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ABSTRACT
Molecular motion through pores plays a crucial role in various natural and industrial processes. One of the most fascinating features of biolog-
ical channel-facilitated transport is a stochastic gating process, when the channels dynamically fluctuate between several conformations during
the translocation. Although this phenomenon has been intensively investigated, many properties of translocation in a dynamically changing
environment remain not well understood microscopically. We developed a discrete-state stochastic framework to analyze the molecular mech-
anisms of transport processes with stochastic gating by explicitly calculating molecular fluxes through the pores. Two scenarios are specifically
investigated: (1) symmetry preserving stochastic gating with free-energy changes and (2) stochastic gating with symmetry changes but with-
out modifications in the overall particle-pore interactions. It is found that stochastic gating can either accelerate or slow down the molecular
translocation depending on the specific parameters of the system. We argue that biological systems might optimize their performance by
utilizing conformational fluctuations of channels. Our theoretical analysis clarifies physical-chemical aspects of the molecular mechanisms of
transport with stochastic gating.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086224

I. INTRODUCTION

Molecular transport via channels is critically important in mul-
tiple biological processes where metabolites and nutrients must be
moved between different cellular compartments and delivered to
specific locations.1 It is also crucial in many industrial processes, e.g.,
in those that involve the separation of chemical mixtures and water
purification.2,3 The importance of translocation through pores stim-
ulated extensive theoretical studies to uncover the underlying molec-
ular mechanisms.3–12 But many questions remain open. Specifically,
most of the existing theoretical studies of channel-facilitated molec-
ular transport concentrate on investigating systems, where inter-
actions between particles and the channel are constant over the
time. However, biological cells are very dynamic non-equilibrium
systems, where inter-molecular interactions frequently change as a

result of passive or active regulation processes. For instance, ion
channels are largely regulated in biological cells by varying the mem-
brane potentials and by changing the dynamics of ligands binding to
membrane receptors.13 As a result, the channel can undergo signifi-
cant conformational changes that might close or restrict the passage
of particles through it for some periods of time. This is known as a
stochastic gating phenomenon, and it is widely observed in biological
systems.1

Because it is extremely difficult to account for all processes in
channel transport at the atomistic level, most theoretical investiga-
tions follow coarse-grained, mesoscopic approaches, which can be
divided into two main categories.3–6,8 In one of them, the channel
transport is studied using a continuum diffusion model. It views
the translocation as a quasi one-dimensional motion in the effec-
tive potential created by interactions between the molecules and
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the pores.4,5 In cases when these effective potentials (and thus their
effect on particle diffusion) can be reasonably well evaluated, a quan-
titative description of the molecular translocation through pores
can be obtained using this methodology. An alternative approach
employs a discrete chemical-kinetic description, where the molec-
ular transport is represented as a sequence of chemical transitions
between different states that correspond to minima in the inter-
action potential (free-energy) profile.6,8,10 The advantage of this
approach is that some of these transition rates can be measured
in experiments on channel transport. A comprehensive theoretical
framework for investigation of chemical mechanisms of transloca-
tion and selectivity under stationary-state conditions was recently
developed based on this discrete-state kinetic approach.6,8,10 Impor-
tantly, it was also shown that both theoretical methods are mathe-
matically equivalent.6,8

Recently, stochastic gating has been investigated theoretically
using the continuum diffusion description.14–16 It was shown that
the stochastic gating can be successfully used as a selectivity mech-
anism for molecular translocation through pores, and the dynamics
of gating might strongly influence the channel transport. The steady-
state flux through the ensemble of identical channels with stochastic
gating was also analyzed. As a complementary approach, in this
work, we developed a simple theory of stochastic gating for parti-
cles traveling through molecular channels using the discrete-state
chemical-kinetic approach. Our goal is to understand the general
features of the stochastic gating and how it can optimize the molecu-
lar transport. Clearly, the most interesting phenomena are expected
in the regime when the stochastic gating times are comparable with
the channel translocation characteristic times. To investigate this
problem, we specifically consider two limiting situations: (1) when
the stochastic gating is associated with fluctuations in the free-energy
for a pore system that is always symmetric and (2) when the stochas-
tic gating changes the symmetry of the interaction potential with-
out overall modifications in the interaction strength between the
molecule and the pore. In both cases, we are asking the following
questions. Are changes associated with the stochastic gating bene-
ficial for the transport through the channel, i.e., do they increase
the flux relative to the stationary system without stochastic gat-
ing? Are there optimal conditions, such as particle concentrations
outside the channel, system transition rates, and particle-channel
interaction energies, that might maximize or minimize the flux? Is
there a possibility for a resonance activation, i.e., is there a special
rate of conformational transitions that leads to the maximal particle
current?

The paper is organized as follows. In Sec. II, we specifically ana-
lyze two different stochastic gating models. Using a simple chemical-
kinetic theory, we analytically solve for stationary properties of the
systems and determine the particle fluxes through the channel. Ana-
lytical results are utilized then to deduce the molecular features of
the system and the role of stochastic gating in the channel transport.
Section III provides summary and conclusions.

II. THEORETICAL METHOD AND RESULTS
A. Stochastic gating with free-energy change

Let us consider a molecular translocation via a pore, as shown
in Fig. 1. It is assumed that there is a constant concentration

FIG. 1. (a) A schematic view of the molecular transport via a conformationally
fluctuating channel in the model of stochastic gating with free-energy changes. (b)
A corresponding chemical-kinetic diagram for the model.

gradient between two sides of the channel, i.e., the concentration of
molecules to the left is taken to be equal to c at all times, while the
concentration on the right is always equal to zero. In addition, only
a single molecule can be found inside the pore, or the channel can be
empty. This corresponds to very strong repulsions between the par-
ticles.14 We also assume that the channel interacts with the translo-
cating molecule, and the pore can stochastically switch between two
conformational states (labeled as state 1 or state 2), where this inter-
action differs; see Fig. 1. We denote the forward and backward tran-
sition rates between states 1 and 2 as p and q, respectively (Fig. 1).
The difference in interaction energies between the channel and the
particle in both conformations is labeled as E, and it can take both
positive and negative values. The entrance rate to the channel when
it is in state i is equal to u(i)0 , and it is proportional to the concentra-
tion c: u(i)0 = ck(i)on , where i = 1, 2. The exit rate of the pore-bound
particle to pass to the right of the pore is equal to u(i)1 , while the
rate to exit back to the left of the channel is given by w(i)1 ; see
Fig. 1.

We define a function P(j)i (t) as a probability to find the sys-
tem at time t in a state in which the channel is in the conforma-
tional state i (i = 1 or 2) and the pore occupation is given by state
j (j = 0 corresponds to the empty channel, and j = 1 describes
the particle in the channel). The temporal evolution of these
probabilities is controlled by the following set of forward master
equations:

dP(0)1 (t)
dt

= −(u(1)0 + p)P(0)1 (t) + (u(1)1 + w(1)1 )P(1)1 (t) + qP(0)2 (t),

(1)

dP(1)1 (t)
dt

= −(u(1)1 + w(1)1 + p)P(1)1 (t) + u(1)0 P(0)1 (t) + qP(1)2 (t),

(2)

dP(0)2 (t)
dt

= −(u(2)0 + q)P(0)2 (t) + (u(2)1 + w(2)1 )P(1)2 (t) + pP(0)1 (t),

(3)
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dP(1)2 (t)
dt

= −(u(2)1 + w(2)1 + q)P(1)2 (t) + u(2)0 P(0)2 (t) + pP(1)1 (t). (4)

In addition, the normalization requires that at all times we have

P(0)1 (t) + P(1)1 (t) + P(0)2 (t) + P(1)2 (t) = 1. (5)

We are interested in stationary solutions, when dP(j)i (t)
dt = 0.

For this case, the set of Eqs. (1)–(5) can be solved analytically
(note that only four of these five equations are independent), and
the following expressions for stationary probabilities P(j)i can be
obtained:

P(0)1 =
1

p + q
×

q[(u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)1 + w(2)1 )]

[(u(1)0 + u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)0 + u(2)1 + w(2)1 )]
, (6)

P(1)1 =
1

p + q
×

q[u(1)0 (q + u(2)0 + u(2)1 + w(2)1 ) + pu(2)0 ]

[(u(1)0 + u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)0 + u(2)1 + w(2)1 )]
, (7)

P(0)2 =
1

p + q
×

p[(u(1)1 + w(1)1 )(q + u(2)1 + w(2)1 ) + (p + u(1)0 )(u(2)1 + w(2)1 )]

[(u(1)0 + u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)0 + u(2)1 + w(2)1 )]
, (8)

P(1)2 =
1

p + q
×

p[u(1)0 q + (p + u(1)0 + u(1)1 + w(1)1 )u(2)0 ]

[(u(1)0 + u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)0 + u(2)1 + w(2)1 )]
. (9)

Given these analytical expressions, we now can evaluate the
molecular flux through the channel in terms of the transitions rates
via

J = u(1)1 P(1)1 + u(2)1 P(1)2 . (10)

This gives the total flux of particles leaving the channel into the
right chamber from both possible channel conformations. Substi-
tuting Eqs. (7) and (9) into Eq. (10), we obtain the following general
analytical expression for the particle current:

J =
p(p + u(1)0 + u(1)1 + w(1)1 )u(2)0 u(2)1 + q(q + u(2)0 + u(2)1 + w(2)1 )u(1)0 u(1)1 + pq(u(1)0 u(2)1 + u(1)1 u(2)0 )

(p + q)[(u(1)0 + u(1)1 + w(1)1 )(q + u(2)0 + u(2)1 + w(2)1 ) + p(u(2)0 + u(2)1 + w(2)1 )]
. (11)

The transition rates in the system are not independent, and they
are connected to each other via detailed balance-like relations, which
can be stated in the following form:

u(2)0

w(2)1

=
u(1)0

w(1)1

eβE,
u(2)1

u(1)1

= e−βE,
p
q
= eβE. (12)

The physical meaning of these equations is simple: in the conforma-
tional state 2, the particle has energy lower by E (if E > 0), and the
transitions to the states with lower free energy are faster, while the
transitions to the states with higher free energy are slower. Similar
arguments can be presented for E < 0.

Using Eq. (12), we can simplify our notations and rewrite all
rates as

u(1)0 ≡ u0, w(1)1 ≡ w1, u(1)1 ≡ u1, (13)

u(2)0 = u0eβθE, w(2)1 = w1eβ(θ−1)E, u(2)1 = u1e−βE, (14)

p = p0eβθE, q = p0eβ(θ−1)E. (15)

Here, we introduced a parameter 0 ⩽ θ ⩽ 1, which describes the rela-
tive effect of the difference in the interaction energies E for forward
and backward transition rates. It is assumed that this coefficient is
the same for all transitions, which is generally not correct, but relax-
ing this condition will not change main physical predictions of our
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model. For convenience, from now on, we take p0 ≡ p. Consequently,
Eq. (11) can be simplified, leading to

J =
u0u1

1 + eβE
2p(1 + eβ(θ+1)E

)eβθE + Ueβ(θ+1)E + W
p(U + W)eβθE + UW

, (16)

where
U = u0 + u1 + w1, (17)

W = u0eβ(θ+1)E + u1 + w1eβθE. (18)

To simplify Eq. (16) even further, we assume that θ = 1/2—it can be
shown that relaxing this condition does not change the physics of
the problem. We also define a dimensionless interaction parameter
x ≡ eβE/2. Then, we obtain a final compact expression

J =
u0u1

1 + x2
2px(1 + x3

) + Ux3 + W
px(U + W) + UW

, (19)

where U is again given by Eq. (17) and

W = u0x3 + u1 + w1x. (20)

First, let us consider the particle current presented in Eq. (19)
in several limiting situations. When the entrance rate is very large
(u0 ≫ 1), exiting from the pore will be a rate-limiting step, and the
molecular flux has a very simple expression

J ≃
2u1

1 + x2 . (21)

When the exit rate is very large (u1 ≫ 1), the entrance to the channel
is a rate-limiting step, and another simple expression for the current
can be obtained

J ≃
2u0

1 + x2 . (22)

In both cases, the molecular flux is independent of the backward
transition rate w1 because the system does not have a chance for such
transitions at these limiting cases.

Equation (19) can now be analyzed to understand the gen-
eral features of the molecular transport via the pores. For x = 1
(or E = 0), when there are no free-energy differences between two
channel conformations, it reduces to

J0 =
u0u1

u0 + u1 + w1
. (23)

This is also the particle current for the system without the stochas-
tic gating since the conformational fluctuations do not affect the
particle-pore interactions. For x = 0 (or E→ −∞), when the molec-
ular flux in state 2 is completely blocked, we derive

J−∞ =
u0u1

u0 + u1 + w1
= J0. (24)

Again, this coincides with the particle current in the system without
the stochastic gating. In this case, there is a strong repulsion between
the particle and the channel in conformation 2, and the particle does
not enter the pore in this conformation because the system is mostly
in state 1. For x→ +∞ (or E→ +∞), we have

J+∞ ≈
2u1

x2 → 0. (25)

This result can be explained in the following way. The interaction
between the particle and the channel is much more attractive in state
2, so the system is mostly in this conformation. But then it cannot
pass the channel due to strong attractive interactions that trap the
molecule inside the pore, and this leads to zero molecular flux at
these conditions.

To quantify the effect of stochastic gating, one might consider
a normalized current using Eq. (23)

Jn =
J
J0
=

U
1 + x2

2px(1 + x3
) + Ux3 + W

px(U + W) + UW
. (26)

If the normalized current Jn is larger than one, then the stochastic
gating increases the channel flux, while for the case of Jn < 1, the
effect of stochastic gating is to decrease the particle current via the
pore.

To understand how modifying the speed of channel confor-
mations affects the molecular transport, we vary the parameter p,
which is proportional to the rate of conformational fluctuations.
Please note that changing this parameter will simultaneously modify
both forward and backward stochastic gating rates, as indicated in
Eq. (15) (recall that p0 = p). It is explicitly shown in Appendix A that
the derivative of J with respect to p is always positive for positively
defined transition rates u0, u1, andw1, and for all values of x. Thus, in
contrast to some naive expectations of optimal speed of conforma-
tional transitions, the particle current will always increase monoton-
ically with increasing frequency of conformational changes. This is
a physically clear result since increasing the rate of conformational
changes gives the particles more possibilities to cross the channel
without being trapped for significant periods of time in energetically
unfavorable states.

It is convenient to consider the limiting cases of very slow and
very fast conformational changes. When p→ 0, we obtain

Jn(p→ 0) =
Ux3 + W
(1 + x2)W

=
2u0x3 + u1(1 + x3

) + w1x(1 + x2
)

(1 + x2)(u0x3 + u1 + w1x)
,

(27)

while for p→ +∞, the normalized flux is given by

Jn(p→∞) =
2(1 + x3

)

1 + x2
U

U + W

=
2(1 + x3

)

1 + x2
u0 + u1 + w1

u0(1 + x3) + 2u1 + w1(1 + x)
. (28)

One can also see that Jn(p → 0) and Jn(p → ∞) can both take
values smaller and larger than 1; however, Jn(p → ∞) ≥ Jn(p → 0),
with equality only possible for x = 1 (the situation without stochastic
gating).

Our theoretical results for the dependence of the particle cur-
rent on the speed of conformational fluctuations are presented in
Fig. 2 for various sets of parameters. As explained above, the molec-
ular fluxes always increase for faster conformational transitions. In
some cases, the normalized current exceeds one (starting below
one), suggesting that the stochastic gating can improve the channel-
facilitated molecular transport. However, in other cases, it is always
less than one, and the stochastic gating cannot optimize the molec-
ular fluxes at these conditions. It seems that in most situations the
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FIG. 2. Plots of normalized current J/J0
as a function of the parameter p, which
is proportional to the rate of confor-
mational transitions, for the model of
the stochastic gating with changing free-
energy. For calculations, we used [(a)
and (b)] u0 = u1 = w1, [(c) and (d)]
u0 < < u1, w1 = u1, and [(e) and (f)]
u0 > > u1, w1 = u1.

optimization might be achieved for x < 1 when opening the second
energetically less favorable conformation gives molecules another
pathway to translocate while not trapping them on their way out of
the channel [see Figs. 2(a) and 2(e)]. But there are also ranges of
parameters when the stochastic gating might optimize the dynamics
for x > 1 [Fig. 2(d)].

Another important factor in the channel-facilitated molecular
transport is the concentration gradient c between the entrance and
the exit from the pore. This is the driving force to move molecules
across the pore. In Appendix A, we calculated explicitly the deriva-
tives of J (full current) and Jn (normalized current) with respect
to c. Complex behavior is observed because the molecular flux for
the case of no stochastic gating, J0, also depends on the concen-
tration gradient. This leads to different behaviors for J and Jn. Our
calculations show that dJ/dc is always positive in our model. How-
ever, please note that in a more complex model that takes into
account inter-molecular interactions for translocating molecules the
non-monotonic dependence of the particle fluxes on concentration

gradient might be observed.17 But in our model this is an expected
result because for larger concentration gradients the translocation
driving forces are also stronger. At the same time, dJn/dc changes
sign at x = 1. It is found (see Appendix A) that Jn monotonically
increases with c for x < 1 and it decreases for x > 1. Figure 3
shows the dependence of currents Jn, J, J0 on the normalized rate
parameter u0/p, which is proportional to c, for different x values.
One can see that for x < 1 the normalized current Jn can start
below 1 [see Fig. 3(a)] and increase above one as the concentration
increases. However, for x > 1 [Fig. 3(b)], the opposite can happen.
These observations suggest that increasing the concentration gra-
dient can improve the molecular flux in the system with stochas-
tic gating if the new conformation is energetically less favorable
(x < 1).

The molecular transport via stochastically fluctuating pores
can also be influenced by changing the difference in interaction
energy E between two conformations, i.e., by varying the parame-
ter x = eβE/2. To simplify the analysis, we assume that w1 = u1 and
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FIG. 3. Plot of currents J/J0, J, J0 vs
u0/p for the model of the stochastic gat-
ing with changing free-energy. For cal-
culations, we used (a) x = 0.5 and u1/p
= w1/p = 1 and (b) x = 2 and u1/p = w1/p
= 1.0.

consider the normalized transition rates u0/p and u1/p (or equiva-
lently p = 1). The derivative of the normalized current Jn with respect
to the variable x is analyzed numerically, and it is found that dJn/dx
= 0 leads to only one or only three real positive roots, as shown
in Fig. 4. It is found that for large entrance transition rates u0 the
system tends to have a single maximum in the normalized current
as a function of x—see also Fig. 5. In this case, entering into the
channel is fast, and the rate-limiting step of the whole process is pass-
ing and exiting from the pore. It is clear that varying the difference
in interactions energies, one could optimize the flux through both
conformations.

A more complex behavior is observed for large transition rates
u1, which describe exiting from the channel. There are two max-
ima and one intermediate minimum in the dependence of Jn on
the parameter x [see Fig. 5]. At these conditions, the transloca-
tion dynamics is defined by the entrance into the channel and the
conformational fluctuations. The interplay between these processes

FIG. 4. The map for the number of roots for dJn/dx for the model of stochastic
gating with changing free-energy profile.

leads to such complex transport dynamics. However, the impor-
tant conclusion from our calculations is that biological systems
might utilize the stochastic gating to improve the molecular trans-
port by varying the interaction energy difference between different
conformations.

B. Stochastic gating with symmetry change
So far, we considered the simplest model of the stochastic gat-

ing when there is a single site of interaction between the particle and
the pore, and the overall changes in the interactions do not affect the
overall symmetry of the free-energy single-well translocation pro-
file. More complex scenarios of the stochastic gating are possible.
One of them, which includes a symmetry change for the free-energy
double-well translocation profile without varying the average energy
of interactions with the pore, is analyzed here. We assume that the
channel has two binding sites at which the particle can associate with
the pore with different energies, as shown in Fig. 6. The interaction
potential fluctuates between two states, called A and B. In state A,
the deeper well (where the particle-channel interaction is stronger)
is closer to the entrance, while in state B the stronger interacting
site is located near the exit. Note that during the translocation the
average interaction with the channel is constant, but the shape of
the translocation free-energy profile fluctuates between two different
double-well potentials.

The possible transitions in the system are shown in Fig. 6. We
define ua0 and ub0 as concentration-dependent entrance rates into the
channel in states A and B, respectively. The rates wa

1 and wb
1 describe

the rates of exiting back to the left chamber from the first binding site
in states A and B, respectively. The rates ua1 and ub1 correspond to for-
ward transitions between the first and second binding sites in states
A and B, respectively. Similarly, the rates wa

2 and wb
2 correspond to

backward transitions between the second and first binding sites in
states A and B, respectively. Finally, the rates ua2 and ub2 describe
exiting transitions to the right chamber in states A and B, respec-
tively. The system fluctuates between states A and B with rates p and
q, respectively (Fig. 6). We also assume that at the deeper well the
particle-pore interaction energy is larger by ε than the interaction
energy in the shallow well.

Let us define a probability P(j)i (t) for the particle to be found
in the channel state i (i = 1 for state A and i = 2 for state B) in
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FIG. 5. Normalized molecular fluxes
through pores as a function of the inter-
action energy parameter x. For calcula-
tions, p = 1 was assumed.

the particle binding state j (j = 0 for no bound particle in the pore,
j = 1 for the particle bound in the first site, and j = 2 for the par-
ticle bound in the second well) at time t. The temporal evolution
of probabilities P(j)i (t) is governed by the following set of master
equations:

dP(0)1 (t)
dt

= −(ua0 + p)P(0)1 (t) + wa
1P
(1)
1 (t) + ua2P

(2)
1 (t) + qP(0)2 (t),

(29)

dP(1)1 (t)
dt

= −(ua1 + wa
1 + p)P(1)1 (t) + ua0P

(0)
1 (t) + wa

2P
(2)
1 + qP(1)2 (t),

(30)
dP(2)1 (t)

dt
= −(ua2 + wa

2 + p)P(2)1 (t) + ua1P
(1)
1 (t) + qP(2)2 (t), (31)

dP(0)2 (t)
dt

= −(ub0 + q)P(0)2 (t) + wb
1P
(1)
2 (t) + ub2P

(2)
2 (t) + pP(0)1 (t),

(32)

FIG. 6. (a) A schematic view of the
molecular transport via fluctuating chan-
nel in the model of stochastic gating with
symmetry changes. (b) A corresponding
chemical-kinetic diagram for the model.
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dP(1)2 (t)
dt

= −(ub1 + wb
1 + q)P(1)2 (t) + ub0P

(0)
2 (t) + wb

2P
(2)
2 + pP(1)1 (t),

(33)

dP(2)2 (t)
dt

= −(ub2 + wb
2 + q)P(2)2 (t) + ub1P

(1)
2 (t) + pP(2)1 (t). (34)

In addition, P(j)i (t) must satisfy the following normalization condi-
tion:

P(0)1 (t) + P(1)1 (t) + P(2)1 (t) + P(0)2 (t) + P(1)2 (t) + P(2)2 (t) = 1. (35)

Again, we are interested in the stationary-state solutions when
dP(j)i /dt = 0. In that case, the system of Eqs. (29)–(35) can be solved
analytically and the general solution is given in Eqs. (B1)–(B6) in
Appendix B. Now, we can explicitly estimate the molecular flux
through the channel via

J = ua2P
(2)
1 + ub2P

(2)
2 . (36)

The general expression for the particle current J is presented
in Eq. (B21) in Appendix B. One can see that the equation for
molecular flux is symmetric with respect to A ↔ B and p ↔ q
transformations, as expected. But to understand better the dynamic
behavior of the system, we simplify this expression by making
several simple assumptions. First of all, we can take into account the

detailed-balance-like arguments for the transitions rates. One can
write

ub0
wb

1
=

ua0
wa

1
e−βε, and

ub1
wb

2
=

ua1
wa

2
eβε, (37)

where ε ≥ 0 is the difference in the interaction energies when the
particle is found in different binding sites in the pore. The physical
meaning of these expressions is easy to interpret: the particle enters
faster to the sites with lower energy and it exits slower from these
sites, while the entrance to the higher-energy sites is slower and the
exit from them is faster.

Using Eq. (37), we can explicitly rewrite transition rates as

ub0 = ua0e
β(θ−1)ε, ub1 = ua1e

βθε, wb
1 = wa

1e
βθε, wb

2 = wa
2e
β(θ−1)ε, (38)

where the parameter θ, 0 ⩽ θ ⩽ 1, describes how the interaction
energy difference ε influences the forward and backward transition
rates. In addition, it is assumed that ub2 = ua2e−βε, which again reflects
the fact that it is more difficult to exit from the site with stronger
interactions. For simplicity, we also take that p = q and θ = 1/2. This
is equivalent to the following assumption: ub1 = wa

2 and ua1 = wb
2 (see

Fig. 6). If we define ua0 ≡ u0, ua1 ≡ u1, ua2 ≡ u2, wa
1 ≡ w1, wa

2 ≡ w2, and x
≡ eβε/2, and then, the transition rates can be presented as ub0 = u0x−1,
ub1 = u1x, ub2 = u2x−2, wb

1 = w1x, wb
2 = w2x−1. All these simplifications

lead to the following expression for the molecular flux:

J =
u0u1u2

2
p2

(1 + x)2
(1 + x2

) + p(1 + x)(xα + β(x) + u0(x − 1)2
) + xγ + δ(x)

p2(1 + x)(x2γ + δ(x) + x(x − 1)2u2(u1 + w1)) + p(αδ(x) + xβ(x)γ) + γδ(x)
, (39)

where

α = u0 + u1 + u2 + w1 + w2, (40)

β(x) = u0x + u1x3 + u2 + w1x3 + w2x, (41)
γ = u0u1 + u0u2 + u0w2 + u1u2 + u2w1 + w1w2, (42)

δ(x) = u0u1x3 + u0u2 + u0w2x + u1u2x2 + u2w1x2 + w1w2x3. (43)

Because of the symmetry between states A and B, changing the
sign of the interaction energy difference, i.e., ε → −ε, is identical to
x→ 1/x, u0 → u0/x, u1 → u1x, w1 → w1x, w2 → w2/x, and u2 → u2/x2.
Under these transformations, the expression for the current given
in Eq. (39) does not change, and this means that we can consider
only positive ε (x ≥ 1) to analyze the molecular transport through
fluctuating pores. For x = 1 (ε = 0), Eq. (39) gives

J =
u0u1u2

u0(u1 + u2 + w2) + u1u2 + w1(u2 + w2)
. (44)

In this case, the particles at both binding sites always have the same
interactions with the channel and there are no symmetry fluctu-
ations in the system. In the stationary-state limit, the problem is
analogous to a single random walker moving on infinite three-state
periodic lattice (corresponding to two binding sites in the pore and

the state outside of the pore), which has been widely explored in the
literature.6,18,19 For x→∞ (ε→∞), Eq. (39) gives

J =
u0u1u2(p + u1 + w1)

2[p(u1(u0 + u2) + w1(u2 + w2)) + (u1 + w1)γ]
. (45)

It is interesting to analyze the translocation dynamics in several
limiting cases. For u0 ≫ 1 (fast entrance rates), Eq. (39) simplifies
into

J =
u1u2

2
×

p(1 + x)(1 + x2
)+u1x(1 + x2

)+u2(1 + x)+ 2w2x
p(u1 +u2 +w2)x2 + (p + u1 +u2 +w2)(u1x3 +u2 +w2x)

.

(46)

One can see that in this case the flux is independent of the rate
w1. This is because the particle that returned to the left chamber is
immediately introduced back into the channel.

For u1 ≫ 1, which corresponds to fast forward transitions
inside the channel from the first to the second binding sites, Eq. (39)
reduces to

J =
u0u2

2
p(1 + x)(1 + x2

) + u0(1 + x2
) + u2(1 + x)

x(p(u0 + u2)x2 + (p + u0 + u2)(u0x + u2))
. (47)

J. Chem. Phys. 150, 124111 (2019); doi: 10.1063/1.5086224 150, 124111-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Note that in this case the molecular flux J does not depend on
either w1 or w2 transition rates. This physically means that the
rate of the transition from the first binding site to the second
one is so fast that the system does not have time to exit back to

the left chamber or to move backward from the second binding
site.

For u2 ≫ 1, which describes fast rates to exit the channel to the
right chamber, from Eq. (39), we obtain

J =
u0u1

2
(1 + x)(p(1 + x) + u0 + (u1 + w1)x)

p(1 + x)(u0 + (u1 + w1)x) + (u0 + u1 + w1)(u0 + (u1 + w1)x2)
. (48)

In this case, we observe that the particle current is independent
of the backward transition ratew2. This can also be easily understood
because as soon as the particle reaches the second binding site, it
immediately exits to the right, and the probability of the backward
transition inside the channel is negligible.

Now, let us discuss the behavior of molecular flux when con-
formational fluctuation rates, concentration gradients, and inter-
action energies are varied. We will do this by investigating the
derivatives of current J with respect to corresponding variables.
But to simplify our calculations even further, we will make the fol-
lowing additional assumptions on transitions rates: w1 = u1 and
w2 = u2 = u1x2. This corresponds to a physically reasonable sit-
uation when the transition states for all transformations have the

same energy; see Fig. 6. The details of calculations are presented in
Appendix C.

The molecular transport depends on the frequency of confor-
mational transitions. The results of our calculations are presented
in Fig. 7. It can be shown that there is a special interaction energy
εe (xe = eβεe/2) such that for stronger interactions (x ≥ xe) there
is always a minimum in the molecular flux as a function of the
conformational frequency change. This means that increasing the
frequency of fluctuations first lowers the molecular flux, but after
passing the critical conformational transition rate, the molecular flux
starts to increase. However, there is also a parameter range when
the particle current will always increase with increasing frequency
of conformational transitions. These observations can be explained

FIG. 7. Normalized molecular fluxes as
a function of the conformational transi-
tion rate p for the model of the stochastic
gating with changing symmetry. The fol-
lowing parameters are utilized in calcula-
tions: (a) u0 = 0.1 and u1 = 1 (for these
values xe = 1); (b) u0 = 1 and u1 = 1
(xe = 3.10); (c) u0 = 1 and u1 = 0.1 (xe

= 24.83); and (d) u0 = 10 and u1 = 0.1
(xe = 242.10).
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FIG. 8. Plot of J/J0 vs x for the model
of the stochastic gating with changing
symmetry of the channel.

using the following arguments. For large interaction energy differ-
ences between the binding sites (x > xe), increasing first the fre-
quency of conformational transitions will lower the molecular flux
because the system will spend most of the time by being trapped
in the deepest wells of states A and B instead of trying to pass
the channel. But eventually for larger p, this effect will be less
important since increasing the frequency of conformational fluctu-
ations will decrease the trapping of the molecules at the strongly
interacting sites of the pore. For smaller interaction differences
(x < xe), only the untrapping effect will play the role. Note that the
dependence of the molecular flux on the frequency of conforma-
tional fluctuations in the model of stochastic gating with symme-
try changes is different from the model with free-energy variations.
This shows the role of symmetry variations in the stochastic gating
phenomena.

The entrance rate u0 is proportional to the concentration of
the particles on the left side of the channel: u0 = ckon. Thus, con-
sidering the dependence of the molecular flux on the parameter u0
gives the effect of the concentration gradient on the particle cur-
rent. Our explicit calculations (Appendix C) show that dJ/du0 > 0
for any u0 > 0, u1 > 0, as expected, since the concentration gra-
dient is the main driving force for the molecular transport across
the channel. This means that increasing the concentration gradient
will always improve the molecular transport via pores, at least in the
model considered in this work.

The dependence of the molecular fluxes on the interaction
energy difference is more complex, as shown in Fig. 8. There are situ-
ations when increasing the interaction energy difference always low-
ers the molecular flux via the pores. At another range of parameters,
changing x might actually lead to the non-monotonic behavior, with
only one maximum or with minimum and maximum—see Fig. 8.
These observations are the result of several competing processes.
While the system is in the conformation B, increasing εwill stimulate
the molecule to translocate to the second site, which increases the
flux. However, when the interaction difference becomes very large,
the molecule can be trapped at the sites with strongest interactions. If
the system is in state A, increasing the interaction energy difference
will only trap the molecule in the deepest well without moving it
forward.

Our theoretical analysis presents a very rich dynamic behavior
for the systems with stochastic gating. The molecular translocation
via channels can be influenced by modifying the frequency of con-
formational changes, the molecule/pore interaction energies, and

the concentration gradients. It seems reasonable to suggest that the
nature has multiple tools to tune the channel transport to fulfill the
necessary biological functions.

III. SUMMARY AND CONCLUSIONS
We developed a discrete-state chemical-kinetic approach to

investigate the effect of stochastic gating in the channel-facilitated
molecular transport. Our theoretical analysis explicitly evaluates
the particle currents through the pores in terms of transition rates
between various chemical states and conformation. It allows us to
specifically investigate two different models of stochastic gating. In
the first model, the stochastic gating leads to the changes in the
translocation free-energy profile but without symmetry variations.
It is found that increasing the frequency of conformational transi-
tions and the concentration gradients between different parts of the
channel will always increase the particle current through the sys-
tem. At the same time, varying the interaction energy between the
molecules and the pores generally leads to non-monotonic behav-
ior. A more complex dynamic behavior is observed in the second
model of stochastic gating that involves symmetry variations in the
free-energy translocation profile without changing the overall inter-
actions. While increasing the concentration gradient will always
accelerate the molecular fluxes, the dependence on the frequency
of conformational fluctuations and on interaction energies is non-
monotonic. We presented microscopic arguments to explain these
observations. Importantly, in both models, we do not observe phe-
nomena similar to a resonance activation when there is an optimal
rate of conformational transitions that leads to a maximal particle
current.

Although our theoretical method is able to quantitatively
describe stochastic gating phenomena, it is important to note that
our approach is oversimplified and many realistic features are not
taken into account. It is clear that the real biological system will
be very different from simplified models considered in this work.
More complex free-energy translocation profiles and multiple con-
formational transitions are expected in biological cells. In addition,
in our approach, it was assumed that stochastic gating is taking place
at the stationary conditions, but it is not guaranteed that biologi-
cal systems can satisfy this. Despite these limitations, our theoretical
approach provides a fully quantitative molecular picture of complex
processes associated with stochastic gating that might be utilized for
the development of more advanced theoretical descriptions. It might
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also be useful in analyzing experimental observations related to
biological transport processes.
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APPENDIX A: DERIVATION OF THE PARTICLE FLUX
FOR THE MODEL WITH CHANGING FREE-ENERGY
PROFILE

Here, we explicitly calculate the derivatives of the particle flux
with respect to different parameters. The change in the current with
respect to the parameter p is given by

dJ
dp

=
u0u1x
1 + x2

(W −U)(Ux3
−W)

(px(U + W) + UW)2

=
u0u1

1 + x2
x(1 − x)2

(u0(1 + x + x2
) + w1)(u1(1 + x + x2

) + w1x(x + 1))
(px(U + W) + UW)2 ⩾ 0, (A1)

while the dependence on the concentration gradient is equal to

dJ
dc

=
konu1

1 + x2
2p2x2

(1 + x3
)(U1 + W1) + px[(Ux3 + W)(U1 + W1) + 2(x3UW1 + WU1)] + x3U2W1 + W2U1

(px(U + W) + UW)2 ⩾ 0,

where

U1 = u1 + w1, W1 = u1 + w1x. (A2)

The expression is different for the normalized particle current

d
dc

(
J
J0
) =

konx
1 + x2

(W −Ux3
)(2p2x(1 + x3

) + p(W + 3x3U) + U2x2
)

(px(U + W) + UW)2

=
konx(1 − x)

1 + x2
(u1(1 + x + x2

) + w1x(1 + x))(2p2x(1 + x3
) + p(W + 3x3U) + U2x2

)

(px(U + W) + UW)2 . (A3)

We can also write the normalized current in the following way:

J
J0
(pu0, pu1, pw1) =

U
1 + x2

2x(1 + x3
) + Ux3 + W

x(U + W) + UW
. (A4)

APPENDIX B: STATIONARY SOLUTIONS FOR THE
MODEL WITH CHANGING SYMMETRY

Here we present exact expressions for the solution of the system
of Eqs. (29)–(35)

P(0)1 =
q

p + q
(q2 + qαb + γb)ζa + p2ζb + p(ub0ζba + (αa − ua0)ζb) + pq(ζab + ζba)

q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb
, (B1)

P(1)1 =
q

p + q
((q2 + qαb + γb)ua0 + pqub0)(ua2 + wa

2) + (p2ub0 + pqua0)(ub2 + wb
2) + pηab

q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb
, (B2)

P(2)1 =
q

p + q
(q2 + qαb + γb)ua0ua1 + p2ub0ub1 + pq(ub0ua1 + ua0ub1) + pub0λab

q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb
, (B3)

P(0)2 =
p

p + q
q2ζa + (p2 + pαa + γa)ζb + q(ua0ζab + (αb − ub0)ζa) + pq(ζab + ζba)

q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb
, (B4)

P(1)2 =
p

p + q
((p2 + pαa + γa)ub0 + pqua0)(ub2 + wb

2) + (q2ua0 + pqub0)(ua2 + wa
2) + qηba

q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb
, (B5)
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P(2)2 =
p

p+ q
q2ua0ua1 +(p2 + pαa + γa)ub0ub1 + pq(ub0ua1 +ua0ub1)+ qua0λba

q(q+αb)γa + p(p+αa)γb + pq(γab + γba)+γaγb
,

(B6)

where

αa = ua0 + ua1 + ua2 + wa
1 + wa

2, (B7)

αb = ub0 + ub1 + ub2 + wb
1 + wb

2, (B8)

γa = ua0(u
a
1 + ua2 + wa

2) + ua1u
a
2 + wa

1(u
a
2 + wa

2), (B9)

γb = ub0(u
b
1 + ub2 + wb

2) + ub1u
b
2 + wb

1(u
b
2 + wb

2), (B10)

γab = ua0(u
b
1 + ub2 + wb

2) + ua1u
b
2 + wa

1(u
b
2 + wb

2), (B11)

γba = ub0(u
a
1 + ua2 + wa

2) + ub1u
a
2 + wb

1(u
a
2 + wa

2), (B12)

λab = ua0u
b
1 + ua1(u

b
1 + +ub2 + wb

2) + wa
1u

b
1, (B13)

λba = ub0u
a
1 + ub1(u

a
1 + +ua2 + wa

2) + wb
1u

a
1, (B14)

ζa = ua1u
a
2 + wa

1(u
a
2 + wa

2), (B15)

ζb = ub1u
b
2 + wb

1(u
b
2 + wb

2), (B16)

ζab = ua1u
b
2 + wb

1(u
a
2 + wa

2), (B17)

ζba = ub1u
a
2 + wa

1(u
b
2 + wb

2), (B18)

ηab = (ua0(u
b
0 + wb

1) + ub0(u
a
2 + wa

2))(u
b
2 + wb

2) + ub1(u
a
0u

b
2 + ub0w

a
2),

(B19)

ηba = (ub0(u
a
0 + wa

1) + ua0(u
b
2 + wb

2))(u
a
2 + wa

2) + ua1(u
b
0u

a
2 + ua0w

b
2).

(B20)

Given this solution, we calculate the particle current through
the channel from Eq. (36)

J =
q(q2 + q(p + αb) + γb)ua0ua1 + p(p2 + p(q + αa) + γa)ub0ub1 + pq(p + q)(ub0ua1 + ua0ub1) + pq(ua0λba + ub0λab)

(p + q)(q(q + αb)γa + p(p + αa)γb + pq(γab + γba) + γaγb)
. (B21)

APPENDIX C: MOLECULAR FLUX FOR THE MODEL
OF STOCHASTIC GATING WITH SYMMETRY
FLUCTUATIONS

From Eq. (39), the following expression can be obtained for the
particle flux J when w1 = u1, w2 = u2, and u2 = x2u1:

J =
A
B

, (C1)

where

A = u0u1[p2
(1 + x)2

(1 + x2
) + p(1 + x)(u0(1 + x2

)

+ u1x(2 + x + 5x2
)) + u1x(u1x2

(3 + 2x + x2
) + u0(1 + x + 4x2

)]

(C2)

and

B = 2[p2
(1 + x)(2u0(1 + x + x2

) + u1x(2 + x + 3x2
))

+ p(2u2
0(1 + x + x2

) + u0u1(2 + x + 2x2
)(1 + 2x + 3x2

)

+u2
1x

2
(4 + 5x + 13x2 + 2x3

)) + u1(u0(1 + 2x2
) + 3u1x2

)

× (u0(1 + 2x) + u1x2
(2 + x))]. (C3)

Given Eq. (C1), we can calculate the first derivative of the
current with respect to the variable p

dJ
dp

=
A1

B1
, (C4)

where

A1 = u0u2
1(x − 1)2

[p2
(1 + x)2

(u0(2 + 3x + 9x2 + 6x3 + 6x4
)

+u1x3
(1 + 2x + 2x2

)) + 2p(1 + x)(u2
0(1 + x + 2x2

)

× (1 + 2x + 2x2
) + u0u1x2

(3 + 9x + 9x2 + 8x3 + 2x4
) + 2u2

1x
5
)

+u3
0(1 + x + 2x2

)(1 + 2x + 2x2
) + u2

0u1x2
(5 + 9x + 13x2

+ 4x3 + 2x4
) + u0u2

1x
4
(7 + 6x + 16x2 + 4x3

)

+u3
1x

6
(1 − 6x − 2x2

)] (C5)

and

B1 = 2[p2
(1 + x)(2u0(1 + x + x2

) + u1x(2 + x + 3x2
))

+ p(2u2
0(1 + x + x2

) + u0u1(2 + x + 2x2
)(1 + 2x + 3x2

)

+u2
1x

2
(4 + 5x + 13x2 + 2x3

)) + u1(u0(1 + 2x2
) + 3u1x2

)

× (u0(1 + 2x) + u1x2
(2 + x)]2. (C6)

The expression above shows that dJ/dp can have up to two
roots, where one of them will always be negative, i.e., unphysical for
our model. Indeed, the numerator of dJ/dp has a form ap2 + bp + c,
where a and b are always positive for u0 > 0, u1 > 0 and x > 1. Thus,
the positive solution will only exist when c < 0, which can be satis-
fied either for u1/u0 or x being sufficiently large. In other words, we
conclude that at large enough u1/u0 the solution for dJ/dp = 0 exists
for the whole range of x ∈ (1, ∞), and otherwise, it exists above the
certain value of x (x > xe, where xe > 1).
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The second derivative of the current with respect to p at the
extremum will have the following form:

(
d2J
dp2 )

p=p0

=
A2

B2
, (C7)

where

A2 = 2u0u4
1x

4
(x − 1)2

(x + 1)(p0(1 + x)(u0(2 + 3x + 9x2 + 6x3 + 6x4
)

+u1x3
(1 + 2x + 2x2

)) + u2
0(1 + x + 2x2

)(1 + 2x + 2x2
)

+ 2u2
1x

5 + u0u1x2
(3 + 9x + 9x2 + 8x3 + 2x4

)) (C8)

and

B2 = (p2
0(1 + x)(2u0(1 + x + x2

) + u1x(2 + x + 3x2
))

+ p0(2u2
0(1 + x + x2

) + u0u1(2 + x + 2x2
)(1 + 2x + 3x2

)

+u2
1x

2
(4 + 5x + 13x2 + 2x3

)) + u1(u0(1 + 2x2
) + 3u1x2

)

× (u0(1 + 2x) + u1x2
(2 + x)))2, (C9)

where p0 is the solution of dJ/dp = 0. Because the expression in
Eq. (C7) is always positive for u0 > 0, u1 > 0 and x > 1, any roots
of dJ/dp = 0 will be minima for J as a function of p.

Finally, the following expression can be obtained for dJ/du0:

dJ
du0

=
A3

B3
, (C10)

where

A3 = u2
1[u

2
0(p

2
(1 + x)(1 + x2

)(1 + 4x2
− x3 + 2x4

) + pu1x2
(5 + 13x + 12x2 + 25x3 + 7x4 + 8x5 + 2x6

) + 2u2
1x

3
(1 + 2x + 10x2

8x
3 + 4x4 + 2x5

))

+ 2u0x(p3
(1 + x)2

(1 + x2
)(2 + x + 3x2

) + p2u1x(1 + x)(6 + 8x + 29x2 + 14x3 + 25x4 + 2x5
) + pu2

1x
2
(4 + 15x + 43x2 + 44x3 + 63x4 + 11x5

)

+ 3u3
1x

4
(2 + x)(1 + x + 4x2

)) + p4x(1 + x)3
(1 + x2

)(2 + x + 3x2
) + p3u1x2

(1 + x)2
(8 + 9x + 34x2 + 15x3 + 28x4 + 2x5

)

+ p2u2
1x

3
(1 + x)(8 + 26x + 67x2 + 64x3 + 83x4 + 16x5

) + pu3
1x

5
(24 + 47x + 98x2 + 85x3 + 32x4 + 2x5

) + 3u4
1x

7
(2 + x)(3 + 2x + x2

)]

(C11)

and

B3 = 2[p2
(1 + x)(2u0(1 + x + x2

) + u1x(2 + x + 3x2
))

+ p(2u2
0(1 + x + x2

) + u0u1(2 + x + 2x2
)(1 + 2x + 3x2

)

+u2
1x

2
(4 + 5x + 13x2 + 2x3

)) + u1(u0(1 + 2x2
) + 3u1x2

)

× (u0(1 + 2x) + u1x2
(2 + x))]2. (C12)
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