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ABSTRACT
Stochastic biochemical and transport processes have various final outcomes, and they can be viewed as dynamic systems with multi-
ple exits. Many current theoretical studies, however, typically consider only a single time scale for each specific outcome, effectively
corresponding to a single-exit process and assuming the independence of each exit process. However, the presence of other exits influ-
ences the statistical properties and dynamics measured at any specific exit. Here, we present theoretical arguments to explicitly show
the existence of different time scales, such as mean exit times and inverse exit fluxes, for dynamic processes with multiple exits. This
implies that the statistics of any specific exit dynamics cannot be considered without taking into account the presence of other exits. Sev-
eral illustrative examples are described in detail using analytical calculations, mean-field estimates, and kinetic Monte Carlo computer
simulations. The underlying microscopic mechanisms for the existence of different time scales are discussed. The results are relevant
for understanding the mechanisms of various biological, chemical, and industrial processes, including transport through channels and
pores.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018558., s

I. INTRODUCTION

Many systems in chemistry, physics, and biology operate in
regimes in which a single input may result in multiple distinct
outcomes. One example is nucleic acid synthesis, where chemi-
cally different sub-units can enter at the same positions for each
newly created molecule.1–3 In this process, correct DNA and
RNA molecules or molecules with mismatched nucleotides can
be produced. Another example is the activation of T cells in the
immune system.4–9 A T cell that encounters a foreign peptide
might undergo activation or remain quiescent depending on the
molecular identity of the peptide. Conversely, in some cases, T
cells might respond to a self-peptide, which can result in allergic
reactions and autoimmune diseases.5 Another important example

is the application of microfluidic devices for investigating chemi-
cal and biological systems.10 These devices utilize complex multi-
channel structures for visualizing and controlling various processes.
In these systems, multiple micro-channel exits are frequently uti-
lized. Furthermore, the translocation of molecules through channels
and pores is crucial for many biological processes and has been
extensively studied, both theoretically and experimentally.11–15 All
these processes can be viewed as dynamic systems with multiple
exits.

Due to their considerable complexity, inferring the underly-
ing molecular processes in these systems frequently relies on the
indirect measurements of the exit dynamics at both the bulk and
the single-molecule levels.16–20 In such systems, typically a single
time scale is employed to describe both bulk and single-molecule
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dynamics at the exit, ignoring the influence of other possible out-
comes.18,21 However, the presence of other exits can affect the
dynamics of the system, both spatially and temporally,22,23,33 leading
to the breakdown of the single time scale assumption. The goal of
our investigation is to provide a rigorous theoretical framework for
the quantitative study of complex dynamic processes with multiple
possible outcomes.

It is shown in this paper that two independent time scales, a
mean exit time and an inverse flux, are needed in order to fully
characterize the exit dynamics. Both of them describe the statis-
tics of exit events, but they behave differently when the kinetic
parameters of the system are varied. The two time scales are the
result of the presence of other exits in the system. To illustrate
our theoretical arguments, we describe in detail three different
dynamic systems, which are analyzed using exact analytical cal-
culations, a mean-field approximation, and kinetic Monte Carlo
computer simulations. We show explicitly the existence of these
time scales and their different dependencies on the system control
parameters. The microscopic origin of the underlying processes is
discussed.

II. THEORETICAL METHODS
Consider a general dynamic process with M possible outcomes.

The process could be, for example, a system of a single enzyme
molecule that may catalyze, in parallel, M different substrates, pro-
ducing M different products Pi (i = 1, 2, . . ., M).1,2 In Fig. 1, we
show a specific example of such systems with M = 2 where the
enzyme E catalyzes two different processes, leading to the products
R (right product) and W (wrong product). In our general expla-
nations below, for convenience, we utilize the language of single
enzymatic processes with multiple substrates, but our arguments are
valid for all dynamic processes with multiple outcomes (or terminal
states).

We start by assuming that the system has already reached the
steady state, i.e., the total output flux is equal to the incoming flux,
and Ji is defined as a stationary current of the product Pi, where
i = 1, 2, . . ., M. To characterize these processes, we also define Πi
as a probability to reach the state Pi for the first time before reach-
ing any other product state starting from state E (free enzyme). This
exit probability is known as a splitting probability.24,25 Similarly, we
define a mean exit time Ti. This is a conditional mean first-passage
time to reach the product Pi starting from the free enzyme state.24,25

Analyzing the dynamics of the system using a set of forward mas-
ter equations allows us to evaluate explicitly the exit fluxes, Ji, in
terms of the individual transition rates (see Fig. 1). The first-passage

FIG. 1. A schematic view of the simple kinetic proofreading model, which can also
be viewed as an enzymatic system with two substrates. Boxes describe different
chemical states. The state E corresponds to a free enzyme, the state ER (EW )
corresponds to the intermediate complex with the right (wrong) substrate, and R
(W ) describes the right (wrong) product of the enzyme-catalyzed reactions. We
consider that the system starts in the state E, and the possible outputs are the
product states R or W.

properties, Πi and Ti, can be evaluated using the backward mas-
ter equations.24,25 Our goal is to establish general relations between
these dynamic properties of the system.

More detailed arguments on how to derive the explicit relations
between the different time scales are outlined in Appendix A. Here,
we will mostly present the main results and the physical explanations
for them.

The total flux to make any product in the system is given by

J =
M

∑

i=1
Ji. (1)

The mean time before the appearance of any of the products Pi can
be written as

T =
M

∑

i=1
ΠiTi. (2)

This expression emphasizes that this quantity is the average time
over all possible outcomes, and the splitting probability Πi gives the
probability that the system chooses the exit i. This total mean time
and the total flux are related as

T =
1
J

, (3)

which means that there is a single time scale for the overall produc-
tion of any product in the system. However, such simple relations
cannot be obtained for specific outcomes, the exit flux Ji and the
mean exit time Ti. Instead, one can write

Ji =
Πi

T
. (4)

The physical meaning of this result is very clear: 1/T gives the
frequency of making any of the product molecules, while Πi is
the probability that this product is Pi. Together with Eq. (2), this
leads to

1
Ji
=
∑

M
i=1 ΠiTi

Πi
. (5)

Equation (5) is our main result since it shows that there are two
generally different time scales to characterize the exit dynamics, the
inverse exit flux and the mean exit time. These two times coincide
only for a single-exit system (M = 1). To quantify the deviations
between different times scales, we define a parameter Ri,

Ri =
Ti

1/Ji
, (6)

which is equal to one, only when both times are the same. Then,
from Eq. (5), we obtain

M

∑

i=1
Ri = 1. (7)

For example, for a simple system where all corresponding transi-
tion rates for all substrates are the same, it gives Ri = 1/M. However,
generally, it can be shown that 0 < Ri < 1 (for M > 1).

Equations (6) and (7) imply that the mean exit time is always
smaller than the inverse exit flux. The physical explanation of this
observation is the following. The mean exit time, Ti, is the average

J. Chem. Phys. 153, 054107 (2020); doi: 10.1063/5.0018558 153, 054107-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

time before the product Pi is made after the last production event
in the system. However, the last event is not necessarily a creation
of the same product Pi (i.e., it might be the creation of a different
product, Pj≠i). However, the inverse flux is exactly the average time
between the appearances of the same product molecules. For this
reason, we generally have Ti < 1/Ji. Thus, we predict that two differ-
ent time scales must be employed to fully quantify the exit dynamics
in complex systems with multiple outcomes.

It is also important to note that the exit flux is a measure of the
bulk properties of the system, i.e., it is the average over many cycles
of the process and over many particles. However, the mean exit time
is the property of specific tagged particles. From this point of view,
the output flux can be obtained mostly from bulk dynamic measure-
ments, while the mean exit times are more conveniently determined
from single-molecule measurements of labeled particles. It should
be noted, however, that both time scales, in principle, can also be
obtained in single-molecule experiments at specific conditions when
the appearance of all labeled products can be distinguished. How-
ever, technically, this is difficult to accomplish for a large number
of outcomes (M > 2–3). In addition, the bulk measurements can
evaluate only the inverse flux times. Thus, our theoretical analysis
suggests that both types of experimental measurements are needed in
order to fully characterize the dynamics and molecular mechanisms
of systems with multiple exits.

III. ILLUSTRATIVE EXAMPLES
In order to better understand the microscopic origin of the

existence of two different times scales for exit dynamics and its con-
sequences for investigating real dynamic processes, we illustrate our
theoretical arguments by considering three specific systems. In all
of them, the dynamics can be analyzed by various means, thereby
allowing us to clarify that the underlying physical principles may be
reflected using different methods.

A. Simple kinetic proofreading scheme
Let us start with a simple system shown in Fig. 1, where the

enzyme molecule, E, can interact with two different substrates and
produce two different products. This system can also be viewed as
the simplest realization of kinetic proofreading mechanisms in bio-
logical systems, and the production of the right product R competes
with the production of the wrong product W.26–28 This is also the
predominant view in explaining the mechanisms of T cell activation
in the immune response.5,6

From the free enzyme state E, the right substrate may associate
with the enzyme with a rate u0 to make the state ER, while the reverse
reaction is characterized by a rate w1; see Fig. 1. The right product
R is made with a rate u1. Similarly, the wrong substrate can bind to
the enzyme molecule with a rate a0 to make the state EW, while the
reverse reaction is characterized by a rate b1; see Fig. 1. The wrong
product W is made with a rate a1. Note also that although the rates
u0 and a0 are viewed in our analysis as effectively unimolecular, in
reality, they are bimolecular and depend on the concentrations of
right and wrong substrates, respectively.

We define the molecular fluxes to produce the right and wrong
products as JR and JW , respectively. The probabilities for the sys-
tem to make R or W are described by the splitting probabilities

ΠR and ΠW , respectively. In addition, the mean exit times in the
right and wrong directions are given by TR and TW , respectively.
These dynamic properties can be explicitly evaluated in terms of the
individual transition rates, as explained in Appendix B. Obviously,
the steady state output flux is non-vanishing only when there is an
incoming flux of free substrates. However, the steady state ensures
that the total output flux is equal to the incoming flux, which enables
the elimination of the incoming flux from the expressions for the
output fluxes.

The explicit expression for the inverse molecular flux for the R
molecules is given by

1
JR
=
(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)

u0u1(a1 + b1)
, (8)

while for the W molecules, we have

1
JW
=
(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)

a0a1(u1 + w1)
. (9)

Now, as shown in Appendix A, the splitting probability and the
mean exit time in the R direction are given by

ΠR =
u0u1(a1 + b1)

u0u1(a1 + b1) + a0a1(u1 + w1)
(10)

and

TR =
(a1 + b1)(u0 + u1 + w1) + a0b1

u1+w1
a1+b1

+ a0a1

u0u1(a1 + b1) + a0a1(u1 + w1)
. (11)

For the product W, we obtain

ΠW =
a0a1(u1 + w1)

u0u1(a1 + b1) + a0a1(u1 + w1)
(12)

and

TW =
(u1 + w1)(a0 + a1 + b1) + u0w1

a1+b1
u1+w1

+ u0u1

u0u1(a1 + b1) + a0a1(u1 + w1)
. (13)

Comparing Eqs. (8) and (9) with Eqs. (11) and (13), it can be
shown that

1
JR
= TR +

ΠW

ΠR
TW , (14)

1
JW
= TW +

ΠR

ΠW
TR. (15)

To emphasize that the time scales’ behavior for each exit (TR and
1/JR, and TW and 1/JW , respectively) may be very different, in Fig. 2,
we present the dependence of these quantities on the transition rate
u0, while all other transition rates are the same. This corresponds
to a situation where the concentration of the right substrates in the
system is varied.

One can see from Fig. 2 that the mean exit for the right products
and the inverse flux for R generally are different quantities. They are
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FIG. 2. Different time scales for the simple kinetic proofreading model as a function
of the transition rate u0. For the calculations, we used the following values for the
transition rates: u1 = w1 = a0 = a1 = b1 = 1 s−1. Note that for these values of the
transition rates, the mean exit times, TR and TW , coincide.

essentially the same in the limit of u0 ≫ 1 because, in this case, only
the formation of R molecules is possible, transforming the system
into an effective single-exit process. However, the deviation between
TR and 1/JR starts to grow for decreasing values of u0. In the limit
u0 → 0, the production of R almost stops and 1/JR → ∞, while the
mean exit time for those rare situations when the system goes in the
direction of right products is still finite.

The difference in the time scales’ behavior for exiting in the
wrong directions, TW and 1/JW , is even more striking. While the
mean exit time TW decreases for larger transition rates u0, the exit
flux JW decreases and the corresponding time scale 1/JW increases.
In the limit of large u0, only R molecules are preferentially pro-
duced, and it takes many production cycles to produce occasion-
ally the W molecule. However, if the system goes in the wrong
direction (W is produced), it should happen relatively quickly
(measuring the time since the free enzyme state, E). Both time
scales in the W direction are the same only in the limit of small
u0, when the system is biased toward the wrong direction. This
means that again, the system effectively works like a single-exit
process.

Clearly, the differences between time scales for the same exit
are due to the presence of the second exit, and they disappear
in the regime where the system behaves as a single-exit process.
The important conclusion from our theoretical calculations here is
that a single time scale is not sufficient to determine the molec-
ular mechanisms of a process with multiple exits. Two dynamic
scales have to be utilized for each exit, and this again suggests that
both bulk measurements and single-molecule studies (or single-
molecule studies in which all the possible outcomes are mea-
sured) must be employed in the analysis of complex dynamic
processes.

FIG. 3. A schematic illustration of the two-site model (a) and the corresponding
kinetic scheme (b). The arrows denote the possible transitions, and the label next
to each arrow denotes the rate for the corresponding transition if the site is avail-
able (each site may be occupied by no more than one particle). In the kinetic
scheme [panel (b)], all the possible states and the transition rates between them
are explicitly illustrated.

B. Exact solutions for a channel with two sites
and two exits

The next system to be considered here is a simple two-site
channel model with exclusion, which can be viewed as the sim-
plest realization of a complex dynamic system as found, e.g., in
microfluidic devices and cytoskeletal transport.10,29 In our model,
presented in Fig. 3, each site is either occupied by one particle or
it is empty. The incoming flux inserts particles into the first site if
it is empty with a rate f ; from there, the particle may move to the
second site (if it is empty) with a rate r12 or it may exit to the left
with a rate rL. From the second site, the particle may move back to
the first site (if it is empty) with a rate r21 or exit to the right with
a rate rR. A schematic description of the model is given in Fig. 3.
A similar system was considered in Ref. 30, but only the flux was
calculated.

The system has four different states. We denote these states
as 00 when the two sites are empty, 10 when the first site is occu-
pied and the second is not, 01 when the second site is occupied
and the first one is not, and 11 when both sites are occupied. In
Appendix C, the full mathematical description of the dynamics in
the system is provided. It is found that the steady state probabilities
(t→∞), in terms of individual transition rates for each of four states
in the system, are

ssp00 = N2s(
(rL + rR)(r12rR + r21rL + rLrR)

f 2r12
+
rLrR
fr12
),

ssp10 = N2s
frR + r21rL + r21rR + rLrR + r2

R

fr12
,

ssp01 = N2s
rL + rR

f
,

ssp11 = N2s,

(16)

where N2s is given by

N2s =
f 2r12

f 2
(r12 + rR) + f [(r12 + r21)(rL + rR) + rR(2rL + rR)] + (rL + rR)(rR(r12 + rL) + r21rL)

. (17)
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These expressions allow us to evaluate the steady state fluxes to
the right or to the left,

JR = rR(ssp01 + ssp11),

JL = rL(ssp10 + ssp11).
(18)

The mean escape times to the right and to the left can be calcu-
lated using the backward master equations. Any particle entering site
1 either finds site 2 occupied or not. Therefore, the mean exit time
is written as the appropriate average of these two initial conditions.
The details of the calculations using the backward master equations

are provided in Appendix C. The result for the mean exit time to the
right is given as follows:

TR = TR,2
ΠR,2p10

ΠR,2p10 + ΠR,1p11
+ TR,1

ΠR,1p11

ΠR,2p10 + ΠR,1p11
. (19)

In this expression, the factor ΠR ,1 is the right exit probability, when
the tagged particle is initially at site 1 and site 2 is empty. It can be
written as

ΠR,1 =
r12r2

R(f + rL + rR)
(rL + rR)[r21rL(rL + rR) + (rL + r12)rR(f + rL + rR)]

. (20)

The corresponding mean right exit time is

TR,1 =
(rL + rR)[r2

L + 3rLrR + r2
R + r21(2rL + rR) + r12(rL + 2rR)]

(f + rL + rR)[r21rL(rL + rR) + (rL + r12)rR(f + rL + rR)]
+

f [r21(3rL + rR) + 2r12(rL + 2rR) + 2(r2
L + 3rLrR + r2

R)]

(f + rL + rR)[r21rL(rL + rR) + (rL + r12)rR(f + rL + rR)]

+
f 2
[r2

L + 3rLrR + r2
R + r12(rL + 2rR)]

(rL + rR)[r21rL(rL + rR) + (rL + r12)rR(f + rL + rR)](f + rL + rR)
. (21)

Similarly, for the initial state when the tagged particle is at site 1 and site 2 is occupied, the right exit probability is

ΠR,2 =
r12rR(f + rL + rR)

rR(r12 + rL)(rL + rR + f ) + rLr21(rL + rR)
. (22)

The corresponding mean right exit time is

TR,2 =
f 2
(r12 + rL + rR)

(f + rL + rR)[r21rL(rL + rR) + rR(r12 + rL)(f + rL + rR)]
+

f [2r12(rL + rR) + 2(rL + rR)2 + r21(2rL + rR)]
(f + rL + rR)[r21rL(rL + rR) + rR(r12 + rL)(f + rL + rR)]

+
(rL + rR)2

(r12 + r21 + rL + rR)
(f + rL + rR)[r21rL(rL + rR) + rR(r12 + rL)(f + rL + rR)]

. (23)

In Fig. 4, we present the mean right exit time and the
inverse of the right output current against the incoming flux
rate, f, for a specific set of parameters. The analytical results are
compared with Monte Carlo computer simulations of the pro-
cess. As expected, the simulations agree perfectly with the exact
analytical solutions. The output current monotonically increases
with an increase in the incoming flux rate until it saturates in
the limit of the fully occupied system (i.e., when the first site
is filled immediately after it becomes empty). Consequently, the
inverse of the output current decreases monotonically. Equa-
tion (C4) in Appendix C describes the asymptotic limit of the output
currents.

The mean first-passage time (or the completion time) is differ-
ent than the time scale obtained from the steady state output current.
For small values of the incoming current, f, the difference can reach
orders of magnitude. In experiments, the mean exit time is typ-
ically obtained from single-particle measurements and the output
current is determined from the bulk measurements. The difference
between these two time scales emphasizes the need to combine the

two types of measurements in order to properly characterize any
dynamic system.

C. General multi-site channel
In this example, let us consider a more complex system that

describes the transport in a multi-site channel with two exits, as
presented in Fig. 5. The input flux enters the second site with a
maximal rate f (when the site is not fully occupied), and the parti-
cles can hop within the channel in both directions. There are two
exits, on the right and on the left ends of the channel. The tran-
sition rate from site 2 to site 1 (and, by symmetry, also from site
N − 1 to site N) is r21, and the transition rate from site 1 to site 2
(and, by symmetry, also from site N to site N − 1) is r12. The tran-
sition rates within the channel are assumed to be symmetric and
equal to r (in each direction); see Fig. 5. In addition, the transition
rates out of the channel are rR and rL to the right and to the left,
respectively. Each site may be occupied by up to m particles simulta-
neously (m = 1 corresponds to the exclusion process). The different
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FIG. 4. The time scales in the two-site system. The lines depict the analytical
results, and the symbols depict the corresponding simulation results. It is obvious
that the time scale derived from the output current is very different from the time
scale characterizing the mean escape time of tagged particles. The parameters
used are r12 = rL = rR = 1 and r21 = 0.1. The inset shows a reduced scale of the
characteristic time axis.

rates at the ends of the channel are considered because the dynamics
out of the channel and in the vicinity of the ends may be different
from the dynamics within the channel. This model is analyzed using
mean-field calculations supported by kinetic Monte Carlo computer
simulations.

The analysis of the dynamic properties of the system consists
of two stages. The first one describes the steady state population
distribution in the channel. In the second stage, the dynamics of
a tagged particle, assuming that the population distribution corre-
sponds to the steady state distribution, is obtained. The equations
describing the dynamics of the site population densities are provided
in Appendix D. These equations can be solved using a mean-field
approach in the steady state. Let us define nssk as the stationary occu-
pancy of the site k. The steady state solution for the internal sites,
2 ≤ k ≤ N – 1, can be written as

nssk /m = 1 − A + kB, 2 ≤ k ≤ N − 1, (24)

where the procedure to evaluate variables A and B is explained
below. Solving the steady state equations for the four boundary sites
(1, 2, N − 1 and N) yields the steady state populations of the end
sites, nss1 and nssN , in terms of parameters A and B,

nss1 /m =
r21(1 − A − 2B)
rL + r12(A − 2B)

,

nssN/m =
r21(1 − A − (N − 1)B)
rR + r12(A − (N − 1)B)

.
(25)

FIG. 5. Schematic description of the channel considered. The arrows represent
the possible transitions (if the target site is not full), and the corresponding labels
clarify the notation used for the various rates. See the text for more details.

Variables A and B are obtained by solving the following equations:

r12
r21(1 − A − 2B)
rL + r12(A − 2B)

= (r21 + r(A − 3B))
1 − A + 2B
A − 2B

− r(1 − A + 3B) − f /m,

r12
r21(1 − A − (N − 1)B)
rR + r12(A − (N − 1)B)

= (r21 + r(A − (N − 3)B))

×
1 − A + (N − 2)B
A − (N − 1)B

− r(1 − A + (N − 2)B).

(26)

It is important to note that due to the asymmetry of the tran-
sition rates at the end sites, the equations are not linear (i.e., the
equation for site 1 involves the product of the populations of sites
1 and 2, and so on). Therefore, our solution is only a mean-field
approximation and not the exact solution. However, direct simula-
tions of the process reveal that the mean-field and the exact steady
state densities are very close for a large range of parameters.

The steady state population provides the exit currents in both
directions as

JR = rRnssN ,

jL = rLnss1 .
(27)

For a channel of an arbitrary length, it is not possible to
derive an analytical solution for the dynamics of a tagged par-
ticle. Therefore, the tagged particle dynamics is assumed to be
affected only by the steady state population in the channel. This
assumption is not exact, but for soft exclusion, where each site may
include a few particles, it was shown to be a reasonable quantitative
approximation.22,31

To efficiently describe the dynamics of the system, it is conve-
nient to employ a matrix representation. Using this approach, the
corresponding equations can be written as

d
dt
∣p(t)⟩ = Ûss

∣p(t)⟩, (28)

where |p(t)⟩ is the vector of stationary probabilities for different
states, while Ûss describes the matrix consisting of transition rates.
The details of the calculations and the matrix elements are fully
explained in Appendix D. The mean exit time to the left is given
in the matrix language as

T
ss
← =

rL⟨1∣((Ûss
)
−1
)

2
∣2⟩

P←
, (29)

where

P← = −rL⟨1∣(Ûss
)
−1
∣2⟩. (30)

Similarly, the mean time to exit to the right is equal to

T
ss
→ =

rR⟨N∣((Ûss
)
−1
)

2
∣2⟩

P→
, (31)

where
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FIG. 6. The simulation (left) and mean-field (right) time scales vs the impinging current for the general channel (see Fig. 5). The red and blue solid lines show the right and
left mean escape times, respectively. The dashed-dotted orange and cyan lines show 1/JR and 1/JL, respectively. The mean field is not exact because it does not capture
the exclusion and the correlations imposed by it. Both the simulation and the mean-field calculations show that the bulk (inverse output current) and the single-particle (mean
escape time) time scales are different and have different trends. The parameters used are r12 = r21 = 1, r = 1, rL = 1, rR = 0.1, m = 1, and N = 10.

P→ = −rL⟨N∣(Ûss
)
−1
∣2⟩ (32)

(see Appendix D for the detailed expressions and derivations).
In Fig. 6, the mean exit times to the right and to the left,

along with the corresponding inverse currents, are presented as a
function of the incoming flux f. As f increases, the exit current (in
both directions) also increases. Naively, one would expect to see
a corresponding decrease in the mean exit times. However, these
times actually increase. Moreover, we again observe that the bulk
time scales deduced from the exit currents are different from those
deduced from the dynamics of the tagged particles.

One can note that although our theoretical predictions agree
with computer simulations, there are some deviations. These come
from the fact that the mean-field approach does not capture the cor-
relations in the steady state density and the dynamics of tagged par-
ticles. Due to the fact that our system is effectively one-dimensional,
the correlations are expected to be strong.

IV. SUMMARY AND CONCLUSIONS
In this paper, we developed a general theoretical framework

to describe different time scales in complex dynamic systems with
multiple outcomes. It is shown that for every exit, there are two
time scales, the mean exit time and inverse exit flux, that specify
the dynamics of the system in this specific direction. Our theo-
retical arguments are explicitly illustrated by analyzing three dif-
ferent dynamic systems, including an enzyme with two substrates,
a two-site channel with two exits, and a multi-site channel with
two exits. Theoretical calculations for these systems were done
using exact analytical calculations, a mean-field approximation, and
kinetic Monte Carlo computer simulations.

Our theoretical analysis shows that the two time scales may
behave very differently, and this is the consequence of the existence
of other exits in the system. This indicates that it is not correct to
consider dynamics at each exit as independent from each other. In
addition, it is argued that our theoretical calculations have a strong
implication for the experimental studies of complex natural pro-
cesses. This is because the mean exit times are typically determined
from single-particle measurements, while the fluxes are typically

obtained via bulk measurements. We conclude that both types of
experimental measurements are needed in order to present a com-
prehensive description of the dynamics in such systems. It will be
important to test experimentally our theoretical predictions.
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APPENDIX A: EXPLICIT DERIVATIONS
OF THE GENERAL RELATIONS BETWEEN
THE DIFFERENT TIME SCALES

Consider a dynamic system with multiple outcomes for a very
long observation time Tobs (Tobs → ∞). Let us define N i(Tobs) as
the number of products of type i that were made during the obser-
vation time Tobs. This allows us to identify the flux in this specific
direction,

Ji =
Ni(Tobs)

Tobs
. (A1)

The total number of products of all possible M types, created during
this observation time, is given by

N(Tobs) =
M

∑

i=1
Ni(Tobs). (A2)

It allows us to connect the overall flux J and the overall mean time T
before the appearance of any product,

J =
M

∑

i=1
Ji =

N(Tobs)

Tobs
=

1
T

. (A3)

This relation is the same as given in Eqs. (1) and (3) in the main text.
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In the next step, we can determine the probability to reach the
outcome i, Πi, which is given as a ratio of the products of type i over
the total number of all products, leading to

Πi =
Ni(Tobs)

N(Tobs)
=
Ni(Tobs)/T
N(Tobs)/T

=
Ji
J

. (A4)

From this expression, we immediately obtain

Ji = ΠiJ =
Πi

T
, (A5)

which is the same as Eq. (4) in the main text.
Now, we can relate the mean exit time Ti to the total observa-

tion time as follows:

Tobs =
M

∑

i=1
Ni(Tobs)Ti, (A6)

which leads to

T =
Tobs

N(Tobs)
=

1
N(Tobs)

M

∑

i=1
Ni(Tobs)Ti =

M

∑

i=1
ΠiTi. (A7)

This is identical to Eq. (2) in the main text.

APPENDIX B: SIMPLE KINETIC
PROOFREADING SCHEME

The molecular fluxes can be determined using the forward mas-
ter equations. Since we consider the stationary dynamics, it can be
assumed that as soon as the system reaches the state R or W, it imme-
diately resets to the state E (see Fig. 1). One can then define PE, PER,
and PEW as stationary probabilities to find the system in the corre-
sponding states E, ER, and EW. The stationary dynamics at state E
is described as the balance of the fluxes into this state and out of this
state,

0 = (u1 + w1)PER + (a1 + b1)PEW − (u0 + w0)PE, (B1)

while for states ER and EW, we have

0 = u0PE − (u1 + w1)PER (B2)

and
0 = a0PE − (a1 + b1)PEW , (B3)

respectively. In addition, the normalization requires that

PE + PER + PEW = 1. (B4)

Solving Eqs. (B2)–(B4) leads to explicit expressions for the
stationary probabilities of different chemical states,

PE =
(u1 + w1)(a1 + b1)

(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)
, (B5)

PER =
u0(a1 + b1)

(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)
, (B6)

and

PEW =
a0(u1 + w1)

(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)
. (B7)

This allows us to estimate the molecular flux to make the right
products R,

JR = u1PER =
u0u1(a1 + b1)

(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)
,

(B8)

and to make the wrong products W,

JW = a1PEW =
a0a1(u1 + w1)

(u1 + w1)(a1 + b1) + u0(a1 + b1) + a0(u1 + w1)
.

(B9)

To evaluate the probabilities to make R and W products (ΠR
and ΠW) and the mean exit times in the right and wrong directions
(TR and TW), the first-passage method will be utilized.24,25 For con-
venience, let us focus on the exit in the R direction. One can define
the functions Fj(t) (j = EW, E, ER, or R) as the probability den-
sity functions to reach product R at time t for the first time before
reaching product W, if initially the system started in state j. The time
evolution of these first-passage probability functions is governed by
backward master equations,

dFE(t)
dt

= u0FER(t) + a0FEW(t) − (u0 + a0)FE(t),

dFEW(t)
dt

= b1FE(t) − (a1 + b1)FEW(t),

dFER(t)
dt

= u1FR(t) + w1FE(t) − (u1 + w1)FER(t).

(B10)

In addition, we have FR(t) = δ(t), which means that if the system
starts in state R, the process is immediately at the terminal state, R.

Equation (B10) can be conveniently analyzed using the Laplace
transform, F̃j(s) = ∫∞0 e−stFj(t)dt, which modifies the original back-
ward master equations into

(s + u0 + a0)F̃E(s) = u0F̃ER(s) + a0F̃EW(s),

(s + a1 + b1)F̃EW(s) = b1F̃E(s),

(s + u1 + w1)F̃ER(s) = u1 + w1F̃E(s).

(B11)

Solving these equations leads to

F̃E(s) =
u0u1(s + a1 + b1)

(s + u1 + w1)(s + u0 + a0)(s + a1 + b1) − a0b1(s + u1 + w1) − u0w1(s + a1 + b1)
. (B12)
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Now, we can explicitly evaluate the splitting probability and the
mean exit time,

ΠR ≡ F̃E(s = 0) =
u0u1(a1 + b1)

u0u1(a1 + b1) + a0a1(u1 + w1)
(B13)

and

TR ≡ −
(
dF̃E(s)

ds )s→0

ΠR

=

(a1 + b1)(u0 + u1 + w1) + a0b1
u1+w1
a1+b1

+ a0a1

u0u1(a1 + b1) + a0a1(u1 + w1)
. (B14)

A similar analysis can be done for the exit dynamics in the
direction of the wrong products. Here, we derive the following
expressions:

ΠW =
a0a1(u1 + w1)

u0u1(a1 + b1) + a0a1(u1 + w1)
(B15)

and

TW =
(u1 + w1)(a0 + a1 + b1) + u0w1

a1+b1
u1+w1

+ u0u1

u0u1(a1 + b1) + a0a1(u1 + w1)
. (B16)

APPENDIX C: TWO-SITE SYSTEM
1. The probabilities and currents

The dynamics of the probabilities of the two-site model con-
sidered in Subsection III B may be described by the following set of
equations:

dp00

dt
= −fp00 + rLp10 + rRp01,

dp10

dt
= fp00 − (rL + r12)p10 + r21p01 + rRp11,

dp01

dt
= r12p10 − (rR + r21 + f )p01 + rLp11,

dp11

dt
= fp01 − (rL + rR)p11.

(C1)

The steady state solution and the resulting steady state output
currents are provided in Eqs. (16)–(18).

In addition, one may find the steady state actual input flux,

Jin = f (ssp01 + ssp00). (C2)

In the limit of a small impinging flux, the right and left output fluxes
take the form

JR = f
r12rR

r12rR + (r21 + rR)rL
+ O(f 2

),

JL = f
rL(r21 + rR)

r12rR + (r21 + rR)rL
+ O(f 2

).
(C3)

In the limit of a jammed system, f →∞, the output currents are

JR ∼ r12rR/(r12 + rR),

JL ∼ rL.
(C4)

The currents also provide the probabilities of each particle to exit to
the right or left,

pR = JR/(JR + JL)

=
r12rR(f + rL + rR)

frR(r12 + rL) + fr12rL + (rL + rR)(rR(r12 + rL) + r21rL)
,

pL = JL/(JR + JL)

=
rL(f (r12 + rR) + (r21 + rR)(rL + rR))

frR(r12 + rL) + fr12rL + (rL + rR)(rR(r12 + rL) + r21rL)
.

(C5)

In the limit of a small input current, f → 0, the probabilities are

lim
f→0

pR =
r12rR

r21rL + rRr12 + rLrR
,

lim
f→0

pL =
r21rL + rLrR

r21rL + rRr12 + rLrR
.

(C6)

In the opposite limit of a crowded system, f →∞, the probabilities
are

lim
f→∞

pR =
r12rR

r12(rL + rR) + rLrR
,

lim
f→∞

pL =
r12rL + rLrR

r12(rL + rR) + rLrR
.

(C7)

Note that in this latter limit, site 1 is always occupied and the transi-
tion from site 2 to site 1 never takes place; therefore, the expressions
are independent of the rate r21.

2. The first-passage time
In order to calculate the mean first-passage time, we write the

backward master equations for two possible initial conditions: 10 if
site 1 is occupied and state 2 is not and 11 if both sites are occupied.
For the first-passage time, we have to consider a tagged particle, and
if there is another one in the system, it is not tagged. Therefore, in
what follows, we will use • to denote a tagged particle, ○ to denote
an untagged particle, and ◽ to denote an empty site. In writing the
backward master equation, we number the states as 1 for •○, 2 for
•◽, 3 for ◽•, 4 for ○•, and e for the case where the tagged particle
exits to the right. Mathematically, we write the probability density of
escaping to the right at time t, given that the system is in state j and
the initial condition is 1, as F1FR ,j. The general form of the backward
master equation is

dFi
dt
= −Fi∑

j
rij +∑

j
Fjrji, (C8)
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where rij is the transition rate from state j to state i. For the initial
condition 1 (•○), the set of equations is

d
dt

1FR,1 = −
1FR,1(rL + rR) + 1FR,2rR,

d
dt

1FR,2 = −
1FR,2(rL + r12) + 1FR,3r12,

d
dt

1FR,3 = −
1FR,3(rR + r21 + f ) + 1FR,2r21 + 1FR,4f + 1FerR,

d
dt

1FR,4 = −
1FR,4(rL + rR) + 1FR,3rL + 1FerR.

(C9)

The backward master equations are linear; therefore, we apply the
Laplace transform and write the set of equations as

1F̃R,1(rL + rR + s) = 1F̃R,2rR,

1F̃R,2(rL + r12 + s) = 1F̃R,3r12,

1F̃R,3(rR + r21 + f + s) = 1F̃R,2r21 + 1F̃R,4f + rR,

1F̃R,4(rL + rR + s) = 1F̃R,3rL + rR.

(C10)

Following our definitions, the probability density at t = 0 is zero
for all states except for state e for which the Laplace transform was
considered explicitly [1Fe(t) = δ(t)]. The solution for the Laplace
transform of the first-passage time to the right, given that the initial
condition is 1, is

1F̃R,1(s) =
r12r2

R(f + rL + rR + s)
(rL + rR + s)(r21(rL + s)(rL + rR + s) + (rL + r12 + s)(rR + s)(f + rL + rR + s))

. (C11)

The corresponding right exit probability (given the initial state, 1)
is provided in Eq. (20). The mean escape time according to FR ,1 is
given in Eq. (21).

For initial state 2 (•◽), the backward master equation is

d
dt

2FR,2 = −
2FR,2(rL + r12) + 2FR,3r12,

d
dt

2FR,3 = −
2FR,3(rR + r21 + f ) + 2FR,2r21 + 2FR,4f + 2FerR,

d
dt

2FR,4 = −
2FR,4(rL + rR) + 2FR,3rL + 2FerR.

(C12)

Using the same approach as before, the Laplace transform of the
equations reads

2F̃R,2(rL + r12 + s) = 2F̃R,3r12,
2F̃R,3(rR + r21 + f + s) = 2F̃R,2r21 + 2F̃R,4f + rR,

2F̃R,4(rL + rR + s) = 2F̃R,3rL + rR.

(C13)

The solution of interest is

2F̃R,2 = −
r12rR(f + rL + rR + s)

r12r21(rL + rR + s) + (r12 + rL + s)(frL − (f + r21 + rR + s)(rL + rR + s).)
. (C14)

The corresponding right exit probability (given initial state 2) is given in Eq. (22). The corresponding mean time is given in Eq. (23).
The results above can be combined to determine the mean right escape time (considering the proper average over the two possible initial

conditions), as appears in Eq. (19).

APPENDIX D: GENERAL CHANNEL
1. Population dynamics and steady state

The equations describing the dynamics of the population are

dnk
dt
= −rnk(1 −

nk+1

m
) − rnk(1 −

nk−1

m
) + r(nk+1 + nk−1)(1 −

nk
m
), 3 ≤ k ≤ N − 2,

dn1

dt
= −(rL + r12(1 −

n2

m
))n1 + r21n2,

dn2

dt
= (f + r12n1 + rn3)(1 −

n2

m
) − (r21 + r(1 −

n3

m
))n2,

dnN−1

dt
= (r12nN + rnN−2)(1 −

nN−1

m
) − (r21 + r(1 −

nN−3

m
))nN−2,

dnN
dt
= −(rR + r12(1 −

nN−1

m
))nN + r21nN−1.

(D1)
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The mean-field steady state solution is provided in Eqs. (24)–(26).

2. Single particle using mean field in the jammed
regime

In the mean-field approximation, the dynamics of the single
particle is assumed to be affected by the steady state population
only through the modification of the transition rates. The rates
are assumed to be affected only by the mean density of states;
therefore, the correlations due to the exclusion are neglected. The
probabilities of the tagged particle are described by the following
equations:22,25,31–33

d
dt
pk(t) = r(1 −

nssk
m
)(pk−1 + pk+1) − rpk(2 −

nssk+1

m
−

nssk−1

m
)

for 2 < k < N − 1. (D2)

Taking into account the solution for the steady state population (24),
we can rewrite the equation as

d
dt
pk(t) = r(1 −

nssk
m
)(pk−1 + pk+1 − 2pk)

= r(A − kB)(pk−1 + pk+1 − 2pk) for 2 < k < N − 1. (D3)

The boundary conditions are written as

d
dt
p1(t) = −(rL + r12(1 −

nss2
m
))p1 + r21p2 = −(rL + r12(A − 2B))p1 + r21p2,

d
dt
p2(t) = −(r(1 −

nss3
m
) + r21)p2 + r12(1 −

nss2
m
)p1 + r(1 −

nss2
m
)p3

= −(r(A − 3B) + r21)p2 + r12(A − 2B)p1 + r(A − 2B)p3,
d
dt
pN−1(t) = −(r21 + r(1 −

nssN−2

m
))pN−1 + r(1 −

nssN−1

m
)pN−2 + r12(1 −

nssN−1

m
)pN

= −(r21 + r(A − (N − 2)B))pN−1 + r(A − (N − 1)B)pN−2 + r12(A − (N − 1)B)pN ,
d
dt
pN(t) = −(rR + r12(1 −

nssN−1

m
))pN + r21pN−1 = −(rR + r12(A − (N − 1)B))pN + r21pN−1.

(D4)

Using a matrix representation, the dynamics may be written as

d
dt
∣p(t)⟩ = Ûss

∣p(t)⟩. (D5)

The matrix elements for 2 < k < N − 1 are given by

Uss
k,k = −2r(1 − nssk /m) = −2r(A − kB),

Uss
k,k±1 = r(1 − n

ss
k /m) = r(A − kB).

(D6)

The boundary conditions are represented by the following matrix elements:

Uss
1,1 = −r12(1 −

nss2
m
) − rL = −r12(A − 2B) − rL,

Uss
2,2 = −r(1 −

nss3
m
) − r21 = −r(A − 3B) − r21,

Uss
N−1,N−1 = −r(1 −

nssN−2

m
) − r21 = −r(A − (N − 2)B) − r21,

Uss
N,N = −r12(1 −

nssN−1

m
) − rR = −r12(A − (N − 1)B) − rR,

Uss
1,2 = r21,

Uss
2,1 = r12(1 −

nss2
m
) = r12(A − 2B),

Uss
2,3 = r(1 −

nss2
m
) = r(A − 2B),

Uss
N−1,N−2 = r(1 −

nssN−1

m
) = r(A − (N − 1)B),

Uss
N−1,N = r12(1 −

nssN−1

m
) = r12(A − (N − 1)B),

Uss
N,N−1 = r21.

(D7)
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The average exit times to the right/left and the corresponding
probabilities are provided in Eqs. (29)–(32).

In order to obtain an explicit expression for T
ss
←, we define

∣α⟩ = D(Uss
)
−1
∣2⟩, (D8)

⟨LQ∣ = D⟨1∣(Uss
)
−1, (D9)

and

⟨RQ∣ = D⟨N∣(Uss
)
−1. (D10)

In the equations above, we introduced the notation for the deter-
minant of Uss, D ≡ det(Uss

). The elements of these vectors are
given by

α1 = α0(rr12(A2 + 2(N − 1)B2
− AB(N + 1)) + rrR(A − 2B) + (N − 3)rRr21),

α2 = α1(Ar12 − 2Br12 + rL)/r21,

αk = α0((A2 + k(N − 1)B2
− AB(N + k − 1))rr12 + rrR(A − kB) + (N − k − 1)rRr21), 2 < k < N − 1,

αN−1 = αN(Ar12 − (N − 1)Br12 + rR)/r21,
αN = α0rr21(A − B)(A − 2B)(Ar12 − 2Br12 + rL),

(D11)

where α0 = rN−4r21(−1)N−1
(

N−2

∏

k=3
(A − kB)). The elements of the vector LQ are given by

LQ1 = α0(rr12(A2 + 2(N − 1)B2
− AB(N + 1)) + rrR(2A − (N + 1)B) + (N − 3)rRr21),

LQ2 = α0(rr12(A2 + 2(N − 1)B2
− AB(N + 1)) + rrR(A − 2B) + (N − 3)rRr21),

LQk = α0
A − 2B
A − kB

(rr12(A2 + k(N − 1)B2
− AB(N + k − 1)) + rrR(A − kB) + (N − k − 1)rRr21), 2 < k < N − 1,

LQN−1 = LQN(1 +
rR

(A − (N − 1)B)r12
)

LQN = α0rr12(A − 2B)(A − (N − 1)B).

(D12)

The elements of the vector RQ are given by

RQ1 = LQN = α0rr12(A − 2B)(A − (N − 1)B),

RQ2 = α0r(A − (N − 1)B)((A − 2B)r12 + rL),

RQk =
α0(A − (N − 1)B)

A − kB
(rr12(A2 + 2kB2

− AB(k + 2)) + rrL(A − kB) + (k − 2)rLr21), 2 < k < N − 1,

RQN−1 = α0(rr12(A2 + 2(N − 1)B2
− AB(N + 1)) + rrL(A − (N − 1)B) + (N − 3)rLr21),

RQN = α0(rr12(A2 + 2(N − 1)B2
− AB(N + 1)) + rrL(2A − (N + 1)B) + (N − 3)rLr21).

(D13)

In the above expressions, A and B are set by the solution of the
set of equations (26). The mean escape time to the left is then

T
ss
←P← =

rL
D2

N

∑

k=1
LQkαk, (D14)

and similarly,

T
ss
→P← =

rR
D2

N

∑

k=1
RQkαk. (D15)

Using the notations above, we can express D as

D = α0(A − B)(A − 2B)(rr12(rL + rR)(A − 2B)(A − (N − 1)B)
+ rLrR(r(2A − (N + 1)B) + (N − 3)r21)). (D16)

The detailed expressions are cumbersome and, therefore, are
not provided in detail here.
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