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Many biological processes are supported by special molecules, called motor proteins or molecular
motors, that transport cellular cargoes along linear protein filaments and can reversibly associate
to their tracks. Stimulated by these observations, we developed a theoretical model for collective
dynamics of biological molecular motors that accounts for local association/dissociation events. In
our approach, the particles interacting only via exclusion move along a lattice in the preferred direc-
tion, while the reversible associations are allowed at the specific site far away from the boundaries.
Considering the association/dissociation site as a local defect, the inhomogeneous system is ap-
proximated as two coupled homogeneous sub-lattices. This allows us to obtain a full description of
stationary dynamics in the system. It is found that the number and nature of steady-state phases
strongly depend on the values of association and dissociation transition rates. Microscopic argu-
ments to explain these observations as well as biological implications are also discussed. Theoretical
predictions agree well with extensive Monte Carlo computer simulations.

I. INTRODUCTION

Multiple cellular processes, such as cell division, cell
locomotion, cell motility, and cellular cargo transport,
are driven by several classes of biological molecules that
are known as motor proteins or molecular motors [1–6].
These are special enzymatic proteins that catalyze the
hydrolysis of energy-rich adenosine triphosphate (ATP)
or biopolymerization of nucleic acids and proteins [6].
The released chemical energy is then converted to me-
chanical energy that supports the movement of cargo-
carrying motors on active biological filaments. Signif-
icant advances in understanding the mechanisms and
single-molecule properties of various molecular motors
have been achieved due to a large volume of experimen-
tal and theoretical investigations [4, 5]. However in live
cells, motor proteins typically operate in groups that in-
teract with each other [7–11]. But our knowledge of the
microscopic mechanisms of collective dynamics of biolog-
ical molecular motors are still very limited [5, 12].

The most popular approach to investigate the multi-
particle dynamics in low-dimensional non-equilibrium
systems remain the exploration of so-called exclusion
processes [13–15]. To study the dynamics of directed
molecular motors, a special class of driven diffusive mod-
els known as Totally Asymmetric Simple Exclusion Pro-
cesses (TASEP) has been utilized to explore the micro-
scopic system properties [16–19]. It was originally intro-
duced in 1968 to study the kinetics of biopolymerization
[17], and since then, it has been further generalized to
study the motion of molecular motors and other biologi-
cal transport processes [18]. Various aspects of molecular
motors have been extensively analyzed utilizing different
versions of TASEP models. Several interesting phenom-
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ena, such as phase separation, phase segregation, and
boundary induced phase transitions have been discovered
in these studies [16, 20–22]. In most cases, the stationary
behavior of complex multi-particle non-equilibrium pro-
cesses have been thoroughly analyzed using exact solu-
tions or mean-field approximations that neglect the cor-
relations between particles [16, 18].

One of the important features of biological molecular
motors is their ability to reversibly associate from the lin-
ear tracks. This effect, when the probability of associa-
tion/dissociation is the same for all sites on the filaments,
has been rigorously explored in so-called TASEP models
with Langmuir Kinetics [23]. It was also observed in real
systems that the reversible association of the motor pro-
teins is not always a homogeneous process, i.e., there are
specific sites from which the motor proteins can preferen-
tially dissociate or associate. Such situations have been
theoretically investigated, but to a less degree [24–26].
Importantly, in these studies the associations and disso-
ciations were not considered together, which limited the
understanding of underlying microscopic processes in the
motor proteins transport.

Stimulated by these observations, we develop a theo-
retical model for the collective transport of molecular mo-
tors that takes into account the possibility of reversible
association/dissociation at a specific site. Our goal is to
understand how the localized association/dissociation af-
fects the collective dynamics. By noticing that the site
where association/dissociation events are taking place di-
vides the originally inhomogeneous system into two cou-
pled homogeneous TASEPs, the steady-state particles
dynamics is calculated. We explicitly determined how
non-equilibrium phase diagrams and dynamic properties
vary with changing the association and dissociation tran-
sition rates. Our theoretical results are supported by
Monte Carlo computer simulations.

ar
X

iv
:2

10
3.

09
23

4v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

6 
M

ar
 2

02
1

mailto:akgupta@iitrpr.ac.in


2

FIG. 1: (a) A schematic view of the TASEP model with localized associations/dissociations. Identical particles can enter the vacant first site
with the rate α and escape the lattice from the last site with the rate β. In the bulk, particles jump to the neighboring site with the unit rate. In
addition, at the site k particles are allowed to dissociate with the rate ωd, or the particle from the outside can associate to the empty site k with

the rate ωa. The lattice is divided into two homogeneous segments L1 and L2 coupled at special site k. (b) The particles can leave the left
segment with effective exit rate βeff and enter into the right segment with effective entry rate αeff .

II. MODEL

Motivated by the reversible association of molecu-
lar motors on biological filaments, we propose a one-
dimensional TASEP model to analyse the properties of
inhomogeneous non-equilibrium systems. In our model,
the transport of motors is considered as a movement of
particles along a lattice segment with N discrete sites as
presented in Fig. 1(a). Sites i = 1 and i = N represent
the left and right boundary, respectively, while the sites
1 < i < N constitute the bulk of the lattice. At each
site, particles obey a hard core exclusion principle that
restricts the site to be occupied by no more than one par-
ticle. A particle is injected into the lattice through the
left boundary with a rate α, and it leaves from the right
boundary with a rate β as shown in Fig. 1(a). The parti-
cles, which mimic the biological molecular motors, move
in one preferred direction (to the right) in accordance to
random sequential update rules. In the bulk, a particle
at site i is allowed to jump to the immediate site i + 1
with a unit rate, provided that the site empty.

To take into account the localized reversible associa-
tion/dissociation dynamics of molecular motors, we as-
sume that this process can occur only at the special
site k = N/2: see Fig. 1(a). Since the filaments are
typically very long, we consider a thermodynamic limit
(N →∞), and in this case the exact location of the asso-
ciation/dissociation site does not affect the dynamics in
the system as long as the special site is far away from the
boundaries. A particle at the site k can dissociate from
the lattice with a rate ωd and associate to the special site
with a rate ωa, if this site is currently not occupied (see
Fig. 1(a)).

III. THEORETICAL ANALYSIS

The majority of investigated TASEP models analyze
the homogeneous processes when the dynamics at all bulk
sites is identical. This allowed researchers to obtain ex-
plicit description of dynamic properties of these systems
[16, 21, 22, 27]. Our model, however, deals with the in-
homogeneous system due to the presence of the special
site for reversible association/dissociation events. This
significantly complicates the analysis. At the same time,
we notice that the special site divides the originally in-
homogeneous system into two coupled homogeneous sub-
lattices: left segment L1 (i = 1, 2, . . . , k − 1) and right
segment L2 (i = k + 1, k + 2, . . . , N). This suggests that
our model can be analyzed by considering it as two homo-
geneous TASEP lattices combined together by the spe-
cial site as illustrated in Fig. 1(a). Since the dynamics
of exclusion processes on homogeneous lattices is fully
quantized, this will help us to describe the inhomoge-
neous system. This is the main idea of our theoretical
approach.

One can define an effective exit rate of particles from
the left segment L1 as βeff , and an effective entry rate of
particles into the right segment L2 as αeff (see Fig.1(b)).
Then, by utilizing stationary current arguments at the
sites k−1, k and k+1, we couple both the segments and
explicitly calculate the effective transition rates. Further-
more, employing the results of homogeneous TASEP on
two segments separately, our aim is to compute the effec-
tive rates and densities at the sites k−1, k and k+1. We
denote the average density of particles in the bulk of left
and right segment as ρbulk,L1

and ρbulk,L2
, respectively,

and at the special sites as ρi (i = 1, k − 1, k, k + 1, N).
The corresponding bulk current in L1 and L2 is repre-
sented by Jbulk,L1

and Jbulk,L2
respectively. Whereas,
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TABLE I: Summary of results for a simple homogeneous TASEP model [27].

Phase Region ρ1 ρbulk ρN Current(J)

LD α < min{β, 0.5} α α α(1−α)
β

α(1− α)

HD β < min{α, 0.5} 1− β(1−β)
α

1− β 1− β β(1− β)

MC 0.5 < min{α, β} 1− 1
4α

0.5 1
4β

0.25

the current leaving the left segment is Jexit,L1
and the

current entering into the right segment is Jentry,L2
. In

addition, the current associated with the association and
dissociation of particles at the site k is represented by Ja
and Jd, respectively.

A. Sub-Lattice Mean-Field Approximation

The stationary properties of the open TASEP model
with excluded volume interactions among particles have
been explicitly obtained using various exact and approx-
imate methods [16, 21, 22, 27]. Importantly, the results
of exact calculations mean-field approximations agree for
the description of phase diagrams, particle current, and
most particle densities. This allows us to use mean-field
arguments in our derivations. It has been found that,
depending on the values of entrance, exit and bulk hop-
ping rates, there exist three distinct steady-state phases:
entry dominated low-density (LD), exit dominated high-
density (HD) and bulk dominated maximal-current (MC)
[27]. For convenience, the conditions of the existence,
the particle densities, and the currents for the different
phases obtained in simple open TASEP model i.e. ωa = 0
and ωd = 0 are summarized in Table I.

In the stationary state, the condition of the current
conservation at the special site k couples the fluxes in
two segments as

Ja + Jpass,L1
= Jd + Jpass,L2

(1)

where Jpass,L1
denotes the passing current from the site

k− 1 to k, and Jpass,L2
denotes the passing current from

the site k to k+1. The expressions for these currents are
given by,

Ja = ωa(1− ρk), Jd = ωdρk, (2)

Jpass,L1 = ρk−1(1− ρk), Jpass,L2 = ρk(1− ρk+1).(3)

Furthermore, the exit current from L1 and the entry cur-
rent into L2 are given by,

Jexit,L1 = βeffρk−1, Jentry,L2 = αeff (1− ρk+1).
(4)

Also, from the stationarity of the current (Jpass,L1
=

Jexit,L1
and Jpass,L2

= Jentry,L2
) one could easily obtain,

βeff = 1− ρk, αeff = ρk, (5)

which leads to

αeff = 1− βeff . (6)

In addition, we can rewrite Eqn. (1) as,

βeff (ωa + ρk−1) = αeff (ωd + 1− ρk+1). (7)

One could also notice that the current is constant
throughout the homogeneous left and right segments sep-
arately, producing the following relations,

Jbulk,L1
= βeffρk−1, Jbulk,L2

= αeff (1− ρk+1).(8)

Now we can estimate the number of the stationary
phases that might exist in our inhomogeneous model.
Since each homogeneous segment can exhibit one of three
possible phases (LD, HD or MC), there are 32 = 9 possi-
ble phases in the system. However, not all phases might
be realized due to the stationary condition on the particle
current. To simplify our discussions, we label the possi-
ble phases as A : B, where A and B correspond to the
phases in the left and right segments, respectively. Uti-
lizing the results for open homogeneous TASEP model
described in the Table I, the conditions of existence of
different phases will be discussed in the next section.

B. Stationary Phases and Explicit Phase
Boundaries

Since each stationary state is explicitly characterized
by specific parameters (see Table 1), we can determine
the range of parameters for each possible steady-state
dynamic regime.
LD:LD Phase. In this phase, both the segments L1 and
L2 exhibit the low density phase that corresponds to

α ≤ min{βeff , 0.5}, αeff ≤ min{β, 0.5}. (9)

The particle densities in the bulk of two segments are
given by,

ρbuk,L1
= α, ρbulk,L2

= αeff , (10)

while the particle density at the sites k−1 and k+ 1 are,

ρk−1 =
α(1− α)

βeff
, ρk+1 = αeff . (11)
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To determine the explicit phase boundary, we need to
compute the effective rates αeff and βeff . By substitut-
ing the expressions of ρk−1, ρk+1 from Eqn. (11) into
Eqn. (7) and using Eqn. (6), the effective rates are the
following,

αeff =
1

2

(
1 + ωd + ωa −

√
4(α2 − α− ωa) + (ωd + ωa + 1)2

)
,

βeff =
1

2

(
1− ωd − ωa +

√
4(α2 − α− ωa) + (ωd + ωa + 1)2

)
.

These explicit expressions together with Eq. (9) deter-
mine the range for the existence of the LD:LD phase.
Also, one can easily conclude that this phase exists only
when association/dissociation rates satisfy,

ωa − ωd ≤ 0.5. (12)

Physically, this corresponds to the situation when the
association is weaker or only slightly stronger than
the dissociation process so that there is no substantial
increase in the amount of particles entering into the
system at the special site k.

HD:HD Phase. In this phase, both left and right seg-
ments are found in the high density phase with boundary
parameters satisfying,

βeff ≤ min{α, 0.5}, β ≤ min{αeff , 0.5}. (13)

The bulk densities of the particles in each segment are

ρbuk,L1 = 1− βeff , ρbulk,L2 = 1− β, (14)

while at the sites k − 1 and k + 1 we have

ρk−1 = 1− βeff , ρk+1 = 1− β(1− β)

αeff
. (15)

The effective rates αeff and βeff can be computed by
substituting the corresponding ρk−1 and ρk+1 from Eq.
(15) into Eqn. (7) and utilizing Eq. (6), that yields,

αeff =
1

2

(
1− ωd − ωa +

√
(ωd + ωa − 1)2 − 4(β − β2 − ωa)

)
,

βeff =
1

2

(
1 + ωd + ωa −

√
(ωd + ωa − 1)2 − 4(β − β2 − ωa)

)
.

These expressions together with Eq. (13) specify the con-
ditions for the existence of the HD:HD phase. Moreover,
it can be shown that in this phase the association and
dissociation rates must satisfy

ωd − ωa ≤ 0.5. (16)

Physically, this means that the phase exists when the
dissociation is weaker or only slightly stronger than
the association process so that the amount of particles
leaving the system is relatively small.

MC:MC Phase. For this phase, the two segments L1

and L2 are assumed to be in maximal current phase spec-
ified by

0.5 ≤ min{α, βeff}, 0.5 ≤ min{αeff , β} (17)

The bulk densities in the segments L1 and L2 are given
by

ρbuk,L1
= 0.5, ρbulk,L2

= 0.5, (18)

In addition, the densities at boundaries of two segments
are equal to

ρk−1 =
1

4βeff
, ρk+1 = 1− 1

4αeff
. (19)

Then, using Eqs. (6) and (7) we obtain the effective
entrance and exit rates,

αeff =
ωa

ωa + ωd
, βeff =

ωd
ωa + ωd

. (20)

For the effective rates αeff , βeff to satisfy Eq. (17), we
obtain

ωa = ωd, αeff = βeff = 1/2. (21)

The physical meaning of this result is that this phase
exists only at the conditions when the association is al-
ways compensated by the dissociation (Ja = Jd) so that
the overall system becomes fully homogeneous at all sites.

LD:MC Phase. Here the left segment is in the LD
phase, while the right segment is in the MC phase, and
it is governed by the following conditions,

α ≤ min{βeff , 0.5}, 0.5 ≤ min{αeff , β} (22)

The bulk densities are given by,

ρbuk,L1 = α, ρbulk,L2 = 0.5, (23)

while at the sites k − 1 and k + 1 we have

ρk−1 =
α(1− α)

βeff
, ρk+1 = 1− 1

4αeff
. (24)

Employing Eqs. (6) and (7) yields then the effective entry
and exit rates,

αeff =
4ωa − (2α− 1)2

4(ωa + ωd)
, βeff =

4ωd + (2α− 1)2

4(ωa + ωd)
.

(25)
From these expressions we finally obtain the conditions
on the association/dissociation rates as

ωa > ωd. (26)

This suggests that this phase can be realized when the
association is stronger than the dissociation so that the
dynamics in the right sub-lattice becomes limited only
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TABLE II: Conditions for the existence of different stationary phase regimes in terms of association/dissociation rates where “×” denotes the
phase that does not exist.

Phase ωa = 0, ωd > 0 ωd = 0, ωa > 0 ωd > 0, ωa > 0

LD:LD ωd > 0 ωa ≤ 0.5 ωa − ωd ≤ 0.5

HD:HD ωd ≤ 0.5 ωa > 0 ωd − ωa ≤ 0.5

MC:MC × × ωa = ωd

LD:HD ωd > 0 ωa > 0 ωa, ωd > 0

LD:MC × ωa > 0 ωa > ωd

HD:MC × ωa > 0 ωa > ωd

MC:HD ωd > 0 × ωa ≤ ωd
MC:LD ωd > 0 × ωa ≤ ωd
HD:LD × × ×

by the particle bulk transitions.

LD:HD Phase. In this phase, the left segment is in the
LD phase, while the right segment is in the HD phase.
For this to happen, the following conditions must be sat-
isfied,

α ≤ min{βeff , 0.5}, β ≤ min{αeff , 0.5} (27)

The sub-lattice bulk densities can be written as,

ρbuk,L1
= α, ρbulk,L2

= 1− β, (28)

and the densities at the special sites are

ρk−1 =
α(1− α)

βeff
, ρk+1 = 1− β(1− β)

αeff
. (29)

Plugging these densities into Eq. (7) yields the explicit
values for the effective entry and exit rates,

αeff =
α(1− α) + β(1− β) + ωa

ωa + ωd
, (30)

βeff =
ωd − α(1− α) + β(1− β)

ωa + ωd
. (31)

It can be further shown that the association and dissoci-
ation rates must satisfy the condition

ωa, ωd > 0. (32)

It means that this phase might exist when both associa-
tion and dissociation rates are not zero.

HD:MC Phase In this phase, the left segment displays
the high density, whereas the right segment shows the
maximal current. This can happen for

βeff ≤ min{α, 0.5}, 0.5 ≤ min{αeff , β}. (33)

The bulk sub-lattice densities are given by,

ρbuk,L1
= 1− β, ρbulk,L2

= 0.5, (34)

while at the special sites we have,

ρk−1 = 1− βeff , ρk+1 = 1− 1

4αeff
. (35)

Using the densities ρk−1 and ρk+1 in Eqs. (7) and (6),
we compute the effective rates ,

αeff =
ωa

ωa + ωd
, βeff =

ωd
ωa + ωd

. (36)

Utilising these expressions in the conditions for the ex-
istence of this phase given in Eqn. (33), one can easily
predict the range of parameters for this phase. In addi-
tion, it can be shown that

ωa > ωd. (37)

Thus, this phase exists when dissociation rates are small
enough to support the HD phase in the left sub-lattice,
while the association rates are large to ensure the MC
phase in the right sub-lattice.

MC:HD Phase. This phase has the MC phase in the
left sub-lattice and the HD phase in the right sub-lattice.
The conditions for this dynamic regime are the following,

0.5 ≤ min{α, βeff}, β ≤ min{αeff , 0.5}. (38)

The bulk densities in the two segments are,

ρbuk,L1
= 0.5, ρbulk,L2

= 1− β, (39)

and that at the sites k − 1 and k + 1 we have,

ρk−1 =
1

4βeff
, ρk+1 = 1− β(1− β)

αeff
. (40)
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LD:HD X X X X X

MC:LD × × × X X
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HD:HD X X X X ×
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FIG. 2: Different dynamic regions as a function of the association and dissociation rates. There are five distinct regions labeled as I-V for which
the phase regimes differ qualitatively. The phase regimes that exist in these five different possible regions are described in tabular form where

“×” denotes the phase that does not exist..

The calculation of the effective rates produces

αeff =
4ωa + (2β − 1)2

4(ωa + ωd)
, βeff =

4ωd − (2β − 1)2

4(ωa + ωd)
.

(41)
Together with the conditions of existence presented in
Eqn. (38), one can easily obtain the explicit region of
MC:HD phase. The association/dissociation rates in this
phase must satisfy,

ωd > ωa. (42)

This physically means that this phase might be realized
when the dissociation rate is faster than the association
rate so that the exit from the system determines the
state of the right sub-lattice.

MC:LD Phase. In this phase, the left segment displays
the MC phase and the right segment shows the LD phase.
The conditions for this dynamic regime are the following,

0.5 ≤ min{α, βeff}, αeff ≤ min{β, 0.5}. (43)

The bulk sub-lattice densities are given by,

ρbuk,L1
= 0.5, ρbulk,L2

= αeff , (44)

while at the boundaries we have,

ρk−1 =
1

4βeff
, ρk+1 =

αeff (1− αeff )

β
. (45)

Utilising the expression for ρk−1 and ρk+1 in Eq. (7)
yields the effective entry and exit rates,

αeff =
1

2

(
1 + ωa + ωd −

√
(ωa + ωd)2 + 2(ωd − ωa)

)
,(46)

βeff =
1

2

(
1− ωa − ωd +

√
(ωa + ωd)2 + 2(ωd − ωa)

)
.(47)

The association and dissociation rates for which this sta-
tionary state satisfy

ωd > ωa. (48)

This phase exists if the dissociation rates are faster than
the association rates so that this limits the particle flux
into the right sub-lattice, producing the LD phase in
this segment.

HD:LD Phase. In this phase the left and right seg-
ments display LD and HD phases, respectively. The con-
ditions that support the existence of this phase are,

βeff ≤ min{α, 0.5}, αeff ≤ min{β, 0.5}. (49)

The bulk densities in the two segments are

ρbuk,L1 = 1− βeff , ρbulk,L2 = αeff , (50)

and the densities at the sites k − 1 and k + 1 are given
by

ρk−1 = 1− βeff , ρk+1 =
αeff (1− αeff )

β
. (51)

Now, the conditions that support the existence of this
phase from Eq. (49) fail to satisfy the Eq. (6). Thus, we
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FIG. 3: Phase Diagrams in (α, β) plane for different values of Ω notified in sub-captions of figures. (a) ωa = 0.8, ωd = 0.1 (b)
ωa = 0.4, ωd = 0.2 (c) ωa = 0.1, ωd = 0.1 (d) ωa = 0.4, ωd = 0.6 (e) ωa = 0.1, ωd = 0.8.

predict that this phase cannot exist at any condition.
Physically this can be explain using the following
arguments. To keep the left sub-lattice in the HD phase
we should have a large association rate. But to keep the
LD phase in the right sub-lattice requires very low ωa.
The same contradictions exist for the dissociation rates.

The conditions for the existence of different station-
ary phases in terms of the association/dissociation rates
are summarized in Table 2. One can see that for non-
zero association/dissociation rates there are eight pos-
sible stationary dynamic regimes, while in the limiting
cases (ωa = 0 or ωd = 0) the number of possible phases
decreases to five. This clearly shows that in order to un-
derstand the role of association/dissociation processes in
the dynamics of biological molecular motors it is impor-
tant to consider non-zero association/dissociation fluxes.
The limiting situations are not representing the whole
complexity of the underlying processes. For example, the
MC:MC phase can only be realized when both associa-
tion and dissociation rates are the same (and non-zero).
We should also note that our results in the limiting cases
(ωa = 0 or ωd = 0) fully agree the analysis reported

earlier [24, 26].

IV. RESULTS AND DISCUSSIONS

Our theoretical approach allows us to fully describe
the stationary dynamics of the TASEP model with local-
ized association/dissociation events. But it relies on the
sub-lattice mean-field approximation that assumes that
the particle densities at the sites k − 1, k and k + 1 are
independent of each other. To test our theoretical re-
sults, we performed extensive Monte Carlo simulations
for various ranges of parameters. The simulations are
carried out for the system size N = 1000 following ran-
dom sequential update rule and are allowed to run for
2×109 time-steps to achieve the steady-state conditions.
To ensure the occurrence of steady-state, 5% of the initial
time-steps are discarded.

Although we predict that up to eight dynamic regimes
might be realized in the system, for the fixed associa-
tion/dissociation rates our analysis of the existence con-
ditions shows that only four or five phases can be ob-
served by varying the global entry (α) and exit (β)



8

(a)ωa = 0.4, ωd = 0.2 (b)ωa = 0.4, ωd = 0.2

(c)ωa = 0.4, ωd = 0.2 (d)ωa = 0.4, ωd = 0.2

(e)ωa = 0.4, ωd = 0.2 (f)ωa = 0.4, ωd = 0.6

(g)ωa = 0.4, ωd = 0.6 (h)ωa = 0.1, ωd = 0.1

FIG. 4: Density profiles in different stationary phases for ωa and ωd notified in sub-captions and boundary controlling parameters α, β
mentioned in each figure.
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rates. This is illustrated in Fig. 2 where five distinct re-
gions are identified for different association/dissociation
rates. To quantify this effect, we introduce a parameter
Ω = ωa − ωd that lies within the range [−1, 1]. This pa-
rameter describes the difference between the association
and dissociation rates. Then these regions correspond to
0.5 < Ω ≤ 1 (region I), 0 < Ω ≤ 0.5 (region II), Ω = 0 (re-
gion III), −0.5 ≤ Ω < 0 (region IV) and −1 ≤ Ω < −0.5
(region V): see Fig. 2. To understand what phases will
be realized in the system, let us consider the dynamics
in all regions in detail.

For the region I (0.5 < Ω ≤ 1), the association rate
is always significantly larger than the dissociation rate,
and this prevents the formation of the LD phase in the
sub-lattice L2 because the effective entrance rate into this
segment becomes too large. In addition, it prevents the
occurrence of the MC phase in the sub-lattice L1 because
the particle cannot easily exit the left sub-lattice due to
the pile up at the special site k. These arguments suggest
that only four phases are possible in the region I: LD:MC,
LD:HD, HD:HD and HD:MC.

In the region II (0 < Ω ≤ 0.5), the association rate is
only slightly larger than the dissociation rate, and this
allows one more additional phase (LD:LD) to be real-
ized. This is because the overall entrance flux into the
right sub-lattice is small due to the LD phase in the left
sub-lattice and relatively small overall net flux coming
into the system from the association/dissociation events.
Thus, five phases can be observed in this range of param-
eters.

In the region III (Ω = 0), the association and dissoci-
ation rates are equal to each other, and this allows for
the MC:MC phase to appear. In this case, the associ-
ation flux is fully compensated by the dissociation flux
and ρk = 1/2 [see Eq. (2)]. For low entrance rates α,
the LD:LD phase also can exist in this region. Similarly,
for low exit rates β, the HD:HD phase can be realized in
the system. In addition, the LD:HD phase can be found
here too because both LD and HD phases are described
by relatively small fluxes that are not affected much by
the association/dissociation processes.

The region IV (−0.5 ≤ Ω < 0) is similar to the region
II. Here the dissociation rate is slightly larger than the as-
sociation rate, and this leads to the possibility of having 5
stationary phases: LD:LD, LD:HD, MC:LD, MC:HD and
HD:HD. As expected, it is not possible to have phases
with the MC regime on the right sub-lattice, while the
MC phase might happen on the left segment.

The dissociation rates are much larger than the asso-
ciation rates in the region V (−1 ≤ Ω < −0.5). The
possible phases here are the same as in the region IV ex-
cept the phase HD:HD. It cannot exist because the fast
removal of particles at the special site prevents the for-
mation of HD phase in the segment L1.

Our theoretical analysis suggests that there are five
possible stationary phases in regions II and IV, while
other regions have four stationary phases each, as shown
in Fig. 3. Clearly, we can observe that the stationary

phase diagram shows non-monotonic behavior for vary-
ing values of ωa and ωd in regions I-V. Theoretical pre-
dictions are fully supported by Monte Carlo computer
simulations. It is interesting to note the LD:HD phase
can be realized for all possible combinations of associa-
tion/dissociation rates, while the MC-MC phase can only
be found in the symmetric case of ωa = ωb.

We also predict that there are eight different station-
ary phase observed in the system, and the corresponding
results are presented in Fig. 4. One can see that our
approximate theory works remarkably well in most situ-
ations as compared with Monte Carlo computer simula-
tions. The only deviations are found in the LD:LD and
MC:LD phases. These observations can be explained us-
ing the following arguments. Our approach assumes that
the occupancy of the special site k is independent of the
occupancy of the neighboring sites k− 1 and k+ 1, while
in reality some correlations are expected. This would
quantitatively affect the effective entrance rates into the
right sub-lattice. as the result, the phases with the LD
regime in the segment L2 would be affected most by our
approximation.

V. SUMMARY AND CONCLUSIONS

A theoretical method to investigate the role of re-
versible association events in the one-dimensional dy-
namics of driven particles that interact only via exclusion
and when the association/dissociation is localized to a
special site far away from the boundaries is presented.
The model is motivated by the transport of biologi-
cal molecular motors moving along linear filaments and
their tendency to occasionally reversibly associate to the
tracks. Noting that the site of association/dissociation
events inserts the inhomogeneity into the system, we ap-
proximate the model as two homogeneous segments cou-
pled by the special site. This allows us to obtain a full
explicit description of the stationary dynamics and an-
alyze the effect of the localized association/dissociation
processes in the particle transport. It is found that from
nine possible stationary phase only eight can be realized
for different ranges of parameters. Our calculations also
show that there are five distinct dynamic regions for vary-
ing association and dissociation rates. At each of these
regions, only five or four stationary phases can exist si-
multaneously. Microscopic arguments to explain these
observations are presented. Analytical calculations are
tested by extensive Monte Carlo simulations, and excel-
lent agreement is found in most dynamic regimes. We
also argue that it is important to have both association
and dissociation rates to be non-zero in order to fully un-
derstand the complex dynamics of molecular motors that
can reversibly associate from the filament.

One could also speculate on possible biological implica-
tions of our theoretical results. We can argue that tuning
the local association/dissociation rates for motor proteins
could lead to significant global dynamic changes, indicat-
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ing that this might be an efficient method of regulating
cellular processes. It will be interesting to test this idea
in experiments.

While it seems that the presented theoretical model
captures main dynamic features of biological molecular
motors that can sporadically dissociate into the solution
and return back to the track, it is crucial to discuss the
limitations and future directions. The main weakness
of our theoretical approach is the neglect of correlations
near the special site where association and dissociation
events are taking place. In addition, the sizes of biologi-
cal molecular motors are typically large, occupying more
than one lattice site of the underlying filament. Further-
more, there are multiple experimental evidences suggest-
ing that motors can interact with each other and this

might strongly modify the dynamics in the system. It
will be important to investigate these possibilities and
extensions with more details.
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