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Abstract
Successful functioning of all living systems depends on several classes of 
active enzymatic molecules known as biological molecular motors. They are 
involved in processes that require the application of mechanical forces such as 
cellular transport, muscle functioning, synthesis of proteins and nucleic acids 
and many others. Experimental studies suggest that most biological molecular 
motors function collectively by interacting with each other and moving along 
linear tracks, from which they occasionally dissociate at specific locations. 
We develop a theoretical model to investigate the multi-particle dynamics 
of interacting molecular motors with local dissociations. It is specifically 
stimulated by ribosomes motion along ribonucleic acid (RNA) molecules 
during the protein synthesis when the ribosome complex might dissociate 
into the solution by encountering a specially localized region on RNA. In our 
theoretical approach, we model the dynamics of molecular motors as one-
dimensional totally asymmetric simple exclusion processes for interacting 
particles. Using a cluster mean-field approach, which partially takes into 
account the correlations in the system, stationary properties such as particle 
currents, densities and phase diagrams are explicitly calculated. It is found that 
the presence of local dissociations increases the number of possible stationary 
phases. Furthermore, the strength of interactions between molecular motors, 
the modification of transition rates due to interactions and the frequency 
of dissociations strongly influence the dynamics of molecular motors. The 
microscopic origin of these observations are discussed. Our theoretical 
predictions are fully supported by Monte Carlo computer simulations.
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1. Introduction

Several classes of active biological molecules, which are called motor proteins or molecu-
lar motors, are crucial for supporting various activities in all living organisms [1, 2]. These 
are enzymatic molecules that convert the chemical energy into mechanical work in order to 
support cellular processes that require the application of forces and torques [3]. They play 
important roles in a variety of biological processes, including cellular transport, muscles activ-
ity, maintaining and transfer of genetic information, protein synthesis and signaling [1, 2, 
4–6]. Significant advances in our understanding of the microscopic mechanisms of biologi-
cal molecular motors have been achieved [3, 6, 7]. However, many aspects of their dynamic 
behavior and related cellular functions remain not well explained [3, 7–9].

It is known that biological molecular motors support their activities by catalyzing several 
exothermic processes such as the hydrolysis of adenosine triphosphate (ATP) or biopolymeri-
zation [3]. They are capable of transforming a fraction of the released chemical energy into 
mechanical forces. Most molecular motors move along linear tracks such as cytoskeleton 
protein filaments or nucleic acids, from which they might occasionally dissociate into the cel-
lular solution. A large number of motor proteins function collectively by working in groups 
of various sizes [3, 9, 10]. Experiments suggest that many molecular motors interact with 
each other [11, 12]. This could be direct chemical interactions due to being spatially close 
on molecular filaments, or it might be indirect effective interactions due to the influence of 
the linear tracks on which the motors move. An interesting example of biological molecular 
motors that exhibit all these features is a protein synthesis by ribosomes that translocate along 
ribonucleic acid (RNA) molecules [13]. Several ribosome molecules simultaneously move 
along the same RNA chain, which sometimes leads to traffic jams on RNA chains. There are 
also certain regions on RNA where ribosome has a higher probability to detach from the track, 
terminating the protein synthesis process [13].

Several theoretical approaches have been proposed to investigate the properties of  biological 
molecular motors [3–6, 14]. Totally asymmetric simple exclusion processes (TASEP) are 
multi-particle non-equilibrium models that have been widely employed to describe the col-
lective dynamics of molecular motors [6, 15–25]. The molecular transport on parallel linear 
tracks, the impact of local dissociations, and the effect of the motors sizes have been success-
fully studied using this approach. Stimulated by experimental observations that motor proteins 
interact beyond simple exclusion [11, 12], we recently developed a new class of TASEP mod-
els that takes into account inter-molecular interactions via a thermodynamically consistent 
approach [18–21]. It was shown that these interactions strongly influence the dynamics of 
molecular motors.

In this work, we investigate a theoretical model, based on TASEP, that takes into account 
two important features of biological molecular motors: interactions and local dissociations. It 
is specifically motivated by the protein synthesis process that is accomplished by the ribosome 
molecular motors. A situation with a single dissociation site far away from the boundaries 
of the system is specifically considered in our analysis. It is argued that the dissociation site 
divides the linear track into two homogeneous segments, for which theoretical results are 
known. We develop a cluster mean-field approach to analyze the behavior of molecular motors 
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by properly coupling the multi-particle dynamics in both parts of the system. Inter-molecular 
interactions are described in the thermodynamically consistent fashion. This approach par-
tially takes into account the correlations between particles, which is a crucial feature for 
studying one-dimensional multi-particle processes. Our theoretical analysis identifies several 
dynamic phases and it shows how varying the interactions strength, the effect of interactions 
on transition rates and the possibility of dissociations modify the dynamic properties of bio-
logical molecular motors. We supplement our analytical calculations with extensive Monte 
Carlo computer simulations, which fully support all theoretical predictions.

2. Theoretical model

2.1. Model description

Our goal is to investigate the dynamics of interacting molecular motors that also can dissociate 
from the linear track at some specific locations. We consider a lattice consisting of N sites that 
corresponds to a linear track on which the molecular motors translocate only in one direction: 
from left to right (see figure 1). Molecular motors are represented by particles in the system. 
They can enter the system only at the first site (if it is not occupied), and they can exit the 
system at the last site: see figure 1(A). Each site can only be in one of the two possible states, 
occupied or empty, and two particles cannot occupy the same site. This reflects the hard-core 
exclusion contribution in the inter-molecular interactions.

Particles located at the two neighboring sites also interact with each other, creating an 
effective inter-molecular bond, and we associate an energy E (in kBT  units) with the strength 
of this bond. Attractive interactions correspond to E  >  0, while for the repulsive interactions 
we have E  <  0. These nearest-neighbor interactions are affecting all transition rates in the 
system. We assume that the molecule hops along the lattice one step to the right if this site is 
available. The stepping transition is q if a new inter-molecular bond is made, or the rate is r 
if the inter-molecular bond is broken (figure 1(A)). For all other situations when the number 
of inter-molecular bonds does not change, the stepping rate is taken to be equal to 1: see 
figure 1(A).

The important part of our theoretical method is that the effect of inter-molecular inter-
actions on transition rates is taken into account in the thermodynamically consistent way 
[18–21]. More specifically, the stepping rates can be written as

q = exp [θE] , r = exp[(θ − 1)E], (1)

where a parameter 0 � θ � 1 describes how the interaction influences the bond-making 
and the bond-breaking transitions. If there are no interactions, E  =  0, we have q  =  r  =  1. 
Generally, the transition rates q and r are related to each other via a detailed-balance like 
relation,

q
r
= exp(E). (2)

The physical meaning of equations (1) and (2) is the following. If making the  inter-molecular 
bond is energetically favorable (E  >  0), then the forward stepping that is associated with 
the bond creation is fast (q  >  1), while the stepping that leads to the bond breaking is slow 
(r  <  1). But if the formation of the bond is energetically unfavorable (E  <  0), then the forward 
stepping associated with the bond creation is slow (q  <  1), while the motion that leads to the 
bond dissociation is fast (r  >  1).
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Interactions are also affecting the entrance and exit transition rates. The particle enter the 
system at the site i  =  1 with a rate α if the site i  =  2 is empty (figure 1(B)). But if the second 
site is already occupied, the entrance rate is qα because the new inter-molecular bond will 
be created. Similarly, the particle at the last site (i  =  N) will leave the system with a rate β 
if there is no other particle at the site i  =  N  −  1, as shown in figure 1(B). But when the site 
i  =  N  −  1 is occupied the exit rate is equal to rβ because it will lead to the breaking of the 
inter-molecular bond.

To describe the effect of localized dissociations, we assume that there is a single site 
1  <  k  <  N far away from the boundaries from which the particle can irreversibly dissociate 
into the solution and leave the system. The exact location of the dissociation site is not impor-
tant in the thermodynamic limit that we are interested in this work (N � 1), as long as this 
special location is far away from both boundaries. Clearly, interactions influence the dissocia-
tion rates from this special site. The nearest-neighbor interactions at site i  =  k lead to three 
possible situations: see figure 1(B). If there are no other particles at the sites i  =  k  −  1 and 
i  =  k  +  1 then the dissociation rate is equal to koff. If only one of the sites neighboring to the 
special location is occupied (i  =  k  −  1 or i  =  k  +  1), then the dissociation rate is rkoff. This is 
because in this case the particle dissociation will break only one inter-molecular bond. If both 
neighboring sites are occupied then the dissociation rate is given by r2koff  to reflect the fact 
that the dissociation in this case will break two inter-molecular bonds.

The stationary properties of TASEP models can be successfully analyzed using exact or 
approximate approaches if the dynamics in the bulk is homogeneous [15]. But in our system 
the existence of the local dissociation site makes the system inhomogeneous, and because 

Figure 1. (A) A schematic view of the model of interacting molecular motors moving 
along linear filaments with a possibility of local dissociation. (B) Dynamic transitions at 
the entrance site, at the dissociation site and at the exit site. (C) Mapping of the original 
model into two coupled homogeneous sub-lattices.
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of this the analysis using known methods that work for homogeneous systems is not pos-
sible. However, one might notice that the dissociation site divides the system into two homo-
geneous segments: L1—from i  =  1 to i  =  k and L2—from i  =  k  +  1 to i  =  N, as shown in 
figures 1(A) and (C). The effective exit rate from the first segment is given by βeff, and the 
effective entrance rate into the second sub-lattice is equal to αeff  (figure 1(C)). Then we might 
employ the results of homogeneous TASEP methods for calculating the dynamic properties at 
each sub-lattice separately, and the stationary arguments could be utilized to couple both parts 
of the system by explicitly evaluating the effective rates αeff  and βeff. This is the main idea of 
our theoretical method for investigating the non-equilibrium dynamics of multiple interacting 
particles with the local dissociation.

2.2. Dynamic properties for homogeneous TASEP model of interacting particles

To calculate the dynamic properties in our model, we need to use the results for a homoge-
neous TASEP model of interacting particles. It was shown before that a satisfactory descrip-
tion of this model can be obtained by employing a cluster mean-field approach that partially 
takes into account the correlations in the system [18–21]. In this approach, the dynamics inside 
the cluster of several lattice sites is accounted for explicitly while the correlations between 
clusters are neglected.

Let us consider a two-site cluster mean-field method that was utilized for specific calcul-
ations [20, 21]. In this method, every two lattice sites, i and i  +  1, can be found in one of 
four possible states: (1, 1) when particles are found at both sites i and i  +  1, (1, 0) when only 
the site i is occupied, (0, 1) when only the site i  +  1 is occupied, and (0, 0) when both sites 
are empty. The corresponding probabilities for each state can be written as P(1, 1), P(1, 0), 
P(0, 1) and P(0, 0), and they are related to each other via the normalization,

P(1, 1) + P(1, 0) + P(0, 1) + P(0, 0) = 1. (3)

It was found also that these probabilities are explicitly given by [20, 21]

P(1, 1) ≡ x = ρ+
r −

√
r(r + 4(q − r)ρ(1 − ρ))

2(q − r)
;

 (4)

P(1, 0) = P(0, 1) ≡ y =
−r +

√
r(r + 4(q − r)ρ(1 − ρ))

2(q − r)
; (5)

P(0, 0) ≡ z = (1 − ρ) +
r −

√
r(r + 4(q − r)ρ(1 − ρ))

2(q − r)
, (6)

where ρ = P(1, 1) + P(1, 0) = x + y is the single-site bulk density. The particle flux through 
the bulk of the system can be conveniently written in terms of these cluster probabilities,

Jbulk =
y2z + qy3 + rxyz + xy2

ρ(1 − ρ)
. (7)

Theoretical calculations show that there are three stationary phases in the TASEP model 
of interacting particles [18–21]. If dynamics is governed by the entrance into the lattice then 
a low-density (LD) phase will occupy the system. For the case when exiting from the lattice 
is the rate-limiting step, we have a high-density (HD) phase. If bulk processes control the 
dynamics, the system will be found in a maximal-current (MC) phase.

L Gomes et alJ. Phys. A: Math. Theor. 52 (2019) 365001
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Density profiles, particle currents and boundaries between different stationary phases can 
be explicitly calculated using the cluster mean-field approach. In the LD phase, the entrance 
particle current is given as [20]

JLD = α(z + qy). (8)

Because of the stationarity, the bulk current must be the same as the entrance current, 
Jbulk = JLD, and from equations (7) and (8) we obtain the expression

α =
(r − C1) [C1(−r + q(2r − 1)] + r [q + r − 2qr + 4(1 − q)(q − r)ρ(1 − ρ))]

2(q − r)2(ρ− 1)ρ [r − 2rρ+ C1 + q(r − 2 + 2ρ− C1)]
, (9)

with

C1 =
√

r [r(1 − 2ρ)2 − 4q(ρ− 1)ρ]. (10)

This allows us to evaluate explicitly the bulk density in the LD phase (ρLD = ρ(α)) and the 
stationary particle flux. For example, in the case of no interaction (E  =  0), it leads to C1  =  1 
and ρLD = α. For very strong repulsions (E → −∞), it can be shown that C1 � r(1 − 2ρ) and 
ρLD = α/(1 + α) [20, 21].

However, the density at the last site i  =  N is not the same as the bulk density, and it can be 
found using the following arguments. The exit current can be written in terms of the cluster 
densities at the last two sites,

Jexit,N = βPN(0, 1) + rβPN(1, 1) = βρN + β(r − 1)PN(1, 1), (11)

where ρN = PN(1, 1) + PN(0, 1) is the particle density at the last site. Then using mean-field 
arguments it can be assumed that

PN(1, 1) ≈ ρN−1ρN = ρLDρN , (12)

which leads to

Jexit,N = βρN(1 + (r − 1)ρLD). (13)

The continuity of the current implies that Jexit,N = JLD, yielding

ρN =
JLD

β [1 + (r − 1)ρLD]
. (14)

Similar results can be obtained for the HD phase. Here, the exit current is given by [21]

JHD = β(y + rx). (15)

The stationary condition in the system (JHD = Jbulk ) leads to

β =
(r − C1) [C1(−r + q(2r − 1)) + r(q + r − 2qr + 4(1 − q)(q − r)ρ(1 − ρ))]

2(q − r)2(ρ− 1)ρ [C1 + r(r − C1 − 1 + 2(q − r))]
. (16)

From this expression, we can estimate the bulk density in the HD phase (ρHD = ρ(β)) and the 
particle flux in this phase. When there are no interactions (E  =  0), this produces ρHD = 1 − β. 
For strong repulsions (E → −∞), we have ρHD = (1 − β)/(2 − β) [21].

At the entrance, the density deviates from the bulk value and it can be shown that

Jentr,1 = α(1 + (q − 1)ρHD). (17)

Following the same arguments as above, from the stationary condition, Jentr,1 = JHD, one can 
evaluate the particle density at the first site as

L Gomes et alJ. Phys. A: Math. Theor. 52 (2019) 365001
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ρ1 = 1 − JHD

α [1 + (q − 1)ρHD]
. (18)

The MC phase is governed by the dynamics in the bulk, and its properties can be found 

from the condition of the maximal current, ∂Jbulk
∂ρ = 0, using equations (4)–(7). The particle 

density ρ  that maximizes the current is the bulk density in the MC phase, ρMC = ρ. The flux 
in the MC phase JMC is obtained by substituting this density into equation (7). The particle 
densities at the boundaries deviate from the bulk values, and using the same arguments as 
above one can obtain

ρ1 = 1 − JMC

α [1 + (q − 1)ρMC]
, (19)

and

ρN =
JMC

β [1 + (r − 1)ρMC]
. (20)

Theoretical analysis using the two-site cluster mean field approach can also determine 
the location of phase boundaries between different stationary regimes [20, 21]. Substituting 
ρ = ρMC in equations (9) and (16), respectively, yields the location of the triple point α = αc  
and β = βc , at which all the three phases coexist in each homogeneous sub-lattice. These 
parameters are convenient for describing the phase boundaries. It was found that the LD phase 

exists when α < β√
q/r

 and α < αc , with the parameter αc being the solution of the relation 

ρLD(αc) = ρMC. Similarly, the HD phase is found for α > β√
q/r

 and β < βc  with the param-

eter βc being the solution of the relation ρHD(βc) = ρMC. Finally, the MC phase exists for 
α � αc  and β � βc . For E  =  0, it can be shown that αc = βc = 1/2, while for strong repul-
sions (E → −∞) we obtain αc = βc = 1/(1 +

√
2) [21].

2.3. Coupling homogeneous sub-lattices

We now compute the effective exit rate, βeff, and the effective entrance rate, αeff , for the sub-
lattice L1 and L2, respectively. The continuity of the particle current in the system implies that 
the exit current for the sub-lattice L1 (Jexit,L1), must be equal to the sum of the current flowing 
out due to the detachment from the site k (Joff) and the current passing from the site k to the 
site k  +  1 (Jpass). Thus, in the steady-state we have

Jexit,L1 = Joff + Jpass. (21)

The particle flux due to the dissociation from the site k, depends on the joint occupation status 
of the sites k  −  1, k and k  +  1, and it can be written as

Joff = koff
[
Pk(0, 1, 0) + rPk(1, 1, 0) + rPk(0, 1, 1) + r2Pk(1, 1, 1)

]
. (22)

In this expression, functions Pk(τk−1, τk, τk+1) describe the probabilities of finding the par-
ticles at the consecutive sites k  −  1, k and k  +  1, where τi is an occupation variable associated 
with any site i. For the occupied sites we have τi = 1, and τi = 0 for the empty sites. Let us 
assume that the correlations between occupation of the sites k  −  1, k and k  +  1 are negligible. 
Then this leads to the simplified expression for the dissociation current,

Joff = ρkkoff [1 + (r − 1)ρk−1] [1 + (r − 1)ρk+1] , (23)

L Gomes et alJ. Phys. A: Math. Theor. 52 (2019) 365001
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where ρk−1 = ρbulk,L1 and ρk and ρk+1 are the last and the first site densities of the sub-lattice 
L1 and L2, respectively.

Because of the nearest-neighbor interactions, the particle current passing from the site k to 
the site k  +  1 is determined by the occupation status of four consecutive sites, k  −  1, k, k  +  1 
and k  +  2. It can be written as

Jpass = Pk(0, 1, 0, 0) + rPk(1, 1, 0, 0) + qPk(0, 1, 0, 1) + Pk(1, 1, 0, 1). (24)

We assume here that the correlations between these sites are negligible, and this produces

Jpass = ρk(1 − ρk+1) [(1 − ρbulk,L1)(1 + (q − 1)ρbulk,L1) + ρbulk,L2(r + (1 − r)ρbulk,L2)] . (25)

Using the same mean-field assumptions, the overall exit current from the sub-lattice L1 can 
be written as

Jexit,L1 = βeffρk [1 + (r − 1)ρbulk,L1 ] . (26)

Substituting equations (23), (25) and (26) into the current continuity relation from equa-
tion (21), we obtain the following expression for the effective exit rate from the sub-lattice L1,

βeff = koff(1 + (r − 1)ρk+1) +
(1 − ρbulk,L1)(1 − ρk+1)(1 + (q − 1)ρbulk,L2)

1 + (r − 1)ρbulk,L1

+
ρbulk,L1(1 − ρk+1)(r + (1 − r)ρbulk,L2)

1 + (r − 1)ρbulk,L1

.

 (27)

A simpler expression can be obtained for the case r = 1
q , which corresponds to θ = 0.5 when 

the interactions equally affect bond-breaking and bond-creating processes. Then we get

βeff = koff [1 + (r − 1)ρk+1] + (1 − ρk+1) [1 + (q − 1)ρbulk,L2 ] . (28)

When there is no inter-molecular interactions, E  =  0 and q  =  r  =  1, we obtain

βeff = koff + 1 − ρk+1. (29)

This agrees with the result that was obtained earlier in [25]. For strong repulsion (E → −∞), 
it can be shown that for the general case (0 < θ < 1 ),

βeff = koff + 1 − 2ρbulk,L2 . (30)

In this limit, we have q  =  0 and r → ∞, but this expression cannot be obtained by 
direct substitution of these values into equation  (28). Instead, the following arguments 
can be presented. The flux out of the sub-lattice L1 at these conditions can only hap-
pen from configurations (0, 1, 0, 0) and (0, 1, 0, 1), which correspond to the occupation 
of sites k  −  1, k, k  +  1 and k  +  2, respectively. This means that if the site k is occupied, 
ρk−1 = ρk+1 = 0 due to strong repulsions. Then we have Jexit,L1 = βeffρk, Joff = koffρk and 
Jpass = ρkP(0, 0) = ρk(1 − P(0, 1)− P(1, 0)) = ρk(1 − 2ρbulk,L2). Substituting these expres-
sions for the particle fluxes into equation (21) leads to equation (30). This result can also be 
easily understood by pointing out that the dynamics of interacting monomers in the limit of 
strong repulsions is identical to the dynamics of dimers (particles occupying two consecutive 
sites) but without interaction [20, 26].

Similar calculations can be done to evaluate the effective entrance rate, αeff , into the second 
sub-lattice. The entrance current for the segment L2 is given by

Jentr,L2 = αeff(1 + (q − 1)ρbulk,L2). (31)

L Gomes et alJ. Phys. A: Math. Theor. 52 (2019) 365001
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At the same time, it should be equal to the current that passes from the first segment, 
Jentr,L2 = Jpass, from which we derive

αeff = ρk(1 − ρbulk,L1) +
ρkρbulk,L1(r + (1 − r)ρbulk,L2)

1 + (q − 1)ρbulk,L2

. (32)

A simpler expression for the effective entrance rate can be obtained for the symmetric interac-
tions case, qr  =  1 (θ = 1/2), which yields

αeff = ρk(1 − ρbulk,L1) + rρkρbulk,L1 . (33)

When there is no interactions, E  =  0, we get

αeff = ρk. (34)

This result also agrees with what was found earlier [25]. For strong repulsions (E → −∞) 
case, it can be shown that

αeff = ρk. (35)

This is because the only possible configuration for passing at these conditions is Pk+1(1, 0, 0), 
i.e. the site k is occupied, while the sites k  +  1 and k  +  2 for the second second segment are 
empty [26].

2.4. Stationary phase diagrams

Now we can investigate the effect of local dissociations on the phase diagram of interacting 
particles in our model. Because the dissociation site divides the system into two homogeneous 
TASEP segments, each of them separately can be found in one of three stationary phases: LD, 
HD or MC. This suggests that the maximal number of phases in our system is 3 × 3 = 9. We 
use a notation A/B to label them, where A and B describe a phase in the sub-lattice L1 and L2, 
respectively.

However, because of the specific coupling between two sub-lattices not all phases might be 
materialized in the system. Due to the irreversible dissociation of the particles at the site k, the 
sub-lattice L2 can never obtain the MC phase. Even if the sub-lattice L1 might have the maxi-
mal current, it will decrease for the second segment due to the dissociation flux. This removes 
out the possibility of existence of LD/MC, HD/MC, and MC/MC phases in our system, and 
it leaves only six possible stationary phases. Let us investigate the conditions for existence of 
these phases.

2.4.1. MC/HD phase. The MC/HD phase is determined by the following conditions

α > αc, βeff > βc, (36)

αeff >
β√
q/r

, β < βc,
 (37)

where αc and βc are the coordinates of the triple points for homogeneous single-channel inter-
acting TASEP model, as discussed in section 2.2. In addition, the densities at the sites k and 
k  +  1 are given by

ρk =
JMC,L1

βeff [1 + (r − 1)ρMC,L1 ]
, ρk+1 = 1 − JHD,L2

αeff [1 + (q − 1)ρHD,L2 ]
, (38)

L Gomes et alJ. Phys. A: Math. Theor. 52 (2019) 365001
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and they are the functions of αeff , βeff and β. The effective entrance and exit rates are given by

αeff = ρk(1 − ρMC,L1) +
ρkρMC,L1 [r + (1 − r)ρHD,L2 ]

1 + (q − 1)ρHD,L2

, (39)

and

βeff = koff [1 + (r − 1)ρk+1] +
(1 − ρMC,L1)(1 − ρk+1) [1 + (q − 1)ρHD,L2 ]

1 + (r − 1)ρMC,L1

+
ρMC,L1(1 − ρk+1) [r + (1 − r)ρHD,L2 ]

1 + (r − 1)ρMC,L1

.

 

(40)

For any given values of the interaction energy E, the detachment rate koff, the entrance rate 
α and the exit rate β, equations  (38)–(40) can be solved together numerically by taking 
into account the explicit expressions for JMC, JHD, ρMC and ρHD in terms of αeff , βeff and β. 
This leads to explicit evaluation of the effective rates αeff  and βeff for any set of parameters. 
Correspondingly, the MC/HD phase can be obtained for the values of α, β, αeff , and βeff sat-
isfying equations (36) and (37).

2.4.2. MC/LD phase. There are following conditions for existence of the MC/LD phase:

α > αc, βeff > βc, (41)

αeff <
β√
q/r

, αeff < αc. (42)

The particle densities at the special sites k and k  +  1 are given as

ρk =
JMC,L1

βeff [1 + (r − 1)ρMC,L1 ]
, ρk+1 = ρLD,L2(αeff). (43)

For the effective entrance and exit rates we have,

αeff = ρk(1 − ρMC,L1) +
ρkρ,L1 [r + (1 − r)ρLD,L2 ]

1 + (q − 1)ρLD,L2

, (44)

and

βeff = koff(1 + (r − 1)ρk+1) +
(1 − ρMC,L1)(1 − ρk+1) [1 + (q − 1)ρLD,L2 ]

1 + (r − 1)ρMC,L1

+
ρMC,L1(1 − ρk+1) [r + (1 − r)ρLD,L2 ]

1 + (r − 1)ρMC,L1

.

 

(45)

Substituting ρk and ρk+1 in equations (44) and (45), we get the system of two coupled equa-
tions, which can be solved numerically to obtain the effective entrance and exit rates, αeff  and 
βeff. These values are used then to find the parameters range that satisfy the conditions given 
in equations (41) and (42).

2.4.3. HD/HD phase. This phase exists when

α >
βeff√
q/r

, βeff < βc, (46)
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αeff >
β√
q/r

, β < βc. (47)

The densities at the sites k and k  +  1 in this case can be written as

ρk = ρHD(βeff), ρk+1 = 1 − JHD,L2

αeff [1 + (q − 1)ρHD,L2 ]
. (48)

The effective entrance and exit rates are given by

αeff = ρk(1 − ρHD,L1) +
ρkρHD,L1 [r + (1 − r)ρHD,L2 ]

1 + (q − 1)ρHD,L2

, (49)

and

βeff = koff(1 + (r − 1)ρk+1) +
(1 − ρHD,L1)(1 − ρk+1) [1 + (q − 1)ρHD,L2 ]

1 + (r − 1)ρHD,L1

+
ρHD,L1(1 − ρk+1) [r + (1 − r)ρHD,L2 ]

1 + (r − 1)ρHD,L1

.

 

(50)

Substituting expressions for ρk and ρk+1 from equation (48)–(50), we derive the system of 
two coupled equations, which can be numerically solved for αeff  and βeff for any particular 
values of α, β, E and koff. These values are utilized then to evaluate the parameters range for 
this phase.

2.4.4. LD/HD phase. The LD/HD phase is described by the following conditions,

α <
βeff√
q/r

, α < αc, (51)

αeff >
β√
q/r

, β < βc. (52)

For this phase, the densities at sites k and k  +  1 are

ρk =
JLD,L1

βeff [1 + (r − 1)ρLD,L1 ]
, ρk+1 = 1 − JHD,L2

αeff [1 + (q − 1)ρHD,L2 ]
. (53)

Moreover, we can write the expressions for the effective entrance and exit rates αeff  and βeff,

αeff = ρk(1 − ρLD,L1) +
ρkρLD,L1 [r + (1 − r)ρHD,L2 ]

1 + (q − 1)ρHD,L2

, (54)

and

βeff = koff(1 + (r − 1)ρk+1) +
(1 − ρLD,L1)(1 − ρk+1) [1 + (q − 1)ρHD,L2 ]

1 + (r − 1)ρLD,L1

+
ρLD,L1(1 − ρk+1) [r + (1 − r)ρHD,L2 ]

1 + (r − 1)ρLD,L1

.

 

(55)

Utilizing ρk and ρk+1 from equations (53) in (54) and (55), we can find numerically exactly 
the values of the effective entrance and exit rates, αeff  and βeff, for any values of E, koff, α and 
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β. They are used then to determine the boundaries for this phase from conditions presented in 
equations (51) and (52).

2.4.5. LD/LD phase. The LD/LD phase exists when the parameters α, β, αeff , and βeff satisfy 
the following conditions:

α <
βeff√
q/r

, α < αc, (56)

αeff <
β√
q/r

, αeff < αc. (57)

The densities at the sites k and k  +  1 are given by

ρk =
JLD,L1

βeff [1 + (r − 1)ρLD,L1 ]
, ρk+1 = ρLD(αeff). (58)

Utilizing equations (32) and (27), the effective entrance and exit rates in terms of the bulk 
densities and densities at the sites k and k  +  1 can be written as

αeff = ρk(1 − ρLD,L1) +
ρkρLD,L1 [r + (1 − r)ρHD,L2 ]

1 + (q − 1)ρHD,L2

, (59)

and

βeff = koff (1 + (r − 1)ρk+1) +
(1 − ρLD,L1)(1 − ρk+1) [1 + (q − 1)ρLD,L2 ]

1 + (r − 1)ρLD,L1

+
ρLD,L1(1 − ρk+1 [r + (1 − r)ρLD,L2 ])

1 + (r − 1)ρLD,L1

.

 

(60)

Substituting ρk and ρk+1, given by equation  (58), in equations  (59) and (60), the effective 
entrance and exit rates, αeff  and βeff, can be explicitly found. Now, using these values in 
equations (56) and (57), we can determine the region that describes the LD/LD phase in the 
stationary phase diagram.

2.4.6. HD/LD phase. The HD/LD phase is defined by the following conditions:

α >
βeff√
q/r

, βeff < βc, (61)

αeff <
β√
q/r

, αeff < αc. (62)

The densities at the sites k and k  +  1 are given by

ρk = ρHD(βeff), ρk+1 = ρLD(αeff). (63)

Our explicit calculations did not find any pair of values for the effective entrance and exit 
rates (αeff,βeff) that could satisfy the conditions for existence of HD/LD phase. Domain-wall 
arguments can be invoked here to explain this observation [25, 27]. In this case, two domain 
walls can be found only near the entrance and near the exit to the system, which suggests that 
any density gradient at the dissociation site will be unstable in the system. Thus, this phase 
cannot be found in the TASEP of interacting particles with local dissociations. This brings the 
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maximal number of possible stationary phases to five phases. But one should also note that 
depending on the parameters in the system the real number of stationary phases can be less 
than five, as we will see below.

3. Results and discussions

Since our explicit calculations involve several approximations, theoretical predictions were 
tested using Monte Carlo computer simulations. Computer simulations were done by consid-
ering the lattice with N  =  1000 sites in order to avoid the finite-size effects due to boundaries. 
It was assumed also that our system reaches the steady state after 20% of the Monte Carlos 
steps. The total number of Monte Carlo steps in our simulations was 109. Dynamics in the 
system was analyzed for interaction energies in the range from  −5 kBT  to  +3 kBT , which is 
considered to be the most relevant for biological molecular motors. Three different values for 
the energy splitting parameter θ (0, 0.5 and 1) were also utilized. The irreversible dissociation 
site in all these cases was chosen to be N/2.

The results of our theoretical calculations for density profiles for five possible stationary 
phases are presented in figure  2. Excellent agreement between theoretical predictions and 
computer simulations is observed in all situations. As one can clearly see, in agreement with 
our theoretical arguments, the dissociation site divides the system into two homogeneous seg-
ments, for which the properties are different.

To better understand the dynamical properties of interacting molecular motors with local 
dissociations, we calculate stationary phase diagrams for different sets of parameters. The 
stationary behavior in the system is governed by the parameter θ, interaction energy E and 
the dissociation rate koff. The results are presented in figures 3–5. It is found that dynamics is 
influenced by varying the parameter 0 � θ � 1 (see figure 3), which describes how the pro-
cesses of bond breaking and bond creation are affected by the interaction. For small and inter-
mediate values of this parameter (θ = 0 and θ = 0.5) only four phases can be realized in the 
system (figures 3(a) and (b)), and the HD/HD does not exist. For θ = 1 (figure 3(c)), this phase 
appears and there now five phases in the system. This observation can be explained using the 
following arguments. The HD phase in the segment L1 can be achieved only for very small 
values of the effective exit rate βeff. For the repulsions considered in figure 3 (E  =  −1 kBT) 
we have r � 1, and from equation (50), increasing r will increase βeff, lowering the possibility 
for the HD phase in the first segment. This is the reason for not observing HD/HD phase for 
θ = 0 and θ = 0.5. However, for the case θ = 1, we obtain r  =  1, and the smallest effective 
exit rates can be achieved, supporting the existence of the HD/HD phase.

One should also notice a very good agreement between theory and computer simula-
tions for θ = 1, while for θ = 0 the agreement is mostly semi-quantitative. The reason for 
the increasing discrepancy between the theoretical and simulation results is that as we move 
from θ = 1 to θ = 0, there is the increase in the strength and the range of correlations in the 
system. The transition rate r is defined in equation (1), and for a fixed negative E the value 
of r increases from 1 to exp(−E) (E is given in units of kBT) as θ moves from 1 to 0. The 
greater the rate r, the faster is the bond breaking process, and this corresponds to stronger and 
more long-range correlations in the system. Since our theoretical approach employs the two 
cluster mean-field theory, which accounts only for short-range correlations, the discrepancies 
between theor etical predictions and computer simulations increase for smaller θ.

The results presented in figure 4 show that interaction energies can also strongly modify the 
stationary phase diagrams. The number of possible phases can vary drastically depending on 
the strength and the sign of interactions. For strong repulsions (E  =  −5 kBT , figure 4(a)), only 
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two stationary phases are possible for this set of parameters. For these conditions, because of 
the strong repulsions the HD phase is not possible in both sub-lattices, and the only two phases 
that can exist are LD/LD and MC/LD. The situation is different for weak repulsions (E  =  −1 
kBT , figure 4(b)) when four stationary phases exists. This is because the HD phase is now 
possible in the sub-lattice L2, leading to appearance two new LD/HD and MC/HD phases. For 

Figure 2. Density profiles for different stationary phases. For all cases, θ = 0.5 and 
koff = 0.3 were utilized. (a) LD/LD phase for E  =  −1 kBT , α = 0.5 and β = 0.5; (b) 
MC/LD phase for E  =  −1 kBT , α = 0.9 and β = 0.6; (c) LD/HD phase for E  =  +1 
kBT , α = 0.2 and β = 0.15; (d) MC/HD phase for E  =  −1 kBT , α = 0.95 and β = 0.1; 
(e) HD/HD phase for E = +1kBT , α = 0.25 and β = 0.05. Solid blue lines correspond 
to numerically exact calculations and red symbols represent the Monte Carlo simulation 
results.

Figure 3. Stationary phase diagrams for E  =  −1 kBT , koff = 0.3 and the splitting 
parameter (a) θ = 0; (b) θ = 0.5; (c) θ = 1. Solid blue lines correspond to numerically 
exact calculations and red symbols represent the Monte Carlo simulation results.
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attractions (E  =  +3 kBT , figure 4(c)), we also find four stationary phases, but MC/HD is now 
substituted by HD/HD phases. In addition, the range for LD/LD and LD/HD is significantly 
reduced since attractions favor particle clustering, i.e. high-density phases.

Figure 5 shows how the dynamics in the system changes with varying the dissociation rate 
koff. For parameters considered here (weak repulsions, E  =  −1 kBT , and θ = 0.5), there are 
four stationary phases for the weak dissociation rates: see figure 5(a). Increasing the possibil-
ity of the irreversible detachments does not change the number of phases but it modifies one 
of them: HD/HD phase is substituted by MC/HD phase (figure 5(b)). Increasing further the 
dissociation rate leads only to changing the phase boundaries without influencing the phase 
composition (figure 5(c)). These observations can be explained by connecting the dissociation 
rate with the effective exit rate from the sub-lattice L1. The larger the detachment rate koff, the 
larger the rate βeff, which means that the possibility of observing the HD phase in the first 
segment diminishes. This is the reason for switching HD/HD phase to MC/HD phase: see 
figures 5(a) and (b).

3.1. Correlations

Analyzing density profiles in different phases, we noticed that our theoretical description in 
many cases works better for the second sub-lattice than for the first sub-lattice: see figures 2(a) 
and (d). Because our cluster mean-field method takes into account some correlations in the 
system, it is reasonable to suggest that the degree of correlations in both segments are not 
the same. To test this idea, we compute two-point nearest-neighbor correlations in both sub-
lattices L1 and L2. A general two-point correlation function is defined as

Ci = 〈τi, τi+1〉 − 〈τi〉〈τi+1〉 = P(τi = 1, τi+1 = 1)− P(τi = 1)P(τi+1 = 1).
 (64)

Since, we treated the sites k  −  1, k, k  +  1, and k  +  2 as independent from each other, the cor-
relations at the sites k  −  1, k and k  +  1 are zero by definition. To maintain the homogeneity in 
the correlation profiles, we substituted Ck−2 = Ck−1 = Ck and Ck+1 = Ck+2.

The results of our calculations for correlations in the system are presented in figure  6 
for different stationary phases. One can clearly see that in all cases the magnitude of cor-
relations in the second segment is always smaller than the correlations in the first segment, 
|CL1 | > |CL2 |, in agreement with our suggestion. This observation can be explained by the 

Figure 4. Stationary phase diagrams for varying interaction energies with fixed 
θ = 0.5 and koff = 0.3: (a) E  =  −5 kBT ; (b) E  =  −1 kBT ; (c) E  =  3 kBT . Solid blue 
lines correspond to numerically exact calculations and red symbols represent the Monte 
Carlo simulation results.
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fact that the flux through the second sub-lattice is smaller than the flux via the first sub-lattice 
because of the flux leaving the system at the dissociation site. The smaller the particle current, 
the smaller the chance that the probability to find the particle at some site will be affected by 
the occupation status of the neighboring sites. This corresponds to weaker correlations in the 
second sub-lattice in comparison with the first sub-lattice.

Figure 5. Stationary phase diagrams for varying dissociation rate koff with fixed 
θ = 0.5 and E = −1kBT : (a) koff = 0.03; (b) koff = 0.3; (c) koff = 0.8. Solid blue lines 
correspond to numerically exact calculations and red symbols represent the Monte 
Carlo simulation results.

Figure 6. Correlation profiles for the stationary MC/LD phase corresponding to 
α = 0.9,β = 0.6, with a fixed θ = 0.5 and E varying as (a) E  =  −5 kBT ; (b) E  =  −1 kBT ; 
(c) E  =  3 kBT . Correlation profiles for the stationary LD/LD phase for α = 0.4,β = 0.4 
with a fixed E = −1kBT , θ = 0.5 and koff varying as (d) koff = 0.03; (e) koff = 0.3; 
(f) koff = 0.8. Solid blue lines correspond to numerically exact calculations and red 
symbols represent the Monte Carlo simulation results.
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For repulsive interactions, we observe negative correlations, i.e. C  <  0: see figures 6(a) and 
(b). This means that if the given site is occupied the probability to find the particle at the next 
site is smaller due to being energetically unfavorable. For attractive interactions, the correla-
tions are positive due to increased probability to find the particle at the neighboring site (figure 
6(c)). We also investigated the effect of dissociation on the correlations: see figures 6(d)–(f). 
For the LD/LD phase, it is found that the correlations in the first sub-lattice are independent 
of koff, while the magnitude of correlations in the second sub-lattice decreases with increasing 
the dissociation rate. For the LD/LD phase the current in the segment L1 is fully determined 
by the entrance rate into the system, and thus it is independent of koff. Consequently, correla-
tions in the first sub-lattice should not depend on the dissociation rate. However, the situation 
is different for the segment L2—here the effective entrance rate depends on the dissociation 
flux. The larger the dissociation rate, the smaller the effective entrance rate αeff . The smaller 
particle current through the second segment should lead to lower correlations, as we already 
argued above.

4. Conclusions

We developed a theoretical model for transport of interacting molecular motors with local 
irreversible dissociations. Our approach is stimulated by experimental observations on protein 
synthesis by ribosome complexes that move along RNA molecules. It utilizes the TASEP 
model for interacting particles with the addition of a special site from which the irreversible 
dissociations are taking place. Although the problem cannot be solved exactly, we present 
cluster mean-field analytical calculations that describe well the dynamical changes in the sys-
tem, as was tested with extensive Monte Carlo computer simulations. The main reason for 
the success of our theoretical method is its ability to capture some of the correlations in the 
system. In our calculations, we also used the fact that the local dissociation site divides the 
system into two homogeneous segments for which the explicit analysis can be done. Each of 
the sub-lattice have its own properties such as density profiles and particle fluxes. It is found 
that there are up to five possible stationary phases in the system, the boundaries for which are 
determined by the coupling between the sub-lattices. But the exact number of existing phases 
varies depending on the parameters. We also show how the strength of inter-molecular inter-
actions, and its splitting on the transition rates and the possibility of irreversible dissociations 
modify the dynamic features of the system. Microscopic arguments are presented to explain 
all observed changes. All theoretical predictions are in excellent agreement with results from 
Monte Carlo computer simulations.

Although our theoretical model is able to explain the complex dynamics of interacting par-
ticle with local dissociations, it is important to notice that a more realistic description requires 
that several other features of the molecular motors transport to be considered. For example, 
molecular motors typically occupy several sites, they also move with heterogeneous rates 
determined by the underlying chemical structures of linear tracks (e.g. the sequence depend-
ence of nucleic acids), and there are also conformational fluctuations that lead to variability 
in the inter-molecular interactions. It will be interesting to investigate the effect of these pro-
cesses on non-equilibrium dynamics of interacting molecular motors.
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