coefficients (A1, A2, B1,
and B2) by using the following boundary conditions:

(1) At n = −L, the corresponding master equations in the
Laplace domain are

[s + µ1 + koff]F̃1(−L) = µ1F̃1(−L + 1) + koffF̃2(−L), (A11)

[s + µ2 + kon]F̃2(−L) = µ2F̃2(−L + 1) + konF̃1(−L). (A12)

Substituting Eq. (A12) into Eq. (A11) gives

[s + µ1 + koff]
[
(s + µ2 + kon)F̃2(−L) − µ2F̃2(−L + 1)

]
= µ1

[
(s + 2µ2 + kon)F̃2(−L + 1) − µ1

(
F̃2(−L)

+ F̃2(−L + 2)
)]

+ konkoffF̃2(−L). (A13)

This can be written as[
(s + µ1 + koff)(s + µ2 + kon) + µ1µ2 − konkoff

]
F̃2(−L)

=
[
(s + µ1 + koff)µ2 + µ1a2 )

]
F̃2(−L + 1)

−µ1µ2F̃2(−L + 2). (A14)

This is the first boundary condition.
(2) The master equations for the site n = −L + 1 in two

conformational states are

a1F̃1(−L + 1) = µ1[F̃1(−L) + F̃1(−L + 2)] + koffF̃2(−L + 1),

(A15)

a2F̃2(−L + 1) = µ2[F̃2(−L) + F̃2(−L + 2)] + konF̃1(−L + 1).

(A16)
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We can also rewrite the master equations for the sites n = −L,
n = −L + 1, and n = −L + 2,

konF̃1(−L + 1) = a2F̃2(−L + 1) − µ2[F̃2(−L) + F̃2(−L + 2)],

konF̃1(−L) = (s + µ2 + kon)F̃2(−L) − µ2F̃2(−L + 1),

konF̃1(−L + 2) = a2F̃2(−L + 2)− µ2[F̃2(−L + 1) + F̃2(−L + 3)].

(A17)

Substituting them into Eq. (A15) yields

a1
[
a2F̃2(−L + 1) − µ2{F̃2(−L) + F̃2(−L + 2)}

]
= µ1

[
(s + µ2 + kon)F̃2(−L) − µ2F̃2(−L + 1)

+ a2F̃2(−L + 2) − µ2{F̃2(−L + 1) + F̃2(−L + 3)}
]

+ konkoffF̃2(−L + 1), (A18)

which can be simplified as[
a1µ2 + (s + µ2 + kon)µ1

]
F̃2(−L) −

[
a1a2 + 2µ1µ2 − konkoff

]
× F̃2(−L + 1) +

[
a1µ2 + a2µ1

]
F̃2(−L + 2)

−µ1µ2F̃2(−L + 3) = 0. (A19)

This is the second boundary condition.
(3) The additional boundary condition is associated with

the dynamics at the target site because F̃1(n = 0) = 1.
Equation (A6) with n = 0 is

a2F̃2(0) = µ2(F̃2(−1) + F̃2(1)) + kon. (A20)

Because of the symmetry of the system, F̃2(−1) = F̃2(1) so
that the above equation simplifies into

a2F̃2(0) = 2µ2F̃2(−1) + kon. (A21)

This is the third boundary condition.
(4) From master equations for n = −1 and n = −2, one can

derive

konF̃1(−1)=a2F̃2(−1) − µ2{F̃2(−2) + F̃2(0)},

konF̃1(−2)=a2F̃2(−2) − µ2{F̃2(−3) + F̃2(−1)}.
(A22)

From Eq. (A5) with n = −1, we have

a1F̃1(−1) = µ1{F̃1(−2) + F̃1(0)} + koffF̃2(−1). (A23)

Substituting Eq. (A22) into Eq. (A23) yields

a1
[
a2F̃2(−1) − µ2{F̃2(−2) + F̃2(0)}

]
= µ1

[
a2F̃2(−2) − µ2{F̃2(−3) + F̃2(−1)}

]
+ µ1kon + konkoffF̃2(−1), (A24)

which can be further simplified as

µ1µ2F̃2(−3) − (a1µ2 + a2µ1)F̃2(−2) + (a1a2 + µ1µ2 − konkoff)

× F̃2(−1) − a1µ2F̃2(0) = µ1kon. (A25)

This is the fourth boundary condition.

These boundary conditions are considered together, and
numerical solutions are obtained for the unknown coefficients
A1, A2, B1, and B2. Then Eq. (5) is utilized for explicit
calculations of the mean search times.
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