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ABSTRACT
Microscopic mechanisms of natural processes are frequently understood in terms of random walk models by analyzing local particle transi-
tions. This is because these models properly account for dynamic processes at the molecular level and provide a clear physical picture. Recent
theoretical studies made a surprising discovery that in complex systems, the symmetry of molecular forward/backward transition times with
respect to local bias in the dynamics may be broken and it may take longer to go downhill than uphill. The physical origins of these phenom-
ena remain not fully understood. Here, we explore in more detail the microscopic features of the symmetry breaking in the forward/backward
transition times by analyzing exactly solvable discrete-state stochastic models. In particular, we consider a specific case of two random walkers
on a four-site periodic lattice as the way to represent the general systems with multiple pathways. It is found that the asymmetry in transition
times depends on several factors that include the degree of deviation from equilibrium, the particle crowding, and methods of measurements
of dynamic properties. Our theoretical analysis suggests that the asymmetry in transition times can be explored experimentally for determin-
ing the important microscopic features of natural processes by quantitatively measuring the local deviations from equilibrium and the degrees
of crowding.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0053634

I. INTRODUCTION

Numerous natural processes involve molecular motions in
complex environments that reflect various inter-particle interac-
tions.1–4 Examples include ion transport through membrane chan-
nels,5,6 motor proteins moving along cytoskeleton protein fila-
ments,7 and protein–DNA interactions.8 These phenomena are
often modeled as random walks on lattices, providing important
mechanical insights into the underlying microscopic processes.4,7–9

Generally, biased random walk models have been successfully
employed for analyzing various processes in chemistry, physics, and
biology.1,4,7,9 There are also significant recent advances in experi-
mental studies of natural processes that allow researchers to monitor

systems with high temporal and spatial resolutions.10 The dynamics
of the individual molecules can now be well monitored, for instance,
by using fluorescent labeling methods.7,11,12 Among other important
properties, transition times for molecular transitions from one state
to another and drift velocities have been frequently measured with
the goal to quantify the underlying microscopic processes. For exam-
ple, for kinesin motor proteins that move along microtubules in
in vitro single-molecule studies, it was found that the transition
times for forward and backward steps are the same, even though
the forward transitions are predominant.13 This finding can be
explained in terms of the microscopic reversibility of the elementary
transition events for single particles, as shown in previous theoretical
studies.3,14,15
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Interestingly, it was recently theoretically found that in some
complex multi-particle systems, the symmetry of uphill (against the
local bias) and downhill (along the local bias) transition times can
be broken. In contrast to expectations, it takes longer to go along
the bias than against the bias. For example, such phenomena have
been reported in the single-file diffusion,16 in the biased random
walk with exclusion interactions,17 in the single-molecule motion
with two different dynamic modes,18 and in the particle dynamics
on cycle processes with strong coupling to the environment.19 It was
proposed that the asymmetry in the transition times is the sign that
the system is out of equilibrium,18 as well as the consequence of the
multi-particle interactions in the system.16,19 These theoretical stud-
ies, however, involved mostly numerical simulations or considered
special simplified systems, raising the question if the observed phe-
nomena are valid for more general cases. In addition, the computer
simulations were performed for systems with complex molecular
interactions that made it difficult to clarify the underlying mecha-
nisms. Thus, the microscopic picture behind the symmetry breaking
for the single-particle dynamics in complex environments is still not
fully understood.

Consider a single particle that can move one site forward (back-
ward) with a rate u (w) on the otherwise empty one-dimensional lat-
tice. The probabilities for this biased random walker to step forward
(Π+0 ) or backward (Π−0 ) can be written as

Π+0 =
u

u +w
, Π−0 =

w

u +w
. (1)

Its forward and backward mean transition times to the neighboring
sites are the same and equal to its mean residence time on a site,

T+0 = T−0 = T0 =
1

u +w
. (2)

The effective drift velocity for this particle is given by

V0 =
Π+0 −Π−0

T0
= (u −w). (3)

In real systems, there are multiple particles that interact with each
other, and this raises a question: how specifically these single-particle
features are affected by the presence of other particles in the system.
In other words, how the molecular crowding modifies the measured
properties of individual particles and what information about the
system it provides?

To answer these questions, in the present paper, we analyze the
dynamics of a single tracer particle in a one-dimensional discrete-
state stochastic model in the presence of other particles that interact
with each other only via hard-core exclusion. This model considers
multiple pathways for transitions in contrast to our previous inves-
tigation,17 and it allows us to explicitly quantify the dynamic prop-
erties of the single particle in a complex environment. Our results
show that the asymmetry in the forward/backward transition time
becomes more pronounced as the system deviates stronger from the
equilibrium. Moreover, we found that the degree of the asymme-
try depends on the method of measuring the transition times, which
might be relevant for different experimental implementations. This
is a new result that has not been reported before. In addition, it was
found that crowding is an important factor that influences the asym-
metry in local dynamic properties. This finding is in accordance with

our recent work on simpler systems.17 As detailed below, this current
study generalizes the main results of the previous investigation by
considering a more general transition network in which the dynamic
properties are evaluated using two different approaches. Addition-
ally, we argue that the degree of symmetry breaking in the transition
times can be used to simultaneously measure the local degree of
deviations from the equilibrium state of the system and the degree
of crowding.

II. THEORETICAL MODEL
To understand the microscopic features of the molecular

motion in a complex environment, we utilize a random-walk
approach for a one-dimensional discrete-state stochastic system,
composed of a lattice of L discrete sites where N particles are mov-
ing. To simplify the analysis, we consider the periodic boundary
conditions on the lattice. The particles can jump to the right and
left with the rates u and w, respectively, when the neighboring sites
are not occupied. While all the particles follow the same dynam-
ics, to analyze the molecular transitions, we choose one of them
as a tracer. This corresponds to the situation in experiments when
the dynamics of one specific molecule, which might be fluorescently
labeled or selectively chosen by optical tweezers, is followed.11,12 We
define a transition time for the tracer particle as the mean wait-
ing time for the next allowed molecular transition. In the absence
of other particles (no crowding), the transition time will be expo-
nentially distributed with a single time scale that corresponds to the
mean residence time in the given state. The situation is much more
complex in the presence of multiple particles that affect each other
dynamics.

In our recent work,17 we considered a special case of the
discrete-state model when the number of particles is N = L − 1, i.e.,
there is only one empty site on the lattice. In this situation, the
transition dynamics can be mapped onto a one-dimensional linear
network of states that allows for a full quantitative analysis.17 For
the general case of L and N < L − 1, however, the number of possible
distinct particle configurations is larger, and the transition network
is no longer one-dimensional. To understand the transition dynam-
ics in such more complex systems, here we consider a special case
with L = 4 and N = 2. In this case, there are total 12 states, as shown
in Fig. 1(a). It has a non-linear transition network structure and bet-
ter represents a more general situation. As the system has fourfold
symmetry, we can describe a single transition event by considering
a sub-system shown in Fig. 1(b). For a given tracer position, there
are three different configurations of the system as labeled by states
(1), (2), and (3). The tracer can make forward (backward) transition
by stepping into configuration (4) or (5) [(−1) or (0)] [see Fig. 1(b)].
Therefore, to calculate the mean transition time, we need to consider
a total of six possible paths for both forward and backward tran-
sitions (three possible initial configurations and two possible final
configurations).

Let us consider first the forward transition path via the stepping
to state (5). We define the first-passage probability time function
Fi,5(t) for the initial state i [i = (1), (2), or (3)] as a probability to
reach state (5) at time t for the first time before reaching any of the
states (−1), (0), and(4) starting at t = 0 at state i. This function is the
probability flux entering state (5) at time t. The dynamics of these
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FIG. 1. (a) A network of all possible discrete states in the system with two particles
(N = 2) on a lattice of L = 4 sites with periodic boundary conditions. The transition
rate along the bigger (smaller) head of arrows is u (w). (b) A specific subset of
transition pathways. Note that states (−1) and (0) here correspond to states (11)
and (12), respectively, in the panel (a).

functions are governed by the backward master equations17

dF1,5(t)
dt

= −(u +w)F1,5(t) + uF2,5(t), (4)

dF2,5(t)
dt

= −2(u +w)F2,5(t) +wF1,5(t) + uF3,5(t), (5)

dF3,5(t)
dt

= −(u +w)F3,5(t) +wF2,5(t) + uF5,5(t). (6)

In addition, we have F5,5(t) = δ(t), which means that if the initial
state is in state (5), the process will end immediately.

To solve these equations, we apply the Laplace transforma-
tion, F̃i(s) ≡ ∫

∞

0 Fi(t) exp(−st)dt, where s is the Laplace variable.
Then, the above differential equations modify into simpler algebraic
equations

(s + u +w)F̃1,5(s) = uF̃2,5(s), (7)

(s + 2u + 2w)F̃2,5(s) = wF̃1,5(s) + uF̃3,5(s), (8)

(s + u +w)F̃3,5(s) = wF̃2,5(s) + u. (9)

These algebraic equations can be easily solved, allowing us to
obtain the full description of the transition dynamics, i.e., all func-
tions F̃i,5(s) for i = 1, 2, and 3. Our main focus here is on the splitting
probabilities Πi,5, which are the probabilities for the tracer particle
starting from state i to end up in state 5, and the mean transition
times Ti,5 for such events. In order to calculate those quantities,
we expand the Laplace transform of Fi,5(t) in small s, F̃i,5(s)
= ∫

∞

0 [1 − st]Fi,5(t)dt +O(s2
). The splitting probability can be

obtained using the relation Πi,5 ≡ ∫
∞

0 Fi,5(t)dt = lims→0F̃i,5(s). The
result is

Π1,5 =
u3

2(u +w)(u2 + uw +w2)
, (10)

Π2,5 =
u2

2(u2 + uw +w2)
, (11)

Π3,5 =
u(2u2

+ 3uw + 2w2
)

2(u +w)(u2 + uw +w2)
. (12)

To find the mean transition time Ti,5, we note that this is a con-
ditional mean first-passage time. Then, we utilize the fact that the
probability distribution function of this time ϕi,5(t) is the ratio of the
function Fi,5(t) to the splitting probability Πi,5, ϕi,5(t) = Fi,5(t)/Πi,5.
This allows us to calculate the mean transition times Ti,5 using the
equation

Ti,5 ≡ ∫

∞

0
tϕi,5(t)dt =

1
Πi,5
∫

∞

0
tFi,5(t)dt

= −
1

Πi,5

∂F̃i,5(s)
∂s

RRRRRRRRRRR s→0

. (13)

The results are

T1,5 =
5u2
+ 8uw + 5w2

2(u +w)(u2 + uw +w2)
, (14)

T2,5 =
3(u +w)

2(u2 + uw +w2)
, (15)

T3,5 =
4u4
+ 13u3w + 20u2w2

+ 13uw3
+ 4w4

2(u +w)(u2 + uw +w2)(2u2 + 3uw + 2w2)
. (16)

Note that these transition times are symmetric with respect to the
change of u and w, which means that the mean time for the transi-
tion from the particular initial state to the particular final state is the
same as the mean time for the reversed path.17

Similarly, we consider the forward transitions to state (4). In
this case, state (4) is now an absorbing boundary, and the initial
condition is F4,4(t) = δ(t). Using the same formalism, we obtain the
splitting probabilities and the mean transition times

Π1,4 =
u2

2(u2 + uw +w2)
, (17)

Π2,4 =
u(u +w)

2(u2 + uw +w2)
, (18)

Π3,4 =
uw

2(u2 + uw +w2)
, (19)
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and

T1,4 = T3,4 =
3(u +w)

2(u2 + uw +w2)
, (20)

T2,4 =
u2
+ 4uw +w2

2(u +w)(u2 + uw +w2)
. (21)

Following the symmetry arguments, corresponding results for the
backward transitions to states (−1) and (0) can be obtained by
exchanging u and w.

The experimental measurements of transition dynamics report
the average over all possible pathways. This can be fully accounted
in our theoretical approach. We define weight factors pi,α as the
probability for the system to start in state i at time t = 0, and the
subscript α labels the method of measuring of dynamic properties.
Then, the average forward and backward probabilities of stepping
for the tracer particle are given as

Π+α =
3

∑
i=1

pi,α(Πi,4 +Πi,5), Π−α =
3

∑
i=1

pi,α(Πi,−1 +Πi,0). (22)

Similarly, the mean forward (backward) transition times are
obtained by averaging over all possible forward (backward) transi-
tion paths, leading to

T+α =
1

Π+α

3

∑
i=1

pi,α(Πi,4Ti,4 +Πi,5Ti,5) (23)

and

T−α =
1

Π−α

3

∑
i=1

pi,α(Πi,−1Ti,−1 +Πi,0Ti,0). (24)

These expressions can be understood in the following way. The
quantities pi,αΠi,4/Π+α and pi,αΠi,5/Π+α can be viewed as weights for
the forward pathways that start at state i and end in states (4) and (5),
respectively. Similarly, the quantities pi,αΠi,−1/Π−α and pi,αΠi,0/Π−α
can be viewed as weights for the backward pathways that start in
state i and end in states (−1) and (0), respectively.

Finally, we can also evaluate the average residence time at each
lattice site,

Tres
α = Π−α T−α +Π+α T+α , (25)

and the average drift velocity of the tracer particle,

Vα =
Π+α −Π−α

Tres
α

. (26)

In the following, we set the forward hopping rate u = 1 s−1, and
only the backward hopping rate w (≤ u) is varied. It is also con-
venient to introduce a bias parameter x ≡ w/u that quantifies the
tendency of the random walkers to move in different directions. For
x = 1, we have an unbiased random walk, and the system is in equi-
librium, while 0 ≤ x < 1 corresponds to biased random walks under
non-equilibrium conditions. The times below are measured in the
units of u−1. Then, all the quantities of interest can be expressed
in terms of x, for instance, Π+0 = 1

1+x , Π−0 = x
1+x , V0 = 1 − x, and

T0 =
1

1+x .

III. RESULTS
Since in our approach, the tracer particle dynamics can be fully

quantified for any pathway in the system, the effect of crowding
on the symmetry breaking of transition times can now be explic-
itly evaluated. However, we note that in experiments, there could be
several different ways of measuring these dynamic properties. Two
different approaches are identified here, although other methods of
measurements might also be possible.

In the first case, which we label as a resetting average approach,
when the tracer particle makes a transition, the system is immedi-
ately reset to the random initial state. This means that the system can
start with equal probability in any state i, pi,r =

1
3 (α = r corresponds

to the resetting method). Using Eqs. (10)–(12), (17)–(19), and (23),
we obtain the following expressions for the forward and backward
stepping probabilities:

Π+r = Π+0
3 + 4x + 2x2

3(1 + x + x2)
= Π+0 [1 +

x(1 − x)
3(1 + x + x2)

] (27)

and

Π−r = Π−0
2 + 4x + 3x2

3(1 + x + x2)
= Π−0 [1 −

(1 − x)
3(1 + x + x2)

], (28)

where x = w/u and Π±0 are the corresponding probabilities when
there is no crowding [see Eq. (1)]. We immediately note that here
crowding affects the stepping probabilities because Π+r > Π+0 and
Π−r < Π−0 . The probability to step in the forward (backward) direc-
tion increases (decreases) in comparison with the no-crowding
situation.

Similar calculations for the forward and backward transition
times lead to

T+r = T0
8 + 24x + 31x2

+ 17x3
+ 4x4

2(1 + x + x2)(3 + 4x + 2x2)
(29)

and

T−r = T0
4 + 17x + 31x2

+ 24x3
+ 8x4

2(1 + x + x2)(2 + 4x + 3x2)
, (30)

where T0 = 1/(1 + x) is the mean transition time in the case of no
crowding [see Eq. (2)]. Here, we have T+r > T−r > T0, which means
that crowding affects both forward and backward mean transition
times by making them longer in comparison with the no-crowding
situation. Note that our calculations also lead to an unexpected
result: the transition against the bias occurs faster than the transi-
tion along the bias. The mean residence time at any site for the tracer
particle can now be evaluated as

Tres
r = Π+r T+r +Π−r T−r = T0

2(2 + 3x + 2x2
)

3(1 + x + x2)
, (31)

suggesting that crowding increases the residence times.
One could also estimate the drift velocity for the tracer particle

in the resetting method using Eq. (26),

Vr =
Π+r −Π−r

Tres
r

= V0 f r(x), (32)
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where V0 is the drift velocity in the no-crowding case. The function

f r(x) =
3 + 5x + 3x2

2(2 + 3x + 2x2)
(33)

monotonically increases from 0.75 at x = 0 to 11
14 at x = 1. One can

see that crowding, as expected, lowers the effective drift velocity
(Vr < V0).

In Fig. 2, we show the dynamic properties of the tracer parti-
cle calculated using the resetting averaging approach for different
degrees of bias. As expected, for x = 1, the system is in equilibrium,
leading to the same stepping probabilities (Π+r = Π−r = 0.5) and equal
mean transition times in both directions (T+r = T−r ), although both
mean transition times are still longer than the mean transition
times without crowding (T0). However, when the system deviates
from equilibrium (0 ≤ x < 1), there are unexpected changes in the
dynamic properties. While the probability for the forward tran-
sition increases, this does not lead to naively expected lowering
of the mean forward transition times. Instead, T+r increases and,
surprisingly, the mean backward transitions are now always faster
(T+r > T−r ). This is clearly the effect produced by crowding in the
system.

In the second scenario of possible measurements of dynamic
properties, which we call a time (or trajectory) averaging approach

FIG. 2. (a) Transition probabilities and (b) transition times for the model with
L = 4 and N = 2 for the resetting average case. Red solid lines are for the for-
ward transition probability and the mean transition time, and blue dotted lines are
for the backward transition probability and the mean transition time. Black dotted
lines show the mean residence time T0.

(now the subscript α = t), the system might be continuously
observed for a very long time.17 Then, all successful events, the for-
ward or the backward steps of the tracer particle, are counted, and
the mean transition times in each direction are obtained. In this case,
the weight factors pi,t are determined via the relations

p1,t = p1,tΠ1,4 + p2,tΠ2,4 + p3,tΠ3,4, (34)

p2,t = p1,t(Π1,−1 +Π1,5) + p2,t(Π2,−1 +Π2,5)

+ p3,t(Π3,5 +Π3,−1), (35)

p3,t = p1,tΠ1,0 + p2,tΠ2,0 + p3,tΠ3,0. (36)

These expressions can be explained using the following arguments.
State (1) corresponds to the situation when the tracer particle
is behind the crowding particle in the clockwise direction [see
Fig. 1(a)]. To start in this configuration, in the previous transi-
tion, the system must end up in state (4) [note that states (1)
and (4) can be considered to be identical since they can be trans-
formed into each other via rotation]. This can only happen via
transitions 1→ 4, 2→ 4, and 3→ 4 with the corresponding weights.
This leads to Eq. (34). The system will start in state (2) if the pre-
vious transitions were 1→ −1, 1→ 5, 2→ −1, 2→ 5, 3→ −1, or
3→ 5 [Fig. 1(a)]. This explains Eq. (35). Finally, to start in state
(3), the previous transitions must end up in state (0), which leads
to Eq. (36).

Solving Eqs. (34)–(36), we obtain

p1,t =
1

2(1 + x)
, p2,t =

1
2

, p3,t =
x

2(1 + x)
, (37)

which allow us to evaluate the dynamic properties of the tracer
particle. Specifically, we obtain

Π+t = Π+0 =
1

1 + x
, Π−t = Π−0 =

x
1 + x

. (38)

This result suggests that in contrast to the resetting method, in the
time-averaging approach, the crowding does not influence the prob-
abilities to step forward or backward. However, this is not the case
for transition times for which we obtain

T+t = T0
3 + 4x + 2x2

2(1 + x + x2)
, T−t = T0

2 + 4x + 3x2

2(1 + x + x2)
. (39)

One can see that crowding slows down transition dynamics
T+t > T−t > T0. Again, the transitions against the bias occur faster
than those along the bias. We can also easily evaluate the mean
residence time

Tres
t =

3
2

T0 (40)

and the drift velocity

Vt =
2
3

V0. (41)

As expected, in the case of crowding, the residence times are longer,
while the drift velocity is lower. It is interesting to note, however,
that although the trends are the same, the two different methods of
measurements (averaging) lead to slightly different estimates of the
dynamic properties.
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Figure 3 shows the dynamic properties of the tracer particle
calculated using the time-average approach. One can see that for
the equilibrium situation (x = 1), both stepping probabilities are the
same and both mean transition times are equal to each other. Devia-
tions from the equilibrium (x < 1) increase the probability of the for-
ward transitions, but again it does not lead to the acceleration. The
mean forward transition times increase with the degree of the bias
(lower x), and they are always longer than the backward transition
times.

It can be clearly seen from Figs. 2 and 3 that for both methods
of measuring the dynamic properties, the transition times gener-
ally are not the same. The mean backward transition times for both
methods agree only for the special situations with x → 0+. The non-
monotonic behavior of the mean backward transition time for the
resetting method is observed [Fig. 2(b)], while for the time-averaging
method, this time decreases monotonically with x [Fig. 3(b)]. Larger
deviations are found for the forward transition times calculated by
different methods, especially for x → 0 where T+r /T+t ∼ 8/9.

The differences between “measured” transition dynamics for
the tracer particle in two approaches can be explained using the fol-
lowing arguments. In the resetting method, each successful event
corresponds to only one transition. This means that all initial states
are probed with equal probability. This is not the case, however, for
the time-averaging method. During the long-time measurements,

FIG. 3. (a) Transition probabilities and (b) transition times for the model with L = 4
and N = 2 for the time average case. Red solid lines are for the forward transition
probability and the mean transition time, and blue dotted lines are for the backward
transition probability and the mean transition time. Black dotted lines show the
mean residence time T0.

the initial states more frequently are those that correspond to more
probable particle configurations. One can also explain this effect
using Fig. 1(a). For the bias in the clockwise motion (u > w, x < 1),
the successful transitions of the tracer particle end up more in states
(4) and (5) than in states (−1) and (0), and this corresponds to
the initial states to be more frequently state (1) or (2), but not
state (3).

The two different measuring methods are related to “time-
averaged” vs “ensemble-averaged” approaches to estimate the rele-
vant properties in statistical mechanics. In Ref. 20, the authors inves-
tigated the intriguing differences between these two types of mea-
surements and ergodic properties by considering the mean-squared
displacements of the biased continuous-time random walks. It will
be interesting to extend it to the systems considered in our work.
Note, however, that there is no ergodicity breaking in our system of
two random walkers on the lattice with four sites.

Our calculations indicate that the asymmetry of transition
times, defined by the ratio of forward and backward transition times,
Aα ≡

T+α
T−α

, is larger for the time-averaged approach (At > Ar) (see
Figs. 2 and 3). The reason is that in this case, the probability of being
in state (1) at time t = 0 (p1,t), from which the forward transition time
is the longest, is larger than p3,t , from which the forward transition
time is the shortest. This is because the forward transitions are more
frequent than the backward transition, leading to the preference for
the initial state to be (1) or (2). However, for the resetting method,
all initial states are equally probable.

Although both methods of measuring/averaging give slightly
different results for the transition times and probabilities, the gen-
eral trends are mostly the same. It is found that increasing the
bias (lowering x) leads to higher forward transition probabilities
and smaller backward transition probabilities [Figs. 2(a) and 3(a)].
At the same time, the mean transition time along the bias (in
the forward direction) is always longer than that in the back-
ward direction [see Figs. 2(b) and 3(b)]. This result is unexpected
since one would expect a faster motion in the bias direction, espe-
cially if the forward probabilities are larger, but this does not
happen.

To better understand these observations, let us consider a lim-
iting case of u≫ w (x≪ 1). In this situation, the tracer particle can
make a forward transition from all the three initial states with a finite
probability, O(1) [see Fig. 1(b)]. On the other hand, the backward
transitions are possible with the probability of order O(x) when the
initial states are (1) or (2) as it requires only one backward transition.
From initial state (3), from which the backward transition time is
longer, the probability of making two backward steps is significantly
lower, O(x2

). In other words, for the forward transitions, all the
slow and fast paths are explored, but for the backward transitions,
only the fast path are utilized. Since the transition times are averages
over all pathways, this leads to slower overall forward transitions.
It can be shown that for the more general case of not very small
x (x < 1), these arguments are still valid, leading to the inequality
T−α < T+α .

Our observations on transition times has a very important con-
sequence: it suggests that the asymmetry in the forward/backward
transition rates can be used to quantitatively “measure” crowding in
molecular systems under non-equilibrium conditions. Crucially, this
is a local measure that might provide a more comprehensive view on
the microscopic mechanisms of underlying processes.
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While the non-equilibrium is a necessary condition for observ-
ing the asymmetry in the forward/backward transition times, it can
be argued that this is not a sufficient condition. As has been shown
above, the system with a single particle that prefers to move along
the ring in the clockwise direction (N = 1 system with arbitrary L
and u > w) is out of equilibrium, but the forward and backward
transition times are the same [see Eq. (2)]. To break the symmetry,
the presence of and interactions with other particles are required,
suggesting that this phenomenon is due to crowding in the system.
It has been shown recently that the dynamics of the tracer particle
should be non-Markovian for symmetry breaking in transition times
to appear.17,18 In our system, the non-Markovianity arises from the
particle–particle interactions, which is a consequence of crowding.
The forward/backward symmetry breaking of the transition times
discussed above should not be confused with the forward/backward
symmetry breaking of the transition-path times discussed in
Ref. 21.

The above arguments suggest that the more frequent the
interactions are between the particles (larger the degree of crowd-
ing), the stronger the deviation is from the symmetry in the
forward/backward transition times. Then, we expect that varying the
particle density (degree of crowding) in the system would modify
the amplitude of symmetry breaking. In Fig. 4, we show the asym-
metry factor At = T+/T− as a function of the bias parameter x for
two different numbers of particles (N = 2 and N = 3) on the lattice
with L = 4 sites for the time-averaging method of measurements.
For N = 3 and L = 4, the asymmetry factor has been already explic-
itly evaluated before.17 As explained above, for N = 1, we have
Aα = 1. The results in Fig. 4 show that the asymmetry magni-
tude At increases with N if other parameters in the system are
fixed. This finding highlights the observation that the asymmetry
of the forward/backward transition times is originated from the
particle–particle interactions, which is a signature of crowding in
the system. Thus, measuring the asymmetry of forward/backward
transition times in a real molecular system would simultane-
ously provide important microscopic information on the degree of

FIG. 4. Asymmetry parameters as a function of the bias x for two cases: L = 4,
N = 3 (red solid line) and L = 4, N = 2 (blue dotted line). Here, we consider the
time-averaging case. The explicit formulas for the case of N = 3 are given in
Ref. 17.

crowding and on the deviation from the equilibrium. We speculate
that measuring the transition dynamics of tracer particles at different
locations might provide a comprehensive quantitative overall map
of the system from the point of view of deviations from equilibrium
and the strength of effective inter-particle interactions.

IV. SUMMARY AND CONCLUSIONS
A theoretical investigation on the microscopic origin of sym-

metry breaking in dynamic properties of single particles in crowded
systems is presented. By explicitly describing the dynamics of
the tracer particle in the one-dimensional discrete-state stochastic
model, we evaluated transition probabilities, mean transition and
residence times, and drift velocities. This allowed us to shed some
light on the molecular mechanisms of asymmetry in the transition
times along and against the bias. The theoretical analysis concludes
that the symmetry breaking is driven by multi-particle interactions
that appear due to crowding and by the degree of the system devia-
tion from the equilibrium. It is also found that explicit values of all
dynamic properties depend on how they are measured, and two spe-
cific methods, resetting and time-average, are identified. However,
for both approaches, the forward transition times (with respect to
the local bias) are always longer than the backward transition times.
All these observations are explained by explicitly accounting for dif-
ferent pathways for particle transitions in the stochastic model. In
equilibrium conditions, for each forward pathway, there will be an
identical backward pathway due to microscopic reversibility. On
the contrary, in out-of-equilibrium conditions, a net current on the
transition network can break this identity, yielding the asymme-
try of forward/backward transition time. Furthermore, it is argued
that measuring the asymmetry of transition times, as well as other
dynamic properties, in real systems will simultaneously quantify the
local deviations from the equilibrium and the degree of crowding.
This might significantly improve the analysis of the microscopic
mechanisms of complex natural processes.

While we considered a random walk model on a one-
dimensional periodic lattice with simple exclusion interactions, real
systems can be much more complex in multiple ways; therefore,
it would be important to investigate more general cases. The list
of potential future directions includes (i) studying the transition
dynamics in higher dimensional systems; (ii) considering more gen-
eral particle–particle interactions in addition to simple exclusion
interactions; and (iii) analyzing other dynamic properties such as
cycle completion times, as was done in Ref. 19. In those cases, we
expect that as long as the system is out of equilibrium and the tracer
dynamics are non-Markovian (the crowding is present), the asym-
metry of forward/backward transition time would remain. However,
it will be important to quantify the degree of symmetry breaking.
Finally, we note that the symmetry of forward/backward transition
times can also be broken in the presence of externally driven fluctu-
ating forces, as demonstrated experimentally in Ref. 22. Theoretical
understanding of these phenomena would be an important direction
of future studies.
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