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One of the main experimental tools in studying the microscopic
mechanisms of complex phenomena is measuring transition times
for individual particles.1 These observations are frequently analyzed
using a random walk approach, which is one the simplest theoretical
models that accounts for stochasticity at the molecular level.2 In the
presence of a bias, a random walker moves preferentially along the
bias; however, the jumps’ waiting time is the same in both directions
as a consequence of microscopic reversibility.3 We have recently
shown that the symmetry of the downhill (along with the bias) and
uphill (against the bias) transition times can be broken in multi-
particle systems.4,5 Here, we explain that such symmetry can be also
broken even for a single particle at non-equilibrium conditions for
the systems with complex internal transitions.

Consider a particle moving on a two-lane lattice, as illustrated
in Fig. 1. In lane 1, the hopping rates are u and w to the right and
left, respectively. In lane 2, u′ and w′ are the corresponding right and
left rates. The particle can also transition between two lanes with the
rate a (from lane 2 to lane 1) and b (from lane 1 to lane 2). We define
the forward motion as the motion to the right along any lane, and,
correspondingly, the backward motion is any motion to the left.

We start with the transition to the right through lane 1. Since
the transition time is defined only between two neighboring sites, we
consider six sites on the lattice marked −1, 0, 1, 2, 3, and 4 in Fig. 1.
It is assumed that the particle is placed either at the site 1 or at the
site 2 at time t = 0, and the system is transitionally invariant. Now we
define first-passage probability-density distribution functions Fi ,3(t)
(i = 1, 2, 3) to reach state 3 starting at the site i at time t before making

any forward/backward transition via other paths. These functions
follow the backward master equations,6,7

dF1,3(t)
dt

= −(u + w + b)F1,3(t) + bF2,3(t) + uF3,3(t), (1)

dF2,3(t)
dt

= −(u′ + w′ + a)F2,3(t) + aF1,3(t), (2)

and F3,3(t) = δ(t). Applying the Laplace transformation, F̃i,3(s)
≡ ∫∞0 Fi,3(t) exp(−st)dt, we derive

(s + u + w + b)F̃1,3(s) = bF̃2,3(s) + u, (3)

(s + u′ + w′ + a)F̃2,3(s) = aF̃1,3(s). (4)

These equations can be solved, allowing us to obtain the probabilities
to reach state 3 before reaching other states (−1, 0, and 4) starting
from the state 1, Π1,3, or starting from the state 2, Π2,3,

Π1,3 =
u(a + u′ + w′)

a(u + w) + (b + u + w)(u′ + w′) , (5)

Π2,3 =
au

a(u + w) + (b + u + w)(u′ + w′) . (6)
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FIG. 1. A model for a single particle hopping on a two-lane lattice. The transition
rates are u andw to move to the right and to the left, respectively, in lane 1, and the
corresponding rates in lane 2 are u′ and w′. The particle can also jump between
the lanes with the rates a and b.

The (conditional) mean-first passage times T1,3, T2,3 for such events
can be also found from the first-passage distributions,6,7 producing

T1,3 =
a2 + (u′ + w′)2 + a[b + 2(u′ + w′)]

(a + u′ + w′)[a(u + w) + (b + u + w)(u′ + w′)] , (7)

T2,3 =
a + b + u + u′ + w + w′

a(u + w) + (b + u + w)(u′ + w′) . (8)

Similarly, we determine the forward transition times via lane 2 by
evaluating the first-passage distribution functions F1,4(t) and F2,4(t)
to reach state 4, yielding

Π1,4 =
bu′

a(u + w) + (b + u + w)(u′ + w′) , (9)

Π2,4 =
u′(b + u + w)

a(u + w) + (b + u + w)(u′ + w′) , (10)

T1,4 =
a + b + u + u′ + w + w′

a(u + w) + (b + u + w)(u′ + w′) , (11)

T2,4 =
ab + (b + u + w)2

(b + u + w)[a(u + w) + (b + u + w)(u′ + w′)] . (12)

Finally, the mean forward transition time can be calculated by
averaging over all the possible forward paths and initial states,

T+(u,w,u′,w′) =
∑i=1,2∑j=3,4 piΠi,jTi,j

∑i=1,2∑j=3,4 piΠi,j
, (13)

where pi (i = 1, 2) is the probability for the particle to start at lane
1 or lane 2, respectively. Measuring the transition events for long
times gives p1 = a

a+b and p2 = 1 − p1.5 The backward transition times
can be obtained from symmetry considerations, T−(u, w, u′, w′)
= T+(w, u, w′, u′). Note that as we measure the transition dynam-
ics along the horizontal direction, the effective dynamics is non-
Markovian, while the individual transitions are Markovian.8

We found that the forward and backward transition times are
different in general. As an illustration, they are shown in Fig. 2 for a
specific set of parameters. Even though that for these parameters, the
particle preferably moves to the right in both lanes, either forward or
backward transition time can be faster.

In order to understand these surprising observations, we con-
sider a cyclic network of states (1, 3, 4, 2). The thermodynamic
affinity for this loop, which can be viewed as a driving force for the
system to be out of equilibrium, can be evaluated as3,9

A = kBT ln(ubw
′a

wbu′a
) = kBT ln(uw

′

u′w
). (14)

Only at equilibrium, we have A = 0, and A ≠ 0 corresponds to a net
current in the system. With the choice of our parameters in Fig. 2,
we have A > 0 (<0) for w < 1/4 (>1/4). Figure 2 shows that for the
clockwise current (A > 0 and w < 1/4), the forward transition time
is longer than the backward transition time. The particle preferen-
tially moves forward through lane 1, where the transition is slower
than through lane 2. On the other hand, for the backward transition,
the particle moves preferentially through the lane 2. That is why the
forward transition is slower in this case. The situation is opposite
for w > 1/4 when there is a net counter-clockwise current. Only at
equilibrium, w = 1/4, there is no net current along the cycle, and the
symmetry of the forward/backward transition times is recovered.8

Our results can be applied to motor proteins that undergo con-
formational changes during the motion along linear tracks.7,10 The
possibility of conformational transitions is typically not accounted
for because it is difficult to detect them experimentally. Our study
suggests that experiments might be used to clarify the existence of
the conformational states: if the motor protein exhibits the asym-
metry in transition times, it indicates that there are several internal
states.

In summary, we showed that the symmetry of forward/
backward transition times could be broken even for a single par-
ticle. Using a random walk approach, it is found that the transi-
tion times are the same only at equilibrium. In out-of-equilibrium,
the direction of the loop current determines which transition times

FIG. 2. Forward and backward transition times. The following parameters are used
in calculations: u = 1, u′ = 4, w′ = 1, and a = b = 1. Only the rate w is varied.
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are shorter. This is the result of different contributions for forward
and backward paths. Since the asymmetry of transition forward/
backward times arises when the system is out-of-equilibrium and
non-Markovian due to underlying molecular mechanisms,8 our
analysis suggests that the asymmetry can be used as a measure
of deviation from equilibrium in complex molecular systems.11 In
addition, our analysis provides the way to quantify the complexity
of internal transitions in molecular systems.
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