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Abstract.  Several important biological processes are initiated by the binding 
of a protein to a specific site on the DNA. The strategy adopted by a protein, 
called transcription factor (TF), for searching its specific binding site on the 
DNA has been investigated over several decades. In recent times the eects 
obstacles, like DNA-binding proteins, on the search by TF has begun to receive 
attention. RNA polymerase (RNAP) motors collectively move along a segment 
of the DNA during a genomic process called transcription. This RNAP trac 
is bound to aect the diusive scanning of the same segment of the DNA by 
a TF searching for its binding site. Motivated by this phenomenon, here we 
develop a kinetic model where a ‘particle’, that represents a TF, searches 
for a specific site on a one-dimensional lattice. On the same lattice another 
species of particles, each representing a RNAP, hop from left to right exactly 
as in a totally asymmetric simple exclusion process (TASEP) which forbids 
simultaneous occupation of any site by more than one particle, irrespective of 
their identities. Although the TF is allowed to attach to or detach from any 
lattice site, the RNAPs can attach only to the first site at the left edge and 
detach from only the last site on the right edge of the lattice. We formulate 
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the search as a first-passage process; the time taken to reach the target site 
for the first time, starting from a well defined initial state, is the search time. 
By approximate analytical calculations and Monte Carlo (MC) computer 
simulations, we calculate the mean search time. We show that RNAP trac 
rectifies the diusive motion of TF to that of a Brownian ratchet, and the 
mean time of successful search can be even shorter than that required in the 
absence of RNAP trac. Moreover, we show that there is an optimal rate of 
detachment that corresponds to the shortest mean search time.

Keywords: exclusion processes, trac models, gene expression and regulation, 
molecular motors
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1.  Introduction

To initiate most of the biological processes in living cells, protein molecules, the work-
horses of the cell, have to bind to specific sites on nucleic acid molecules [1, 2]. One of 
the common examples, which is also crucially important for the functioning of a cell, 
is the binding of transcription factor (TF) proteins to a specific sequence site on the 
DNA. Protein has to ‘search’ for this binding site, but such a ‘search’ carried out by 
a TF is neither guided by any external cues nor does it benefit from past experience 
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because of the absence of any memory. Instead, this search is believed to be a random 
(stochastic) process [2–5].

A one-dimensional diusive scanning of the DNA strand by the TF protein con-
stitutes one mode of search that is combined with other possible modes, including 
dissociation and diusion in the bulk solution, re-association back to DNA and other 
possibilities [2–5]. For proper biological function, the search strategy should not only 
be fast but must also rule out the possibility of erroneous recognition of any other site 
as the intended target site of binding. Enormous progress have been made in the last 
few decades in understanding the strategies evolved by nature by combining various 
possible modes of search by a TF that optimize the opposite demands of speed and 
accuracy of search in a cell [3–9].

In live cells, the search by a TF is made dicult by the fact that the target bind-
ing sites are usually located in an extremely crowded environment. The molecules sur-
rounding the DNA strand reduce the accessibility of the target site while those bound 
to DNA create a steric hindrance against scanning of the DNA chain [10, 11]. Since 
a dissociation of a TF from DNA, followed by a subsequent re-attachment elsewhere 
on DNA, is an integral part of its search strategy, a TF does not remain permanently 
obstructed by any DNA-bound molecule. Nevertheless, the blockages created by such 
DNA-bound particles against the diusive search by TFs can have significant non-triv-
ial eects on dynamics of the search process. This phenomenon has already attracted 
the attention of theorists in recent years [6, 10–13].

Often what makes the search problem even more challenging is that many DNA-
bound molecules are themselves mobile so that, during the diusive scanning of the 
DNA chain for its target binding site, the TF encounters the mobile obstacles either 
co-directionally or head-on. For example, RNA polymerases (RNAPs), for which a seg-
ment of DNA serves as the template for the synthesis (polymerization) of a specific 
molecular species of RNA, use the template DNA strand also as a track for its motor-
like [14, 15] walk in a directed manner [1, 16]. The process of synthesis of RNA, as 
directed by a DNA template, is called transcription (of a gene) [1]. The trac of 
RNAPs [17–23], engaged in transcription, would act as an oncoming stream of mobile 
roadblocks against a TF that simultaneously searches for its specific binding site on the 
same segment of DNA. Besides, at any given time, many TFs can search for the same 
segment of DNA for their respective binding sites and, therefore, their interactions are 
also likely to aect their individual eciency of search.

To our knowledge, no theoretical model has been developed so far to study the 
eects of DNA-bound mobile molecules on the diusive search by TFs on the same 
segment of DNA. In this paper we develop a kinetic model motivated by the search of 
specific binding sites by a single TF as well as that by several TFs simultaneously over 
a segment of DNA that is also undergoing transcription by a trac of RNAP motors. 
This minimal model is not intended to comprehensively describe in vitro or in vivo 
experimental observations with any specific cell or organism. Instead, the main aim of 
our biologically motivated kinetic model is to clarify a complex molecular picture and 
reveal interesting physics that such stochastic systems are likely to exhibit.

In our model, we represent the TFs and RNAPs by two distinct species of particles. 
Although not all the features of TFs and RNAPs are taken into account in our analy-
sis, these are still called TF and RNAP for the sake of simplicity of terminology. The 
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RNAPs hop forward uni-directionally on a discrete lattice of DNA sites while the TFs 
perform unbiased random walk on the same lattice. There is a pair of specially desig-
nated sites for the entry and exit of the RNAPs; these particles cannot attach to, or 
detach from, the lattice at any other site in between. In contrast, the TFs can attach 
to-, and detach from, any site on the lattice. The model captures the key features of 
RNAP trac by a totally asymmetric simple exclusion process (TASEP) [24–27] which 
is one of the simplest models of collective stochastic movement of interacting self-
propelled particles on a one-dimensional lattice. Since none of the sites can be occupied 
simultaneously by more than one particle, irrespective of the identity of the occupant, 
mutual exclusion is the only intra-species (RNAP-RNAP and TF-TF) as well as inter-
species (RNAP-TF) interaction in our model.

The process of target search by a TF is treated in our theoretical framework as a 
first-passage process; starting from a given unique initial state, the time required for 
the completion of each successful search is a first-passage time (FPT) [2, 28, 29]. Since 
the search process is stochastic, the search time is a random variable whose probability 
distribution is one of the main quantities of our interest here. The goal of this paper 
is to investigate the eects of intra-species and inter-species interactions among the 
particles on the search dynamics of the TFs. Our theoretical studies of the model are 
based on (approximate) analytical calculations and computer simulations. Among the 
various phenomena that we observe the following are most notable: (i) Over a range 
of parameter values, the search by the TF follows a mechanism that is similar to a 
Brownian ratchet; (ii) For given values of all the other parameters, there is an optimum 
rate of detachment of TF from the lattice at which its mean search time attains a mini-
mum. We explain the underlying physical principles that give rise to these interesting 
phenomena.

2. Model

The kinetics of the model is shown schematically in figure 1. The model consists of 
a one dimensional lattice with equispaced lattice sites that are labeled by the integer 
index i (1 � i � L). Thus, the length of the lattice is L in the units of lattice spacing. 
Throughout this paper we assume that there is a single TF searching for a specific site 
located on the one-dimensional lattice. A TF can attach to an arbitrary lattice site, 
with a rate kon, provided that this site is empty. Once attached to the lattice, the TF 
can hop forward or backward till it detaches from the lattice. The TF that is already 
attached to the lattice can detach from it, with a detachment rate koff. Inside the bulk 
of the system, i.e. at sites 2 � i � L− 1, the TF can hop both forward or backward, 
with a rate b. This unbiased random walk (RW) of the particle captures the one-
dimensional diusion of the TF on the DNA chain. At the edges of the lattice, i.e. at 
i = 1 and i = L, the TF can hop, with the rate b, only in the forward and backward 
directions, respectively.

The position of the TF is marked by an integer index n, where n is allowed to vary 
over the range 0 � n � L. The positions n = 1, 2, . . . ,L of the TF coincide with the 
lattice sites i = 1, 2, . . . ,L, whereas the position n = 0 indicates being in the solution 
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(i.e. the medium in which the lattice exists). Unlike the TFs, a RNAP can attach to 
the lattice, with rate α, only at the site i = 1, provided that this site is not already 
occupied by another RNAP or TF. Once attached to the lattice, the RNAP can hop 
only in the forward direction, with a rate u, while respecting the exclusion principle 
at each step. The RNAP continues its forward hopping at the given rate till it reaches 
the last lattice site labeled by i = L from where it is allowed to detach from the lattice 
with a rate β . Throughout the paper, we assume that the TASEP of RNAPs attain 
its non-equilibrium steady state, characterized by a time-independent flux, before the 
search by TFs begin.

3. Methods

Since it has not been possible to obtain a single analytical expression that would be 
valid in all regimes of the parameters of our model, we derive these expressions in two 
dierent limits, namely low- and high-rates of detachments from the lattice. We also 
check the accuracy of the analytical expressions derived in these two limits by com-
paring those with the corresponding numerical data obtained from Monte Carlo (MC) 
simulations of the model.

3.1. Monte Carlo simulation and choice of initial conditions

In our computation of the mean search time by MC simulation, we start with empty 
lattice and switch on the flow of RNAPs. We monitor the flow of the RNAPs for the 
first one million time steps to ensure that the system reaches steady state. Then an 
absorbing boundary condition for the TF is imposed at the designated target site at 
m = L/2. We place a TF in the solution (n = 0) and start our clock (t = 0). The updat-
ing of the state of the combined system of RNAPs and TF is continued till the TF 
reaches the target site; at that instant the simulation is stopped and the corresponding 
clock reading gives the search time for that particular MC run. We repeat this same 

Figure 1.  The schematic representation of the model. The model consists a one 
dimensional lattice and multiple particles of two dierent species. The first species 
particles represent TFs, whereas, second species particles represent RNAPs. A TF 
can attach at any site throughout the lattice with the rate kon as well as it can 
detach from any site with rate koff. Inside the lattice a TF can hop in both the 
forward and backward directions with identical rates b. Unlike TF, a RNAP can 
attach only at site i = 1, with rate α and it can detach only from site i = L, with 
rate β . Inside the lattice, a RNAP can jump only in the forward direction, with 
the rate u. All the particles follow the exclusion principle, i.e. no two particles can 
occupy the same site simultaneously.

https://doi.org/10.1088/1742-5468/aaf31d
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procedure for 1000 MC runs and then average over all the MC runs to calculate the 
mean search time (〈Ts〉) for TF to find the target located at m = L/2.

3.2. Forward master equation and mean-field approximation

Let the symbols beff and veff denote the eective velocities of TF and RNAPs, respec-
tively. Similarly, (kon)eff is the eective attachment rate of the TF on the track per site. 
koff is the detachment rate of the TF from any site on track. Suppose ρ is the steady 
state number density of the RNAPs while α and β denote the rates of their attach-
ment and detachment, respectively, with the track. From known TASEP results we 
can write,

ρ = α/u in LD� (1)

beff = b(1− ρ)� (2)

veff = u(1− ρ)� (3)

(kon)eff = kon(1− ρ)� (4)
where b and u are the hoping rates of TF and RNAPs, respectively and kon is the 
attachment rate of the TF on the track per site. Since the oncoming trac of RNAPs 
reduce the eective velocity of the TF, the eective speed of the TF is reduced to 
beff − veff when it moves against flow of the RNAPs. In contrast, the TF can hop in 
the direction of flow of the RNAPs with the eective speed beff as, in this case, except 
for the fact that beff �= veff , the TF and RNAPs move in same direction respecting the 
same exclusion principle.

We use the integer indices n = 1, 2, 3, .......,L to label the equispaced sites on the 
track, where the integers increase in the direction of movement of the RNAPs. Let 
P (n, t) denote the probability that there is a TF at site n at time t where n = 0 rep-
resents solution. The stochastic time evolution of the system, in terms of these prob-
abilities, is governed by the master equations

dP (0, t)

dt
= koff

L/2−1∑
n=1

P (n, t) + koff

L∑
n=L/2+1

P (n, t)− L (kon)eff P (0, t),� (5)

dP (1, t)

dt
=

(
beff − veff

)
P (2, t) + (kon)eff P (0, t)−

(
beff + koff

)
P (1, t),� (6)

dP (L/2− 1, t)

dt
= beff P (L/2− 2, t) + (kon)eff P (0, t)−

(
2 beff − veff + koff

)
P (L/2− 1, t),

� (7)

dP (L/2, t)

dt
= beff P (L/2− 1, t) +

(
beff − veff

)
P (L/2 + 1, t) + (kon)eff P (0, t),

� (8)
dP (L/2 + 1, t)

dt
=

(
beff − veff

)
P (L/2 + 2, t) + (kon)eff P (0, t)−

(
2 beff − veff + koff

)
P (L/2 + 1, t),

� (9)

https://doi.org/10.1088/1742-5468/aaf31d
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dP (L, t)

dt
= beff P (L− 1, t) + (kon)eff P (0, t)−

(
beff − veff + koff

)
P (L, t),� (10)

dP (n, t)

dt
= beff P (n− 1, t) +

(
beff − veff

)
P (n+ 1, t) + (kon)eff P (0, t)

−
(
2 beff − veff + koff

)
P (n, t) (for 1 < n < L/2− 1 and L/2 + 1 < n < L).

�
(11)

By solving these master equations  iteratively, starting with the appropriate initial 
condition, we can get the above probabilities for all subsequent instants of time 
t > 0. Utilizing these solutions, we get the probability density of the search times. More 
specifically, the probability density f(t) to reach the target site located at m = L/2 
between the times t and t+ dt is obtained from

f(t) = beff P (L/2− 1, t) +
(
beff − veff

)
P (L/2 + 1, t) + (kon)eff P (0, t).� (12)

In the actual numerical calculation, we stop the process of iterative solution of the 
set of coupled master equations at a time t = Tmax when P (m = L/2, t → ∞) becomes 
≈ 1. The mean search time for a TF, defined by

〈Ts〉 =
∫ ∞

0

t f(t)dt� (13)

is then numerically computed by evaluating the integral after replacing the upper limit 
of the integral by Tmax.

3.3. Backward master equation and first-passage times

For a self contained discussion, we first summarize the main steps of the calculations 
reported in [6] before presenting the new analytical formulas that we use for our 
work. Following Veksler and Kolomeisky [6], we define the probability Fn|m(t) to reach 
the target on site m for the first time at time t if at t = 0 the TF was at the site 
n(n = 0, 1, ...,L). The time evolution of these first-passage probabilities are governed 
by the backward master equations [6],

dFn|m(t)

dt
= b

[
Fn+1|m(t) + Fn−1|m(t)

]
+ koffF0|m(t)

− (2b+ koff)Fn|m(t) (for 2 � n � L− 1),
�

(14)

while for the two ends of the lattice at n = 1 and n = L the equations are

dF1|m(t)

dt
= bF2|m(t) + koffF0|m(t)− (b+ koff)F1|m(t)� (15)

dFL|m(t)

dt
= bFL−1|m(t) + koffF0|m(t)− (b+ koff)FL|m(t).� (16)

If the TF starts from the solution, i.e. n = 0 according to our notation, then the corre
sponding backward master equation is given by [6],

https://doi.org/10.1088/1742-5468/aaf31d
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dF0|m(t)

dt
=

kon
L

L∑
n=1

Fn|m(t)− konF0|m(t).� (17)

These equations can be analyzed by introducing Laplace transformations of first-

passage probability functions, F̃n|m(s) =
∫∞
0

e−stFn|m(t)dt. Then, backward master 

equations can be rewritten as a set of simpler algebraic expressions,

(s+ 2b+ koff)F̃n|m(s) = b[F̃n+1|m(s) + F̃n−1|m(s)]

+ koffF̃0|m(s)
� (18)

(s+ b+ koff)F̃1|m(s) = bF̃2|m(s) + koffF̃0|m(s)� (19)

(s+ b+ koff)F̃L|m(s) = bF̃L−1|m(s) + koffF̃0|m(s)� (20)

(s+ kon)F̃0|m(s) =
kon
L

L∑
n=1

F̃n|m(s).� (21)

These equations  are solved by assuming that the general form of the solution is 

F̃n|m(s) = Ayn +B, and using boundary and initial conditions it yields

F̃n|m(s) =
(1− B)(yn + y−n)

ym + y−m
+B� (22)

for 1 � n � m, and

F̃n|m(s) =
(1− B)(y1+L−n + yn−L−1)

y1+L−m + ym−L−1
+B� (23)

for m � n � L. Here, parameters y and B are given by

y =
s+ 2b+ koff −

√
(s+ 2b+ koff)2 − 4b2

2b
,� (24)

B =
koffF̃0|m(s)

(koff + s)
.� (25)

One can also show that

F̃0|m(s) =
kon(koff + s)S(s)

Ls(koff + kon + s) + koffkonS(s)
� (26)

where the new auxiliary function S(s) is given by

S(s) =
y(1 + y)(y−L − yL)

(1− y)(y1−m + ym)(ym−L + y1+L−m)
.� (27)

More specifically, the first-passage times to reach the target located at the site m, start-
ing from any other site n, on the lattice can be computed from

https://doi.org/10.1088/1742-5468/aaf31d
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Tn|m = − d

ds
F̃n|m(s)

∣∣∣∣
s=0

.� (28)

4. Results

4.1. Vanishing rate of detachment: insight from the extreme limit

In order to get insight into the eects of the trac of the RNAPs on the kinetics of 
the TF, let us begin with the extreme limiting case of koff = 0. If the TF is assumed to 
begin at t = 0 in a state where it is already attached to the lattice at a site n �= m, it 
remains attached at all times t > 0. The kinetics is still interesting and depends on the 
dynamical phase that the RNAPs are expected to exhibit for the chosen set of values 
of the parameters in the complete absence of any TF.

Intuitively, it is obvious that the RNAPs prevent the backward (left-ward according 
to the figure 1) steppings of the TF. Therefore, the TF behaves as a Brownian ratchet 
and exhibits a forward-directed (i.e. towards right) motion. Consequently, the TF can 
never reach the target site in this extreme limit if initially n > m, i.e. the searcher is 
located initially on the right side of the target.

In contrast, if initially n < m, i.e. the search begins from a site on the left of the 
target site, the searcher TF would certainly hit the target after some time during which 
it is closely followed by a RNAP that rectifies the Brownian motion of the searcher. 
In figure 2 we plot the position of the TF and the closest RNAP following it, both as 
functions of time. The asymptotic linear increase of the position x with time t estab-
lishes that the TF moves, eectively, ballistically instead of its natural diusive search, 
because of the rectification of the backward steps by the RNAP following it from 
behind.

Suppose the parameters α, β and u are such that the RNAPs would be in the LD 
phase in the absence of any TF. In this case the mean search time is

〈ts〉 � (m− n)/veff� (29)
where the eective average velocity of the TF should be

veff =

(
b

b+ u

)
v =

(
1

1 + (u/b)

)
v� (30)

with

v = u

(
1− α

u

)
� (31)

being the corresponding average velocity that the RNAP would have in the LD phase 
in the absence of any TF. Indeed, the RNAPs do achieve the average velocity (31) if 
u/b is suciently small (see figure 2) because the faster moving TF vacates the site in 
front of the following RNAP sooner thereby leaving the RNAP practically unaected 
by the TF. The formula (30) is in excellent agreement with the simulation data plotted 
in figure 2 where we have used α = 10 s−1, β = 103 s−1, u = 103 s−1 and, hence, v = 990 
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s−1. Note that in the HD phase the mean search time is 〈ts〉 = (m− n)/v, where v = β, 
irrespective of the magnitude of b/u, because the gap between successive RNAPs is so 
small that the TF is essentially dragged by the flow of the RNAPs with the same veloc-
ity as that of the RNAPs.

For the x− t plots in both the insets of figure  2 we have used the parameters 
u = b = 103 s−1. The other parameters, namely, α and β were selected so as to attend 
the desired phase of the RNAPs in the absence of TF. For attaining the HD phase 
we chose α = 1000 s−1 and β = 100 s−1. In contrast, for attaining the MC phase we 
selected α = 1000 s−1 and β = 1000 s−1. So, in the steady state, the average velocity 
of the RNAPs would be v = u(β/u) = β = 102 s−1. The slope of the straight line in the 
corresponding inset of figure 2 is, indeed, 102 s−1. Similarly, the average velocity of 
the RNAPs in the MC phase is u(1− ρ) = u/2, as ρ = 1/2. Moreover, since we have 
taken u = 1000 s−1, the average velocity of the RNAPs in the MC phase would be 500 
s−1 which, indeed, is the slope of the x− t straight line in the corresponding inset of 
figure 2.

4.2. Non-vanishing rate of detachment

4.2.1. High detachment limit: approximate theory based on first-passage analysis.  Next 
let us consider the opposite limit, namely, the high detachment limit. In this case, the 
searcher TF dissociates even before it feels the strong directional push of the unidi-
rectional flow of RNAPs. Therefore, in this limit the recently developed theoretical 
framework [6] is expected to provide a reasonable description of the search dynamics.

Figure 2.  Position (x) of the TF and the RNAP immediately on its left are plotted 
against time (t) in the LD phase of the RNAP trac for four dierent values of the 
ratio u/b. All the four triangles correspond to the RNAP whereas the remaining 
four symbols correspond to the TF. The corresponding data in the HD phase and 
MC phase of the RNAP trac are plotted in the insets; the data are practically 
independent of the value of the ratio u/b. The solid black lines indicate average 
velocities of the RNAPs while the black dashed lines correspond to veff.
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Tn|m =

[
2−1−2m−n

(
kon + koff

)
Lx−1−2m−n

(
−koff +

√
koff(koff + 4b)

)

(
−2m+2nxm + 22m+nxn + 2nx2m+n − 2mxm+2n

)

{
−4mkoff + 4m

√
koff(koff + 4b)− 2b

(
4m + x2m

)}{
−4mkoffx

2L

+ 4m
√

koff(koff + 4b)x2L + 2b

(
4mx2L + 4Lx2m

)}]/

[
konkoffb

2

{
koff + 4b−

√
koff(koff + 4b)

}(
4L − x2L

)(
4m + x2m

)]
( for 1 � n � m),

� (32)
and

Tn|m =

[
2−1−2m−n

(
kon + koff

)
Lx−1−2m−n

{
−koff +

√
koff(koff + 4b)

}

(
2nxm − 2mxn

){
−4mkoff + 4m

√
koff(koff + 4b)− 2b

(
4m + x2m

)}

{
−4mkoffx

2L + 4m
√
koff(koff + 4b)x2L − 2b

(
4mx2L + 4Lx2m

)}

{
−2m+nk2

offx
2L + 2m+nkoffx

2L

(
−4b+

√
koff(koff + 4b)

)

+ 2b

(
−2m+nbx2L + 2m+n

√
koff(koff + 4b)x2L + 4Lbxm+n

)}]/

[
konkoffb

2

(
koff + 4b−

√
koff(koff + 4b)

)(
4L − x2L

){
4mk2

offx
2L − 4mkoffx

2L

(
−4b+

√
koff(koff + 4b)

)
+ 2b

(
4mbx2L − 4m

√
koff(koff + 4b)x2L + 4Lbx2m

)}]
( for m � n � L)

� (33)
where

x =

(
koff + 2b−

√
koff(koff + 4b)

)/
b.� (34)

The average time to find the target, starting from the solution, T0, can be easily found 
using the following equality,

T0 = − d

ds
F̃0|m(s)

∣∣∣∣
s=0

=
koffL+ kon(L− S(0))

konkoffS(0)
.

� (35)

The theoretical treatment summarized above does not include trac-like flow of the 
RNAPs. In order to capture these eects, the diusion rate b and the attachment rate 
kon have been replaced by the eective rates b(1− ρ) and kon(1− ρ), respectively, where 
ρ is the steady state density of the RNAPs. Note that, in the absence of the TF, the 
density ρ of the RNAPs is determined by the magnitudes of the three rates α, β and u.
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In order to check how well this theory works in the limit of high detachment rates, 
we have carried out MC simulations. First, in the absence of any TF, the system of 
RNAPs are allowed to evolve for one million MC steps allowing their trac flow to 
reach the steady value during that period. Then a TF is added to the solution (in the 
state 0) and the composite system consisting of the TF and the RNAPs is allowed 
to evolve following the dynamical rules summarized by figure 1. Each round of the 
search process ends as soon as the TF reaches the target site; the next round of search 
begins with a new TF in solution. The time taken by the TF in each round of search is 
recorded and the data are finally averaged over 2000 rounds of search to calculate the 
mean first-passage time, i.e. the average search time, needed by a single TF searcher 
to reach the target.

The numerical values of the rates α, β and u were chosen in such a way that the 
trac of the RNAPs, in the absence of the TF, would attain the desired dynami-
cal phase. The particular sets of values chosen for the three phases LD, MC and HD 
phases are as follows: LD: α = 300 s−1, β = 1000 s−1; for MC: α = 1000 s−1, β = 1000 
s−1 and for HD: α = 1000 s−1, β = 300 s−1. We have used the value u = 1000 s−1 for 
all three phases. Corresponding to these values of the parameters, over the range of 
1000 s−1 � koff � 200 s−1 the detachment rate koff is still suciently high so that excel-
lent agreement between the theoretical predictions and the data obtained from MC 
simulation are seen in figure 3. This level of agreement with the MC data established 
that the approximations made in the theoretical derivations are well justified in this 
regime. Note that, because of the rapid detachments of the TF from the lattice in the 
parameter regime used for the plots in figure 3, the duration of its each round of scan-
ning is too short to be significantly aected by the flow of the RNAPs. Therefore, it 
is not surprising that the theory is in good agreement with the MC simulation data in 
this regime.

4.2.2.  Increasing deviation from MFT with decreasing detachment limit.  As the detach-
ment rate koff decreases, the TF spends longer times scanning the lattice, and most of 
its attempts to step against the flow of the RNAPs become unsuccessful in comparison 
with its steps in the direction of flow. The resulting motion of the TF is similar to that 
of a Brownian ratchet [30, 31]. The curves showing Tn|m are now asymmetric about 
m− n = 0; the lower is the value of koff the stronger is this asymmetry (see figure 5).

In this regime results obtained from the Veksler–Kolomeisky theory [6] is still 
symmetric about m− n = 0 and, therefore, not plotted graphically. In contrast, the 
solution of the forward master equations, for the initial condition P (n, 0) = 1(n �= 0), 
described above accounts for the asymmetry of the MC data qualitatively. However, 
the quantitative dierence between the theoretical prediction and corresponding MC 
data for m− n < 0 (i.e. when the target is located upstream with respect to the initial 
position of the TF) increases with decreasing koff, as shown in figure 5.

When the TF is attached to the lattice it scans a distance of the order 2λ, where 
λ =

√
beff/koff  during each encounter that lasts for a time of the order of 1/koff. Here 

beff is the eective diusion rate of the TF. If we take the smallest koff = 1 s−1 and the 
largest beff = 1000 s−1 the scanning distance is of the order of 70. For koff = 10 s−1 it 
will be about 27, while for koff = 100 s−1 it will be about 7. One would see the asym-
metry displayed in figure 5 if the TF are not farther than this distance from the target, 

https://doi.org/10.1088/1742-5468/aaf31d


First-passage processes on a filamentous track in a dense trac: optimizing diusive search for a target

13https://doi.org/10.1088/1742-5468/aaf31d

J. S
tat. M

ech. (2018) 123209

irrespective of whether it is located to the left or right of the target. Because, on the 
average, the TF downstream will have diculty to find the target (by colliding with 
the moving RNAPs) and it will have to dissociate, while the TF upstream can find it 
without dissociation. Let us call the distance 2λ upstream and 2λ downstream as 2 
‘antenna’ zones.

It is easy to explain the observed asymmetry almost quantitatively. Suppose the TF 
starts in the middle of the antenna zone upstream, say with initial m− n = 35. Then 
the search time can be estimated as T = 1/2koff. The coecient 1/2 appears because 
the TF starts only in the middle of the antenna region. If we take koff = 1 s−1, then 
we get the search time to be about 0.5 s. This is exactly what we see in figure 5. Now 
if the TF starts in the middle of the antenna zone downstream (i.e. say,with initial 
m− n = −35) then the searcher cannot reach the target because of the oncoming trac 
of RNAPs unless it dissociates. It will spend 0.5 s here and then, after dissociation, it 
will have the chance to bind to the upstream region and do better. But, on the average, 
it will come to the position L/4 from the target, which is in the middle of the left half 
of the chain. On the average, it will have to do (L/4)/(2λ) cycles, each of approximate 
average duration 1/koff (because kon = 10 000 s−1 � 1). For koff = 1 s−1 the searcher 
will need to make 3.5 cycles, on the average. So, the total search time for a TF starting 
in the downstream antenna region is 0.5 s+ 3.5 s= 4 s which is in excellent agreement 
with the corresponding simulation data plotted in figure 5 for the LD phase. It will 
take longer in MC and HD phases because the eective diusion rates here are smaller 
due to the smaller average spacings between the RNAPs. So it takes a little bit longer. 

Because ρHD = 0.7 and ρLD = 0.3 it would take longer 
√

ρHD/ρLD = 1.5, or T = 6 s. 
This is also in excellent agreement with the simulation data.

4.2.3. Probability of successful search in finite time.  In reality, search time available to 
a TF is finite. What is the eect of such finite time of search on the success in hitting 
the target site? If a TF begins search from a site located downstream from the target 
site, it cannot reach the target site if koff = 0. In other words, the probability of hit-
ting the target is zero for all n > m in the special case koff = 0. Even for small values 
of koff, only a fraction of the search attempts are successful is reaching the target site 
over a finite duration of search. In our MC simulations, for each given initial value of 
|n−m|, we define the probability of successful events (Pα) as the number of successful 
events divided by the total number of events when each unsuccessful search attempt is 
aborted after 106 MC steps. The parameter values chosen for this study are α = 10 s−1, 
β = 1000 s−1. u = 1000 s−1 which, in the absence of any TF would lead to the LD phase 
of the RNAPs in the steady state. All other parameters are kept fixed at values: b = 103 
s−1, kon = 106 s−1, m = L/2 and L = 103. In figure 6 we have computed the logarithm 
of the probability of the successful events as a function of |n−m| for several dierent 
values of the parameter koff. The data fit well with straight lines indicating that

Pα ∝ exp(−|n−m|/ξ)� (36)
where the normalized range ξ/L of successful search increases from 0 to 1 with the 
increase of koff.
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Figure 3.  Variation of Tn|m with respect to m− n for dierent values of koff, for 
(a) LD phase (ρ = 0.3), (b) MC phase (ρ = 0.5) and (c) HD phase (ρ = 0.7). All 
other parameters are kept fixed at values: b = 103 s−1, kon = 104 s−1, m = L/2 and 
L = 103. Continuous lines have been obtained from extended Kolomeisky’s formula 
and discrete data points have been obtained from MC simulation. Blue, red and 
orange color lines correspond to koff = 1000 s−1, koff = 400 s−1 and koff = 200 s−1 
,respectively. Triangle, circle and square correspond to koff = 1000 s−1, koff = 400 
s−1 and koff = 200 s−1 ,respectively. The inset shows the variation of Tn|m with 
respect to m− n for dierent values of koff from −L/2 to L/2. Line colors are same 
for same parameters as before.
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4.3. Mean search time starting from solution

The results of the numerical solutions of the master equations and those obtained from 
MC simulations are plotted in figure 7. The predictions of the MFA, under the initial 
condition P (n = 0, t = 0) = 1, (i.e. with the TF initially in the solution), are in good 

Figure 4.  Same as in figure 3, except that the continuous lines have been obtained 
from the forward master equations under mean-field approximation.
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Figure 5.  Variation of Tn|m with respect to m− n for dierent values of koff, for 
(a) LD phase (ρ = 0.3), (b) MC phase (ρ = 0.5) and (c) HD phase (ρ = 0.7). All 
the other parameters are kept fixed at values: b = 103 s−1, kon = 104 s−1, m = L/2 
and L = 103. The discrete data points have been obtained from MC simulation. 
The blue triangle, red circle and orange square correspond to koff = 100 s−1,  
koff = 10 s−1 and koff = 1 s−1, respectively. The lines have been obtained from 
forward master equations under MFA.
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occurrence of a (local-) minimum indicating an optimal search strategy. Moreover, for 
a given kon, the search can be made even more ecient than that implied by the local 
minimum by tuning koff to an appropriately large value.

5. Summary and conclusion

In this paper we have developed a kinetic model for the search of a specific binding site 
on a linear chain by a single particle that executes diusive motion along the chain in 
the presence of a uni-directional trac flow of another distinct species of particles. This 
phenomenon resembles diusive search conducted by a protein, called transcription 
factor (TF), for its specific binding site on a DNA while a stream of RNA polymerase 
(RNAP) motors move collectively in a uni-directional trac-like manner on the same 

Figure 6.  (a) LD (ρ = 0.01): logarithm of the probability of the successful search 
events in finite time are plotted with respect to relative distance of initial position 
of TF from the target. Data points are obtained from MC simulation. Lines 
correspond to best fit curves. Dierent lines are for dierent values of koff. (b) 
Inverse of slopes (correlation lengths) of these lines are plotted against koff. Dashed 
line is drawn just to guide the eyes.
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segment of DNA. At first sight, one might expect that such a huge crowd of RNAP 
might cause strong hindrance against the natural movement of the TF thereby increas-
ing the time it requires for hitting the target site on the DNA. Contrary to this naive 
expectation, we find that, over wide range of values of the kinetic parameters of this 
model, the search required shorter time because the RNAPs can reduce wasteful excur-
sions in the wrong directions by pushing the TF in the correct direction. More precisely, 
the Brownian diusion of the TF gets rectified to a pattern of movement that can be 
identified with a Brownian ratchet [30, 31]. The core mechanism that gives rise to 
the ratcheting of the diusive searchers is similar to ratcheting of diusing roadblocks 
observed earlier [32]. Thus, in the presence of the RNAP trac, the mean time of suc-
cessful search can be even shorter than that required in the absence of RNAP trac.

Once a TF detaches from the DNA, it can resume its diusive search only after re-
attaching to the DNA. However, if the site of re-attachment is random, the distance 
between the site of its re-attachment and the target site may be longer than that 
between its location just before detachment and the target site. Thus, the TF does not 
draw any benefit from its earlier search history. So, detachment may appear to disrupt 
the search process. But, that is not true, as we show in this paper. When the TF finds 
it practically impossible to move towards the target site by hopping against the flow 
of RNAP trac, detachment from the DNA gives it a fresh opportunity re-start search 
from another location from where it can move co-directionally with the RNAP trac. 
In fact, in the latter situation, instead of hindering the search by the TF, the RNAPs 
assist its search by dragging it downstream along with them. However, too frequent 
detachment can be detrimental for the successful completion of the search process. 
Based on these intuitive arguments, one would expect an optimal rate of detach-
ment that would correspond to fastest search, i.e. the shortest mean search time. This 
is exactly what we show analyzing our kinetic model analytically under mean-field 
approximation as well as by direct MC simulation.

Figure 7.  LD: mean search time is plotted against koff for four dierent values 
of kon. Parameters are kept fixed at values: α = 10 s−1, β = 103 s−1, u = 103 s−1, 
ρ = 0.01, b = 103 s−1, dt = 5× 10−5 s, m = L/2 and L = 103. Initially TF was in 
solution (n = 0). Continuous lines correspond to mean-field (MF) theory. Discrete 
data points are obtained from simulation; Ts has been averaged over 1000 MC runs 
to get 〈Ts〉. Dashed lines are drawn just to guide the eyes.
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The model developed here does not include the non-motor crowders on the lattice. 
Therefore, it does not account for the eects of DNA-bound proteins like histones, etc 
on the time of search by the TF. Moreover, eects of elastic forces arising from bend-
ing and possible twisting of DNA are not incorporated in our calculations. We hope to 
extend our model in future including both these features to describe the search by TF 
more realistically. Nevertheless, we hope, our work would motivate test of the validity 
of the theoretically predicted phenomena mentioned above by carrying out experiments 
in vitro using a single DNA strand stretched by applying tension at its two ends with 
optical tweezers.
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