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Abstract

Evolution is the main feature of all biological systems that allows populations to change their
characteristics over successive generations. A powerful approach to understand evolutionary dynamics is
to investigate fixation probabilities and fixation times of novel mutations on networks that mimic
biological populations. It is now well established that the structure of such networks can have dramatic
effects on evolutionary dynamics. In particular, there are population structures that might amplify the
fixation probabilities while simultaneously delaying the fixation events. However, the microscopic origins
of such complex evolutionary dynamics remain not well understood. We present here a theoretical
investigation of the microscopic mechanisms of mutation fixation processes on inhomogeneous networks.
It views evolutionary dynamics as a set of stochastic transitions between discrete states specified by
different numbers of mutated cells. By specifically considering star networks, we obtain a comprehensive
description of evolutionary dynamics. Our approach allows us to employ physics-inspired free-energy
landscape arguments to explain the observed trends in fixation times and fixation probabilities,
providing a better microscopic understanding of evolutionary dynamics in complex systems.

1 Introduction 1

The most unique property of all biological systems is their ability to evolve over time by preferentially 2

selecting randomly appearing features that benefit them most [8, 14]. While the main trends of evolution 3

are now reasonably well understood, many aspects of evolutionary dynamics remain unclarified [8,17]. In 4

recent years, it was proposed to explore evolutionary dynamics on graphs as a way to mimic evolutionary 5

processes for populations that possess complex structures, for example, as typically found in biological 6

tissues [13, 29]. This approach has been widely utilized for investigating a variety of phenomena ranging 7

from cancer initiation and evolution to social cooperativity and ecological dynamics, providing new 8

insights into mechanisms of these processes [9, 11,19,20,23–26,32]. There have been multiple 9

observations confirming that spatial structure of populations might have a strong effect on evolutionary 10

dynamics [2, 4, 9, 12,15,18], but there is still no clear understanding of why it is happening. 11

It is widely accepted that populations evolve following a specific sequence of events [17]. After a 12

random mutation appears in one of the individuals in the population, it might proliferate in the system 13

via selection and random drift, eventually spreading to the whole population in a process known as 14

fixation. But the fixation is not guaranteed, and the mutation might also disappear since the selection 15

processes in the successive generations are random. Then the most crucial properties to characterize 16
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these processes are a fixation probability, which is defined as the probability for the given mutation to 17

fully occupy the population, and a fixation time, which is defined as the mean time between the first 18

appearance of the given mutation and its final fixation [1,10,22,26,27,29,31]. Because biological systems 19

are typically very inhomogeneous, the fixation processes in these systems have been frequently 20

investigated by exploring methods of evolutionary dynamics on graphs, which led to several remarkable 21

observations [13,26,27,29]. For example, while it was naively expected that homogeneous well-mixed 22

populations exhibit the highest fixation probabilities, several network topologies have been identified 23

expressing even higher fixation probabilities [13,27,29]. These systems have been labeled as amplifiers, 24

and it has been suggested that they might accelerate the evolution [13]. However, all these networks 25

amplify the selection of mutations at the cost of significantly slowing down the fixation dynamics, i.e., 26

the fixation times in these systems are always larger than the fixation times for similar-size homogeneous 27

well-mixed populations [28]. Although the fixation processes for inhomogeneous populations have been 28

intensively studied in recent years [3, 5, 6, 16,21,27,29], there is still no clear understanding on the 29

microscopic origin of selection amplifications, the connections to the underlying network topology, and 30

the correlations between the fixation probabilities and the fixation times. 31

In this paper, we present a theoretical investigation of evolutionary dynamics on inhomogeneous 32

populations by applying a method of stochastic mapping [26]. In this approach, evolutionary changes in 33

the system can be viewed as stochastic transitions between discrete states that are specified by different 34

numbers of mutated individuals in the populations. To be more specific, we explicitly analyze 35

evolutionary dynamics on star networks that are known to be selection amplifiers. Explicit expressions 36

for fixation probabilities and fixation times are obtained using first-passage probabilities calculations and 37

physically consistent approximations. Theoretical calculations are supported by extensive Monte Carlo 38

computer simulations. It is argued that the overall evolutionary process in the system can be viewed as a 39

motion in the effective free-energy landscape, allowing us to explain the microscopic origin of 40

amplification and the observations of larger fixation probabilities together with slower fixation times. 41
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2 Theoretical Method 42

2.1 Evolutionary Dynamics on Graphs 43

Let us investigate a specific biological population that can evolve following random mutations and 44

sequential selection processes. To be specific, we consider an originally healthy tissue with N wild-type 45

stem cells (i.e., those cells that can replicate). At some time (assumed to be t = 0), a mutation appears 46

in one of the cells [7, 30]. The tissue cells can replicate, although the rates are different for normal 47

(wild-type) and mutated cells. It is assumed that the division rate for normal cells is equal to b, while the 48

mutated cells dive with a rate r× b. The parameter r is defined here as a fitness parameter that specifies 49

how faster is the replication rate for the mutated cells in comparison with the wild-type cells. It plays a 50

critical role in dynamic processes since it assists the evolution in choosing the specific mutations to take 51

over the whole tissue [17,26]. For r > 1, the mutations are viewed as advantageous, while for r < 1 the 52

mutations are disadvantageous. In addition, r = 1 specifies neutral mutations. For convenience, we 53

assume here that the replication rate of normal cells is b = 1. 54

Another crucial factor that drives the evolution is a requirement to have the total number of cells N 55

to be constant [26]. For biological tissues, it is a consequence of homeostasis when the most relevant 56

physiological properties of organisms tend to be constant [14]. Although the specific mechanisms of how 57

the number of cells in the tissues are kept constant at the microscopic level are not yet fully understood, 58

the popular approach to mimic the processes that support the homeostasis is to utilize a so-called Moran 59

procedure [17]. It is a two-step process. First, one of N cells is randomly chosen to replicate 60

proportionally to its fitness. This temporarily increases the number of cells in the tissue to N + 1. Then 61

one of N +1 cells is chosen to be instantaneously removed to return to the original number of cells in the 62

tissue. 63

a) b)

Figure 1. Schematic view of evolutionary dynamics on networks. Arrows indicate allowed changes
after the replications. Green cells are normal and red cells are mutated. a) A homogeneous well-mixed
model of size N where the replications at any node can lead to the removal of any other (N − 1) cells
with equal probability 1/(N − 1). b) An inhomogeneous network where the replication at one special
star node can affect any other (N − 1) cells with probability 1/(N − 1), while the replications at any of
the (N − 1) branched cells can only change the star node with unit probability.

To better understand the complex dynamic processes in biological systems, it has been proposed to 64

investigate the evolutionary dynamics on networks [13,29]. This is schematically illustrated in Fig. 1. 65

The idea here is that networks efficiently reflect spatial inhomogeneity and variations in activity in the 66

biological tissues. In this approach, each node corresponds to one cell, and connections between nodes 67

specify the direction of selection processes after the replication. The advantage of analyzing the 68

dynamics on graphs is that both homogeneous (Fig. 1a) and inhomogeneous networks (Fig. 1b) can be 69

investigated in one framework, allowing for better understanding of the role of population structures in 70

evolutionary dynamics. 71

To explain evolutionary processes on graphs, let us first consider the homogeneous network presented 72

in Fig. 1a. In this model, there are N identical cells, and the Moran procedure here is the following. 73
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After the randomly selected cell replicates, temporary increasing the number of cells to N + 1, with the 74

probability 1/(N − 1) any other of (N − 1) cells is substituted by the newly created cell, bringing down 75

the number of cells again to N . This is a well-mixed homogeneous system for which the fixation 76

dynamics has been fully investigated [13,17,26]. More specifically, the fixation probability for this 77

system is equal to 78

Π
(hom)
1 =

1− 1/r

1− 1/rN
, (1)

while the fixation time is given by [24], 79

T
(hom)
1 = (N − 1)

N−1∑
n=1

1

n(N − n)

(
rn − 1

r − 1

)(
rN−n − 1

rN − 1

)
. (2)

The sub-index ”1” in these expressions corresponds to the fact that the evolutionary process starts with 80

just one mutated cell, while the super-index hom reflects that the system is homogeneous. In the limit of 81

r → 1 (neutral mutations), the fixation probabilities and fixations times simplify into 82

Π
(hom)
1 =

1

N
, T

(hom)
1 =

(N − 1)2

N
. (3)

Another important limiting and more realistic case is when N → ∞ for r > 1. In this case, it can be 83

shown that 84

Π
(hom)
1 ≃ 1− 1/r, T

(hom)
1 ≃ lnN. (4)

2.2 Evolutionary Dynamics on Star Networks 85

Now let us consider the evolutionary dynamics for inhomogeneous populations. More specifically, we 86

concentrate on the star network as presented in Fig. 1b. This is the system where the fixation probability 87

amplifications has been observed [13,28]. In this model, there are two types of cells: one central node 88

and (N − 1) branched nodes. After the replication takes place in the central cell, the selection can 89

substitute any of the branched cells with the probability 1/(N − 1). However, if the replication occurs at 90

the branched cells, then only the central cell will be substituted with the unit probability. 91

To investigate the fixation dynamics in the star network, we explore a method of stochastic mapping 92

that has been already successfully utilized for understanding cancer initiation processes [23–26]. The 93

main idea of this approach is to view the evolutionary processes as a set of stochastic transitions between 94

different states. These states are specified by the number of mutated cells. For the star model, this 95

approach is illustrated in Fig. 2. We define the state n as the one that has n mutated cells, but only in 96

the branched nodes and not in the center, while the state n(0) defines the situation with n mutated cells 97

that includes the central node. Arrows in Fig. 2 identify possible transitions between the states. There 98

are four types of transition rates. The rate a
(0)
n describes the transitions from the state n(0) to the state 99

n+ 1, and the rate an describes the transition from the state n to the state n+ 1 (Fig. 2b). It 100

corresponds to the increase in the number of mutated cells in the system. The decrease in the number of 101

mutated cells are given by the rates b
(0)
n (n(0) → (n− 1)(0)) and the rates bn (n → (n− 1)(0)): see Fig. 102

2b. Importantly, one can see two chains of states between the state without mutations (n = 0) and the 103

fully mutated state (n = N): see Fig. 2. But effectively only one of them leads to the fixation. 104

As explained in the Supporting Information, the specific expressions for the transition rates are given 105

by 106

a(0)n = nr; an = r
(

N−n
N−1

)
; (5)

b(0)n =
n

N − 1
; bn = N − n. (6)

This allows us to fully evaluate the fixation dynamics on the star networks. For this purpose, we utilize a 107

method of first-passage probabilities that has been successful in analyzing the mechanisms of cancer 108
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Figure 2. a) Evolutionary dynamics on the star network as a set of stochastic transitions. Green
nodes correspond to normal cells while red nodes describe the mutated cells. Arrows correspond to
allowed transitions. b) Corresponding discrete-state stochastic scheme of evolutionary dynamics for the
star-model. State 0 describes the full elimination of all mutations, while state N corresponds to fixation.
c) An approximate model that neglects the reverse transition from the state n(0) to the state (n− 1)(0)

for n > 1 - see text for more details.

initiation [24–26]. We define functions Fn(t) [F
(0)
n (t)] as the probability densities of reaching the fixation 109

state n = N at time t if at t = 0 the system started in the state n [n(0)]. The time evolution of these 110

probability density functions is governed by the following set of backward master equations, 111

dF
(0)
n

dt
= a(0)n Fn+1 + b(0)n F

(0)
n−1 − (a(0)n + b(0)n )F (0)

n , (7)

dFn

dt
= anFn+1 + bnF

(0)
n−1 − (an + bn)Fn, (8)

with initial condition FN (t) = δ(t), which means that if the system starts in the state n = N the fixation 112

is immediately accomplished. 113

From the first-passage probabilities, the details of evolutionary dynamics on star networks can be 114

fully identified. More specifically, one can calculate the fixation probabilities πn =
∫∞
0

Fn(t)dt and the 115

fixation times Tn =
∫∞
0

tFn(t)dt/πn. As shown in the Supporting Information, the fixation probabilities 116

starting from the states n or n(0) are given by, 117

Π(0)
n =

1 + 1
r(N−1) −

(
1
r2 + 1

r(N−1)

)n
[
1 + 1

r(N−1)

] [
1− 1

r2

(
1+N−1

r

1+r(N−1)

)N−2
] ; (9)
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and 118

Πn =
1− 1

r2

(
1+N−1

r

1+r(N−1)

)n−2

[
1− 1

r2

(
1+N−1

r

1+r(N−1)

)N−2
] . (10)

Interestingly, it can be shown that generally for all values of n we have Π
(0)
n > Πn. If starting from the 119

single-mutation states (n = 1), the fixation probabilities are equal to 120

Π
(0)
1 =

1− 1
r2[

1 + 1
r(N−1)

] [
1− 1

r2

(
1+N−1

r

1+r(N−1)

)N−2
] ; (11)

Π1 =
1− 1

r2[
1 + N−1

r

] [
1− 1

r2

(
1+N−1

r

1+r(N−1)

)N−2
] . (12)

To better understand the microscopic picture of fixation processes, it is useful to consider limiting 121

situations. If the replication rates of mutated cells are the same as for the normal cells (r = 1, neutral 122

mutations), from Eqs. (11) we obtain 123

Π
(0)
1 =

N − 1

N + (N − 1)(N − 2)
; Π1 =

1

N + (N − 1)(N − 2)
. (13)

which for large number of cells (N ≫ 1) simplify into 124

Π
(0)
1 ≃ 1

N
; Π1 ≃ 1

N2
. (14)

Another important limit is when r > 1 and N → ∞. In this case, it can be shown that 125

Π(0)
n =

1− 1
r2n

1− 1
r2N

≃ 1− 1

r2n
, Πn =

1− 1
r2n−2

1− 1
r2N−2

≃ 1− 1

r2n−2
. (15)

Starting from the single-mutation states (n = 1), these calculations yield 126

Π
(0)
1 =

1− 1
r2

1− 1
r2N

≃ 1− 1

r2
, Π1 =

1− 1
r2−2

1− 1
r2N−2

≃ 0. (16)

When the mutation appears first in one of the branched cells (starting in the state 1(0)) our limiting 127

results fully agrees with previous calculations for the fixation probability in star networks [13]. But 128

starting in the center of the network (the state 1) does not essentially lead to the fixation at all for large 129

N . The results of our calculations are presented in Fig. 3. The most interesting observation here is that 130

the fixation probability strongly depends on which initial cell is mutated. The mutation in one of the 131

branched states leads to the amplification of fixation probabilities, while the mutation in the center node 132

of the network significantly decreases the probability of fixation: see Fig. 3. Our theoretical approach 133

allows us to clearly understand these observations. From the discrete-state stochastic scheme in Fig. 2b, 134

one might conclude that the probability of eliminating the mutation from the state 1(0) is given by 135

P1(0)(elimination) =
b01

b
(0)
1 + a

(0)
1

=
1

1 + r(N − 1)
, (17)

which in the limit N → ∞ approaches zero. The probability of eliminating the mutation from the state 1 136

is given by 137

P1(elimination) =
b1

b1 + a1
=

N − 1

r + (N − 1)
, (18)
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Figure 3. Ratio of fixation probabilities for the star network and the well-mixed homogeneous system:
a) as a function of the system size for r = 1.1, and b) as a function of the fitness parameter r for N = 250.

which in the limit N → ∞ approaches unity. Since the fixation is opposite to the mutation elimination 138

[Πj = 1− Pj(elimination)], one can see that it is more probable to remove the mutation from the 139

central cell, while it is much less probable to eliminate the mutation from the branched cell. This is the 140

origin of the fixation amplification phenomenon in the star networks. 141

The results presented in Fig. 3b also suggest that the highest degree of amplification (Π
(0)
1 /Π

(hom)
1 ) 142

cannot be larger than two, and it can be achieved only for the fitness parameters that are only slightly 143

larger than one. Interestingly, for neutral mutations (r = 1), our theoretical calculations predict that 144

there will be no amplification at all (Π
(0)
1 /Π

(hom)
1 = 1). This is a consequence of the behavior of fixation 145

probabilities at r = 1 and large N , namely Π
(0)
1 ≈ Π

(hom)
1 ≃ 1/N . Thus, the fixation amplification works 146

well only for slightly advantageous mutations. 147

Another interesting observation from our theoretical analysis is the dependence of the degree of 148

amplification on the system size (Fig. 3a) and the fitness parameter r (Fig. 3b). Increasing the number 149

of cells in the tissue makes the amplification stronger. This is because the probability of mutation 150

elimination from the state 1(0) behaves as 1/N . Surprisingly, making the mutation more advantageous 151

(larger r) lowers the degree of amplification - see Fig. 3b. It can be shown that Π
(0)
1 /Π(hom) ≃ 1 + 1/r 152

for large number of cells. This can be explained by arguing that there are more pathways to reach the 153

fixation in the well-mixed homogeneous system, while it is only one pathway in the star-network model. 154

Then, larger fitness parameters r increase the fixation probability more for the homogeneous system than 155

for the inhomogeneous system. 156

While we were not able to obtain explicit expressions for the fixation times, they can be evaluated 157

numerically by solving the corresponding backward master equations, as shown in the Supporting 158

Information. In addition, we also run Monte Carlo computer simulations to evaluate the fixation 159

dynamics in the star networks. The results of our numerical calculations and computer simulations are 160

presented in Fig. 4 and compared with the homogeneous well-mixed model. Only the fixation times from 161

the state 1(0) are presented there because they are essentially the same as the fixation times starting 162

from the state 1. One can see that the ratio of fixation times grows linearly with the size of the system 163

(Fig. 4a), suggesting that for N ≫ 1 the fixation time on the star network scales as T1(0) ∼ N lnN . This 164

can be explained in terms of our method of stochastic mapping. In the inhomogeneous star model there 165

is one pathway that leads to the fixation - the one when the center cell is always mutated. However, in 166

the well-mixed homogeneous system there are N such pathways that lead to the fixation since there are 167

no topological constraints there. Fig. 4b shows that increasing the fitness advantage of the mutated cells 168

accelerates the fixation dynamics in the star network, but the effect is rather modest. We also found that 169

the slowest fixation dynamics is observed for very slightly advantageous mutations where the the fixation 170

amplification is the strongest. 171

7/13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.02.526861doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.02.526861
http://creativecommons.org/licenses/by/4.0/


20 40 60 80 100
N

10

20

30

40

50

60

70
T(0

)
1

/T
(h

om
)

(a)

1 2 3 4 5
r

20

40

60

80

100

T(0
)

1
/T

(h
om

)

(b)

Figure 4. Ratio of fixation times for the star network and the well-mixed homogeneous system: a) as a
function of the system size for r = 1.1, and b) as a function of the fitness parameter r for N = 100.

Our discrete-state stochastic description allows us to better understand the microscopic mechanisms 172

of evolutionary processes on star networks. It shows that the amplification of the fixation probability is 173

taking place not due to increased number of pathways to reach the fixation state but by lowering the 174

probability of mutation elimination from the branched cells. However, it cannot lead to faster fixation 175

dynamics because the system is frequently trapped in the states where the central node is not mutated 176

(see Fig. 2a), slowing the overall fixation dynamics. In addition, the topology of the network dictates 177

that there is only one pathway to reach the fixation state, while there are many more opportunities in 178

the well-mixed homogeneous systems of the same size to reach the fixation state. 179

2.3 Approximate Model to Describe Evolutionary Dynamics on Star 180

Networks 181

To better illustrate the idea of slowing the fixation dynamics in the star network due to trapping the 182

system in the unproductive states, we propose considering an approximate model that captures main 183

features of the evolutionary dynamics on star networks and allows us to obtain the explicit expressions 184

for the fixation probabilities and fixation times. Our idea here is based on the observation that the 185

probability to move from the state n(0) to the state (n− 1)(0) is given by 186

p[n(0) → (n− 1)(0)] =
b
(0)
n

a
(0)
n + b

(0)
n

=
1

r(N − 1) + 1
→ 0, (19)

for N ≫ 1. Then it seems reasonable to neglect such transitions and to consider an effective 187

discrete-state stochastic scheme as shown in Fig. 2c. Thus, we assume that b
(0)
n ≈ 0 for n ≥ 2, and only 188

the backward transition from the the state 1(0) is assumed to be non-zero (b01 ̸= 0). 189

The fixation dynamics in the approximate model can be explicitly analyzed as shown in the 190

Supporting Information. More specifically, for fixation probabilities it is found that 191

Π
(approx)

1(0)
=

1

1 + 1
r2 + 1

r(N−1)

≃ 1

1 + 1
r2

; (20)

192

Π
(approx)
1 =

1

1 + N−1
r

≃ 0; (21)

193

Π
(approx)
2 =

1 + 1
r(N−1)

1 + 1
r2 + 1

r(N−1)

≃ 1

1 + 1
r2

. (22)
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In addition, Π
(approx)
n = 1 for n ≥ 3 and Π

(approx)

n(0) = 1 for n ≥ 2. Fig. 5 compares the predictions for the 194

fixation probabilities for the approximate model of evolutionary dynamics. One can see that our 195

approximation works quite well when r2 ≫ 1, and increasing the size of the system only slightly 196

improves the agreement (Fig. 5a). But in all situations, the difference is only few percents between exact 197

and approximate estimates of the fixation probabilities. At the same time, increasing the fitness 198

parameter of the mutated cells has a much stronger effect (Fig. 5b). This is because the relation on 199

which our approximation is based, Eq. (19), works even better for larger fitness parameters r. In all 200

cases, we overestimate the fixation probabilities in comparison with exact expressions. This can be easily 201

understood by again exploring the stochastic schemes in Figs. 2b and 2c. One can clearly see that our 202

approximate model neglects the occasional backward steps in the upper chain of states that should only 203

lower the fixation probability, in agreement with our predictions. 204
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Figure 5. Comparison of fixation probabilities for the approximate and full models of evolutionary
dynamics on star networks. Ratio of fixation probabilities a) as a function of the system size for r = 2,
and b) as a function of the fitness parameter r for N = 100.

As shown in the Supporting Information, we can obtain the explicit expressions for the fixation times 205

of the approximate model. It is found that 206

T (approx)
n =

N−n−1∑
k=0

a
(0)
n−1+k + bn+k

an+ka
(0)
n−1+k

, (23)

for n ≥ 3. In the limit N → ∞, it can be shown that T
(approx)

1(0)
≃ T

(approx)
3 that eventually leads to the 207

following estimate of the fixation time, 208

T
(approx)

1(0)
≃ (N − 1)

r2

(
N−2∑
k=2

1

k
+

N−2∑
k=2

r

N − k − 1

)
≃ (r + 1)

r2
N lnN. (24)

Thus, the approximate model correctly reproduces the scaling dependence of the fixation time [29]. 209

Theoretical predictions for the fixation dynamics in the approximate and full models of evolutionary 210

dynamics on star networks are presented in Fig. 6. One can see from Fig. 6a that approximating the 211

fixation times is reasonable, although not as good as approximating the fixation probabilities: deviation 212

of ∼ 20% for times in comparison with ∼ 5% for the probabilities for r = 2 case. The increasing the size 213

of the system also does not have much effect. At the same time, increasing the advantage of the mutated 214

cells (larger values of r) significantly improves the approximation: see Fig. 6b. As before, these 215

observations can be understood by utilizing the discrete-state stochastic schemes from Fig. 2. Because 216

the approximate model neglects the backward transitions from the states n(0), it underestimates the 217

fixation times by neglecting the backward and loop trajectories that should significantly slow down the 218

overall dynamics in the system. 219
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Figure 6. Comparison of fixation times for the approximate and full models of evolutionary dynamics
on star networks. Ratio of fixation times a) as a function of the system size for r = 2, and b) as a
function of the fitness parameter r for N = 100.

Although the approximate model does not perfectly describe the fixation dynamics on the star 220

network, it is valuable because it emphasizes better the main features of the evolutionary processes in 221

these complex systems. The fixation amplification occurs only because the topological features of the 222

system prevent the mutation elimination, while the fixation dynamics is quite slow because the system is 223

frequently trapped in the unproductive states that are not on the pathway to the fixation. It is 224

important to point out that this clear microscopic picture emerges as the result of mapping the 225

evolutionary dynamics into the set of stochastic transitions between states specified by different numbers 226

of mutated cells. 227

Another advantage of our discrete-state stochastic approach is that looking at the evolutionary 228

processes as a motion in the effective free-energy landscape allows us to describe better the microscopic 229

mechanisms of underlying processes and to discuss possible ways to optimize the evolution. This is 230

schematically shown in Fig. 7. The fixation probability might be associated with the ”free-energy” 231

difference between the final state (fixation) and the initial state (one mutated cell), while the fixation 232

times are given by the highest barrier on the pathway from the initial to the final states. For the 233

well-mixed homogeneous system the advantage of reaching the fixation state is relatively modest, but the 234

dynamics is also relatively fast. The situation is completely different for the evolutionary dynamics on 235

the star network: see Fig. 7. Here, the advantage of reaching the fixation state is significant, but the 236

”free-energy” barrier to accomplish this task is also quite large. As was discussed above, it is the 237

consequence of topological properties of the star network. Thus, to accelerate the evolution, changes 238

must be made to decrease these barriers and not in trying to increase the amplification of fixation 239

probabilities. Our theoretical method suggest that one can concentrate on specific discrete-states where 240

such changes will be the most effective. 241

3 Summary and Conclusions 242

In this paper, we developed a theoretical framework to investigate the role of inhomogeneity in 243

evolutionary dynamics of structured populations. By analyzing the mutation fixation processes on the 244

star network, we constructed a discrete-state stochastic model that provides a comprehensive description 245

of the dynamics. Using the method of first-passage probabilities together with reasonable 246

approximations explicit expressions for the fixation probabilities and fixation times are obtained. The 247

presented theoretical method allowed us to better understand the microscopic origin of fixation 248

amplification that is accompanied by significant increase in fixation times. It is argued that the 249

amplification is the result of decreasing the probability of mutation elimination, but it does not increase 250

the number of pathways to reach the fixation state, leading to slowing down in the fixation dynamics. 251
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Figure 7. The effective free energy landscape for comparing evolutionary dynamics of full Moran model
and star network.

The mapping of evolutionary dynamics on inhomogeneous networks into the motion in the effective 252

free-energy landscape provides new insights on the mechanisms of these complex processes. It also 253

suggests how these systems can be modified to optimize the evolutionary output. 254

The important advantage of our theoretical approach is that the method can be extended for studying 255

the evolutionary processes on other inhomogeneous systems. Specifically, we plan to generalize our 256

theoretical arguments for analyzing the evolutionary dynamics on l-star networks where there are l star 257

nodes that are connected with all N − l branched cells. The system considered in this paper is a special 258

case with l = 1. It will be important to understand how the degree of amplification in those systems 259

correlates with the fixation times. In addition, our theoretical method can be extended for dynamic 260

networks where topological features might fluctuate between several different arrangements. It will be 261

also important to apply these theoretical results for understanding cancer initiation and tumor formation. 262
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