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Abstract – Cancer is a collection of related genetic diseases exhibiting uncontrolled cell growth
that interferes with normal functioning of human organisms. It results from accumulation of
unfavorable mutations in tissues. While the biochemical picture of how cancer appears is known,
the molecular mechanisms of tumor formation remain not fully understood despite tremendous
efforts of researchers in multiple fields. New approaches for investigating cancer are constantly
sought. In this paper, we discuss a powerful method of clarifying better a more microscopic picture
of cancer by analyzing the dynamics of tumor formation. Using physics- and chemistry-inspired
discrete-state stochastic description of cancer initiation, it is shown how the mechanisms of tumor
formation can be uncovered. This approach is suggested as a powerful new physical-chemical tool
for a better understanding of complex processes associated with cancer.

perspective Copyright c© 2022 EPLA

As the second leading cause of mortality, cancer remains
one of the most serious health issues in our society [1–4].
Significant resources that included large funding, concen-
trated research efforts and multiple public campaigns have
been devoted to fighting cancer in the last 100 years.
These activities already led to huge advances, both in
understanding the origins of tumor formation as well as
in lowering of the dangers of cancer for human popula-
tion [1–5]. It has been reported that in the last 30 years
the cancer death rate in the USA has decreased by more
than 30% [5], which is credited to the developments of mul-
tiple new medical treatments and drugs as well as to dras-
tic changes in human lifestyles. However, despite these
tremendous achievements, many aspects of cancer, espe-
cially the microscopic origins of tumor formation and pro-
gression, still remain not well understood.

Cancer is a collection of highly complex genetic deceases
that exhibit abnormal cell growth in various human tis-
sues and organs [4]. It is initiated when some cells start
to divide much faster than other normal cells, hijacking
precious cellular resources, invading healthy tissues, and
eventually disrupting totally the normal functioning of the
organism. It is also widely accepted that this is a result
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of accumulation of unfavorable mutations that randomly
appear during cell replications and that are not captured
by error-correcting cellular machinery [6–9].

It is clear that the formation of a tumor is a result of
a large number of coupled chemical, biological and phys-
ical processes [4]. Such complexity suggests that a wide
spectrum of experimental and theoretical tools must be
simultaneously applied to explain cancer and its origins.
In this paper, we discuss a powerful theoretical approach
of stochastic mapping that aims to draw a more micro-
scopic picture of the tumor formation by analyzing the
dynamics of cancer initiation and progression [3,10–14].
It is inspired by multiple studies of complex stochastic
processes in chemistry, physics and biology. The idea of
this approach is that the dynamics reflects the underlying
effective free-energy landscape of the system, allowing for
better understanding of processes.

Knudson hypothesis. – To illustrate the importance
of dynamics in uncovering the microscopic origins of
cancer, let us consider a concept known as “Knudson
hypothesis” or “two-hit hypothesis” [15–17]. It was de-
veloped by Dr. Alfred Knudson in 1971 when he statis-
tically analyzed 48 cases of retinoblastoma, an eye-tissue
cancer in children [17]. In this investigation, he recorded
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the age at which cancer was diagnosed and the family
history of cancer. The analysis revealed that the inher-
ited retinoblastoma occurs at a younger age than the non-
hereditary disease. The most interesting observation was
that hereditary and non-hereditary patients followed dif-
ferent quantitative trends. The key conclusion from the
analysis was that the logarithm of fraction of cases not
yet diagnosed S was linearly decreasing as a function of
time (log S ∼ t) for hereditary cases, while a parabolic
dependence (log S ∼ t2) was observed for non-hereditary
patients.

Based on these observations, Knudson argued that two
events (“two hits”) must happen for the cancer to start in
non-hereditary cases, while only one event is required for
tumors to appear in hereditary cases. To rationalize, he
proposed the hypothesis that there are tumor-suppressing
genes that must be fully inactivated in order for cancer
to initiate. Since there are two copies of chromosomes in
cells, the mutations on both chromosomes must occur in
non-hereditary patients (“two hits”), while in the heredi-
tary patients one chromosome is already damaged by the
corresponding mutation and only one event is needed for
cancer to start (“one hit”). This means that for non-
hereditary patients the appearance of cancer is a two-step
process, while it is only a one-step process for hereditary
patients, leading to corresponding linear and quadratic de-
pendencies on time for dynamics of the tumor formation.
It was quite a revolutionary proposal in 1971 that even-
tually led to an important discovery of tumor-suppressing
genes. In 1986, an Rb gene responsible for retinoblastoma
was cloned. It was the first tumor suppressor gene to be
identified in cancer history [16].

The importance of Knudson hypothesis is that it was
one of the first successful examples of exploring the dy-
namics to obtain a more microscopic picture of cancer
processes. By noticing a different quantitative behavior of
tumor formation processes, a model consistent with these
observations has been proposed and later experimentally
proven.

Method of stochastic mapping. – There are multi-
ple mathematical models for the analysis of cancer initi-
ation and progression that have been proposed in recent
years [3,11,14,18–24]. However, in this paper we would like
to concentrate on recently developed method of stochastic
mapping that provides a more specific quantitative de-
scription of cancer dynamics [12,13]. In this approach, an
originally healthy tissue with N wild-type stem cells, as
schematically shown in fig. 1 (top), is considered. The mu-
tation might happen in one of these cells [6,7,25]. A time
zero (t = 0) is defined in the system when such mutation
appears for the first time. Both normal and mutated cells
in the tissue can replicate, but with different rates. The
wild-type stem cells divide with a rate b, while the mu-
tated cells divide with a rate rb. The parameter r, known
as a fitness parameter, plays an important role in cancer
initiation dynamics since it specifies how the division rate

Fig. 1: Top: a schematic view of a tissue with the fixed number
N cells and with the different numbers of mutated cells. The
normal stem cells are shown in green, while the mutated cells
are in yellow. Bottom: a discrete-state stochastic model of
cancer initiation. The state label corresponds to the number
of mutated cells in the tissue.

of the mutated cells differ from the normal cells. The sit-
uation when r > 1 describes the advantageous mutations
(mutated cells divide faster than the normal cells), r = 1
corresponds to neutral mutations (the same division rates
for mutated and normal cells), and for r < 1 the mutations
are disadvantageous (mutated cells divide slower than the
normal cells).

Before the tumor forms, the organism operates nor-
mally. One of the most important characteristics
of healthy tissues is a so-called “homeostatic equilib-
rium” [26]. It is important to emphasize that this is not
a thermodynamic equilibrium, but rather a stationary dy-
namic state because all biological systems are always out
of equilibrium. For healthy tissues in grown-up organ-
isms, the homeostasis is exhibited by keeping the total
number of cells more or less constant. For the cancer ini-
tiation process this means that the total number of cells
in the tissue N must be fixed, suggesting that any cell
division that increases the total number of cells in the tis-
sue must be accompanied by immediate removal of the
cell. The microscopic details of how this happens in cells
are still not well understood. To mimic such process, the
method of stochastic mapping utilizes a procedure known
as a Moran process [18,27,28]. In this process, one of the
N cells is randomly chosen for division, which increases
the total number of cells in the tissue temporarily by one.
But then immediately another randomly chosen cell from
current N + 1 cells is removed, returning the number of
cells to the original count: see fig. 1. In addition, this
theoretical approach assumes that in the system only a
single mutation might happen with a very low probabil-
ity μ ∼ 10−8–10−10 [18,29]. The only way to change the
number of mutated cells in the tissue is via cell divisions
of already mutated cells.

Because of the random nature of cell divisions and
deaths, there are two types of cells in the tissue at any
moment, normal and mutated, but the overall composi-
tion changes with time. In addition, every state of the
tissue can be characterized by a single variable, the num-
ber of mutated cells n (1 ≤ n ≤ N) [12]. This is because
the total number of cells in the tissue is fixed due to home-
ostasis. So, if there are n mutated cells then we must have
simultaneously N −n normal cells. Now all changes in the

27001-p2



Can we understand the mechanisms of tumor formation etc.

system can be viewed as stochastic transitions between
discrete states as visualized in fig. 1 (bottom). In the se-
quence of states with different numbers of mutated cells,
there are only two possible outcomes. Due to the ran-
dom transitions, the mutation can be completely removed
from the system, and this corresponds to the 1 → 0 tran-
sition. But the other outcome is that the mutated cells
might fully occupy the tissue, i.e., the system will reach
the state n = N (fig. 1). This is known as a mutation
fixation, and the method of stochastic mapping assumes
that this event marks the beginning of cancer [3,12,18].

The main idea of this theoretical approach is to map the
complex dynamics of cellular processes before the cancer
initiation into a set of stochastic transformations between
discrete states specified by different compositions of the
normal and mutated cells. The cancer starting point is
associated then with reaching the state with all cells being
mutated, while the mutations might also leave the system,
indicating that the appearance of the mutation in the tis-
sues does not guarantee that the tumor will form at all.
Using the Moran process rules [18], the transition rates be-
tween the individual states of the system can be explicitly
evaluated [12],

an = b
n(N − n)

N + 1
. (1)

More specifically, the transition from the state n to n + 1,
which increases the number of the mutated cells by one,
is taking place with the rate ran. At the same time, the
transition n → n − 1, which decreases the number of the
mutated cells, is taking place with the rate an.

The stochastic mapping method postulates that the tu-
mor appears as soon as the system reaches the state n = N
for the first time, starting at t = 0 in the state n = 1
(when the first mutation appears). This suggests that to
quantify the cancer initiation dynamics it is convenient to
utilize a first-passage approach, a powerful tool that has
been successfully applied for the analysis of various com-
plex processes in chemistry, physics and biology [30–32].
For this purpose, one can introduce a first-passage proba-
bility density function Fn(t) that is defined as the proba-
bility of reaching the state N (fixation) for the first time
at time t if at t = 0 the system started in the state n. The
temporal evolution of these functions is governed by a set
of backward master equations, [30,32]

dFn(t)
dt

= ranFn+1(t) + anFn−1(t) − an(1 + r)Fn(t). (2)

In addition, the initial condition FN (t) = δ(t) must be
satisfied. The physical meaning of this condition is that
the fixation process is immediately accomplished if the
system starts from the state N .

Master equations (2) can be explicitly solved, allowing
to obtain a full dynamic description of the cancer initia-
tion process [12]. More specifically, one might concentrate
on two important characteristics. One of them is a fixa-
tion probability, πn ≡ ∫ ∞

0
Fn(t)dt, and another one is a

fixation time, Tn/πn ≡ ∫ ∞
0 tFn(t)dt. The first parame-

ter gives the overall probability to initiate cancer starting
from the state with n mutations already in the system,
while the second parameter measures the average time
before this happens. Analytical calculations provide ex-
plicit expressions for both of these quantities [33]. For the
fixation probability, it has been shown that [12,18]

πn =
1 − 1/rn

1 − 1/rN
. (3)

Considering a process that starts in the state n = 1, when
the first mutation appears, it can be shown that increas-
ing the fitness parameter r enhances the probability of
tumor formation [12]. This is clearly due to the fact that
for r > 1 the mutated cells divide faster than the nor-
mal cells without mutations. Another observation is that
for realistically large values of number of cells in the tis-
sue N (typically, N ∼ 105–109) the fixation probability is
independent of the size of the tissue [12].

More interesting observations are found by analyzing
the fixation times that are viewed as the mean times be-
tween the appearance of the first mutation and the state
when all cells in the tissue are mutated. Analytical calcu-
lations yield [12]

T1 =
N + 1

b

N−1∑
n=1

1
n(N − n)

(
rn − 1
r − 1

) (
rN−n − 1
rN − 1

)
. (4)

Explicit calculations of the fixation times show some sur-
prising results. While increasing the fitness parameter r
should accelerate the formation of the tumors because the
mutated cells replicate faster, the slowest cancer initiation
dynamics is found for neutral mutations (r = 1). One
could explain this by arguing that for r = 1 the discrete-
state stochastic model in fig. 1 is effectively reduced into
the unbiased random walk, which is known to exhibit a
slow dynamics. The unexpected result, however, is that
even for r < 1 the tumor formation might be fast, which
contradicts to naive expectations. Since the normal cells
divide faster than the mutated cells, one would expect
much slower fixation dynamics for r < 1, which is not re-
alized. The reason for this surprising result is that the
fixation time is a conditional quantity. It is the mean
time to achieve the state n = N given that the system
can reach it. For disadvantageous mutations (r < 1), the
fixation probability is low since the system dynamics is
biased in the direction of eliminating the mutations. But
those rare successful fixation events must happen fast be-
cause at every intermediate step the system can reverse
the direction due to the bias against the fixation.

Now let us show how the method of stochastic mapping
can be used to clarify some specific aspects of cancer pro-
cesses. It has already been applied to analyze the data
from most common 28 types of cancer [12]. For the first
time, this approach provided explicit estimates of the av-
erage times before the formation of different types of tu-
mors [12]. But most importantly, it was able to probe
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Fig. 2: Calculated fixation times and measured lifetime risks
for different types of cancer. The figure is reproduced with
permission from ref. [12].

the correlations between the cancer lifetime risks and the
mean cancer initiation times. The cancer lifetime risk,
which is defined as the probability to get cancer or to die
from cancer during the human lifetime, is a widely used
concept in forecasting the chances of getting cancers. It
was generally assumed before that the more probable can-
cers (higher lifetime risks) will happen faster. However,
the systematic investigation of such correlations has been
done only recently [12]. Surprisingly, theoretical calcula-
tions found that there is no correlation between the cancer
lifetime risks and mean times to get the tumor. Statistical
analysis of the data presented in fig. 2 gives a Spearman’s
correlation coefficient 0.2 between the cancer lifetime risks
and the fixation times, the magnitude of which is signifi-
cantly smaller than the value −1 expected for the perfect
correlation. Another statistical test, the p-value analy-
sis, also pointed out the lack of correlations between two
dynamic properties of cancer initiation [12].

While the lack of correlations between the cancer life-
time risks and cancer initiation times is clearly unex-
pected, one should notice that similar situations have been
already encountered in other complex natural systems.
For example, this is frequently observed in chemical re-
actions. While the probability for a reaction to happen
is determined by the free energy difference between the
products and the reagents, the actual time for reaction
to occur is given by the height of the activation energy
barrier [34]. These two energy scales are not always corre-
lating, leading to multiple observations when the reaction
that thermodynamically allowed is not happening due to
kinetic reasons. The fact that similar events are taking
place in the cancer initiation dynamics opens a new per-
spective on underlying microscopic processes during the
tumor formation that clearly needed to be investigated
further. It suggests possibly a similar mechanism with an
effective barrier in the mutation fixation process for some
cancers. It also means that if the mutated cells divide
faster (larger fitness r) it does not necessary lead to faster
tumor formation because of these barriers that might be
the rate-limiting steps in the overall cancer initiation.

Temporal order of mutations influences cancer
initiation dynamics. – Another example of successful
use of dynamics in clarifying the microscopic picture of
cancer has been recently presented [13]. It extended the

Fig. 3: Top: a schematic view of a cancer initiation process
with two mutations in the tissue with N cells. Normal stem
cells are green, while cells with single and double mutations are
shown in yellow and red, respectively. Bottom: a discrete-state
stochastic model for two sequential mutations in the tissue.
The state n corresponds to n cells with one mutations for 1 ≤
n ≤ N , and n − N cells with two mutations for N < n ≤ 2N .

original method of stochastic mapping to investigating the
role of temporal order of mutations in the tumor forma-
tion. It is known that typically between 5 to 10 mutations
lead to tumor formation. Until recently, it was gener-
ally believed that the overall set of properties associated
with cancer is a result of additive contributions from each
mutation, i.e., the effect of each mutation is independent
of each other [1]. Recent experimental discoveries, how-
ever, pointed out to a very different picture [35–37]. It
was found that alternating the order of mutation acquisi-
tions might surprisingly produce very different outcomes
in the cancer development. In some systems, it delayed the
formation of tumors, or produced benign (non-cancerous)
tumors, or even led to different types of cancers [35–37].

To explain the effect of the temporal order of mutations,
the theoretical analysis concentrated on the situation with
just 2 mutations as illustrated in fig. 3 [13]. It was pos-
tulated that cancer starts when all cells in the tissue will
have both mutations. Since the appearance of mutation
that might lead to cancer is a rare event, it was assumed
that the tissue will first get only one mutation, and a sec-
ond mutation will appear only after all normal cells be-
come mutated with one mutation: see fig. 3. Eventually
the fixation of the second mutation is finally associated
with cancer initiation [13]. Because each cell might have
up to two mutations, there are three types of cells that
can be found in the tissue at different times. The nor-
mal cells (labeled as 0, green circles) divide with a rate
b, while the cells with one mutation (labeled as 1, yellow
circles) divide with a rate r1b and the cells with two muta-
tions (labeled as 2, red circles) divide with a rate r2b. The
parameters r1 and r2 are fitness parameters that specify
how faster the mutated cells divide in comparison with the
wild-type cells. One can see now that all dynamic trans-
formations in the system can be viewed as a set of random
transitions between 2N discrete states of the tissue with
different compositions of cells (fig. 3, bottom).
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There are two branches of states in the stochastic model
of cancer initiation with two mutations. A state n (1 ≤
n ≤ N) in the first branch has n cells with one mutation
and N − n normal cells without mutations. In the second
branch, the state n (N < n ≤ 2N) describes the situation
with n − N cells with two mutations and 2N − n cells
with one mutations. The state n = N corresponds to a
transitional fixation of the first mutation (all cells with
one mutation), and the state n = 2N describes the final
fixation of both mutations, which is associated with the
beginning of cancer in this model. It has been shown that
the forward and backward transition rates out of the state
n in the first branch (yellow states in fig. 3, bottom) are
equal to r1an and an, respectively, where the rates an

are already given by eq. (1). Similarly, the forward and
backward transition rates out of the state n in the second
branch (red states in fig. 3, bottom) are given by r2aN−n

and r1an, respectively [13].
The dynamics of cancer initiation in this model can

again be obtained using the method of first-passage
probabilities [13]. It was found that the overall fixation
probability starting from the state n is given by

Πn =
1 − 1/rn1
1 − 1/rN1

, (5)

for 1 ≤ n < N , while Πn = 1 for N ≤ n < 2N . This sur-
prising observation suggests that the probability of can-
cer initiation by two mutations is determined only by the
properties of the first mutation (via the parameter r1). In
other words, the overall fixation probability is given by the
transitional fixation probability of only the first mutation.
One can understand this by analyzing the corresponding
discrete-state stochastic scheme in fig. 3, bottom. This
is because the transition from the state N − 1 to N is
irreversible since after that transition there are no more
normal wild-type cells in the tissue, and the overall fixa-
tion is guaranteed. This unexpected result gave the first
indication that the order of mutation is important for de-
termining the nature of the cancer.

Theoretical calculations also allowed to explicitly esti-
mate the mean cancer initiation times. It was found that
if the system starts in the state n = 1 the corresponding
time is given by

T1 =
N + 1

b

N−1∑
n=1

1
n(N − n)

(
rn1 − 1
r1 − 1

) (
rN−n
1 − 1
rN1 − 1

)

+
1

Nu2

[
1 − (r1/r2)N

1 − r1/r2

]

+
N + 1
br2

N−1∑
n=1

1
n(N − n)

(
1 − (r1/r2)N−n

1 − r1/r2

)
. (6)

To understand the physical meaning of this result, one can
notice that the average fixation time has three contribu-
tions, T1 = T11 + Ttrans + T12, that can be explained in
the following way. The first term T11 describes the time

for the system to reach the state N . This is the residence
time for the system to be found on the first branch. The
second term, Ttrans, describes the effective rate of acquir-
ing the second mutation in cells that are fully fixed by the
first mutation. It can be shown that

Ttrans =
1

Nu2

1
Π12

, Π12 =
1 − r1/r2

1 − (r1/r2)N
, (7)

where Π12 is a fixation probability for the second muta-
tion starting from the state N + 1. This means that this
contribution, which corresponds to the transition between
the first and the second branches of discrete states, also
reflects the possibility of multiple reverse transitions from
the state N + 1 back to the state N . The third term, T12,
describes the time to reach the final fixation starting from
the state N + 1. It corresponds to the time to be found
only on the second branch.

The discrete-state stochastic model for cancer initiation
with two mutations allows to explicitly evaluate the ef-
fect of mutations order [13]. For this purpose, one might
consider two specific mutations A and B with the fitness
parameters given by rA and rB , respectively. There are
two different scenarios for acquiring mutations. In the se-
quence AB, the mutation A is the first and the mutation
B is the second one. One can assign then r1 = rA and
r2 = rArB. This is because the tissue might have cells
without any mutations, with mutation A or with both
mutations A and B. Similarly, in the sequence BA the
mutation B comes first followed by the mutation A. In
this case, the fitness parameters are given by r1 = rB
and r2 = rArB . For two different mutational scenarios,
AB and BA, the corresponding fixation probabilities are
defined as ΠAB and ΠBA, respectively. It is convenient
to quantify the difference between these two alternating
sequences by considering a parameter

Δp =
ΠAB

ΠBA
=

(
1 − 1/rA
1 − 1/rB

) (
1 − 1/rNB
1 − 1/rNA

)
. (8)

Theoretical calculations for this ratio are presented in
fig. 4(a). One can see that for any rA �= rB both mu-
tational scenarios are not equally probable. If the first
mutation is more advantageous (rA > rB) then it is more
probable for sequence AB to lead to cancer, and it is less
probable for the sequence BA. This is a consequence of
the theoretical result that the overall fixation depends only
on the nature of the first mutation in the sequence [13].

In a similar way, one can evaluate the cancer initiation
dynamics for two different mutation scenarios [13]. Using
the explicit expressions for fixation times TAB and TBA

for mutational sequences AB and BA, respectively, one
can define a parameter

ΔT =
TAB

TBA
, (9)

which is explicitly calculated in fig. 4(b). It shows that
the cancer initiation dynamics is different for alternating
mutational sequences. However, comparing the results in
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Fig. 4: (a) The ratio of fixation probabilities ΠAB/ΠBA for two
alternative sequences of mutations. (b) The ratio of fixation
times TAB/TBA for two alternative sequences of mutations.
Adapted with permission from ref. [13].

fig. 4(a) and fig. 4(b), there is a surprising observation.
Those mutational sequences that are more probable (for
example, AB for rA > rB) exhibit longer cancer initiation
times, in contrast to naive expectations.

The advantage of the method of stochastic mapping is
that it allows to provide more microscopic explanations
on the surprising observations of anti-correlations between
the probabilities and times before cancer [13]. The idea
is that the observed cancer initiation dynamics reflects
the underlying effective “free-energy” landscape [13,38]
On its path to cancer initiation, the system moves via
peaks and valleys of this effective free-energy landscape.
Longer transition times correspond to higher effective
barriers, while shorter transition times describe smaller
effective barriers. This leads to a simplest schematic
representation of the cancer initiation process as a motion
along the one-dimensional “reaction” coordinate as shown
in fig. 5 for the case rA > rB for two different scenarios.
The first barrier describes the process of moving along the
first branch of the discrete states (fig. 3, bottom), while
the second barrier similarly describes the motion along
the second branch of discrete states (fig. 3, bottom). The
deep valley between two barriers reflects the irreversible
transition from the state N−1 to N , meaning that it is im-
possible to return back to the first branch after hitting the
state N .

Now the effective free-energy landscape picture can be
utilized to explain the dynamics of cancer initiation and
the role of mutations order. The probability of the overall
fixation depends only on the height of the first barrier.
For rA > rB, the barrier for the AB sequence (left part of
fig. 5) is lower than the barrier for the sequence BA (right
part of fig. 5). This obviously justifies the higher cancer
lifetime risk for the sequence AB. To explain the can-
cer initiation dynamics, we notice that both barriers are
now important, but the highest barrier might be viewed
as a rate-limiting step that determines the overall rate
of the process. One can see that the highest barrier is
the second one in the sequence AB (left part of fig. 5)
for rA > rB , while both barriers for the sequence BA
(right part of fig. 5) are smaller. These simple qualita-
tive arguments explain the origin of the anti-correlations
between the fixation probabilities and the mean fixation
times.

Fig. 5: The effective “free-energy” landscapes for cancer initia-
tion with two alternative sequences of mutations: the left panel
describes AB mutations (rA > rB), while the right panel de-
scribes BA mutations (rB < rA). Adapted with permission
from ref. [13].

Future directions. – In this paper, we discussed sev-
eral examples of how the information on the dynamics of
cancer processes can be utilized for clarifying the mecha-
nisms of tumor formation. Stimulated by studies in chem-
istry and physics, it was shown that the cancer initiation
processes can be effectively considered as a set of stochas-
tic transitions. Such approach allows for quantitative
mapping of underlying free-energy landscape, significantly
advancing our knowledge on the microscopic origin of tu-
mor formation.

While the method of getting more microscopic informa-
tion on cancer origin from dynamics seems to be quite
powerful, there is still a long road before it might be also
useful for the development of specific anti-cancer treat-
ments. It is important to extend this approach to more
realistic situations. One might suggest the following direc-
tions for future investigations. In real cancers, several mu-
tations usually start and proceed in parallel. This might
be viewed as a branched model of cancer initiation that
contrasts with the sequential model assumed above for the
case of two mutations. In the language of discrete states
with stochastic transitions this will correspond to the mo-
tion in the multi-dimensional space. In addition, it will
be important to investigate the spatial effects because the
tissues might have different spatial structures. Further-
more, it will be interesting to couple this approach with
more mechanical views on cancer dynamics [39]. There
are multiple exciting directions that hopefully will be fully
explored in the near future.
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