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ABSTRACT
Trapping by active sites on surfaces plays important roles in various chemical and biological processes, including catalysis, enzymatic reac-
tions, and viral entry into host cells. However, the mechanisms of these processes remain not well understood, mostly because the existing
theoretical descriptions are not fully accounting for the role of the surfaces. Here, we present a theoretical investigation on the dynamics of
surface-assisted trapping by specific active sites. In our model, a diffusing particle can occasionally reversibly bind to the surface and diffuse
on it before reaching the final target site. An approximate theoretical framework is developed, and its predictions are tested by Brownian
dynamics computer simulations. It is found that the surface diffusion can be crucial in mediating trapping by active sites. Our theoretical
predictions work reasonably well as long as the area of the active site is much smaller than the overall surface area. Potential applications of
our approach are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069917

INTRODUCTION

There are multiple chemical and biological processes that
involve trapping of diffusing particles to specific reactive sites that
are located on surfaces. Examples include catalytic reactions on het-
erogeneous catalysts1 and enzymatic processes on active sites located
on the protein surfaces.2 Analysis of these systems typically con-
siders the molecular surfaces as inactive and not participating in
these processes. However, the surfaces of solid-state catalysts and
enzymatically active proteins are clearly not inert, and the reacting
species interact with them that affects the overall outcome of the
process. These interactions might involve hydrogen bonds, electro-
static forces, and hydrophobic interactions, and they might achieve
significant strengths that could strongly modify the overall dynam-
ics of the process. For instance, recent all-atom molecular dynam-
ics simulations of association of small ligands with dihydrofolate

reductase proteins explicitly demonstrated the effect of surface facil-
itation on the kinetics.3

A relatively new example of the reaction, facilitated by sur-
face diffusion, is channel-catalyzed transport of membrane-bound
peripheral proteins.4,5 It was recently shown that α-synuclein—the
cytosolic protein implicated in Parkinson disease—enters mitochon-
drial periplasmic space through a process involving reversible bind-
ing to the outer membrane of mitochondria as the first crucial
step. The protein then diffuses on the membrane surface and either
escapes into the bulk or is captured by the β-barrel nanopore of
the voltage-dependent anion channel (VDAC). The capture of a
membrane-bound α-synuclein molecule happens via its highly neg-
atively charged C-terminal tail entering the nanopore with a net-
positive charge. The on-rate of the process is defined by the sur-
face concentration of α-synuclein molecules and their conformation,
both of which are affected by the membrane lipid composition.6,7
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Since the lipid effects are strong, it was suggested that changes
in the lipid composition of the host membrane could consti-
tute a potent regulatory mechanism of the α-synuclein interaction
with VDAC, including its VDAC-catalyzed translocation into the
periplasmic space where α-synuclein obstructs the normal function-
ing of the machinery of the inner membrane integral proteins of
mitochondria.

The crucial involvement of the membrane surface in the α-
synuclein capture was clearly demonstrated in experiments with
another β-barrel nanopore,8 formed by α-hemolysin, which is
known to have a pronounced structural asymmetry.9 On one side of
the membrane, it protrudes above the membrane surface for about
5 nm (the cap side of the channel structure), while on the other side,
it is flush with the surface (the stem side). It was found that the pro-
truding, cap-side opening of the channel displays several orders of
magnitude lower capture rates, presumably capturing α-synuclein
only from the bulk solution, compared to the rates of capture from
the membrane surface by the other, stem-side opening. This huge
difference in the capture on-rates at otherwise symmetric condi-
tions, as well as the highly expressed sensitivity of the on-rate to
the membrane lipid composition, supports the picture according to
which the α-synuclein molecule first binds to the membrane and
then diffuses over its surface before being captured by the nanopore
or released back to the bulk solution.

Another example of the complex process where interactions
with the surfaces are important is the entry of viruses into host
cells.10 Recent experimental studies indicated that the viral pene-
tration is a very complex process that involves multiple pathways.
It was shown that viruses often first bind to a random spot on the
cell’s surface and then diffuse along the surface before binding to
the appropriate receptor that allows them to enter into the cell.11,12

High-resolution fluorescence microscopy and single particle track-
ing techniques have illustrated how λ phage first binds to a ran-
dom location on the E. coli surface and then uses complicated target
search processes to reach one of the cell’s poles.11 It was also shown
that sometimes multiple receptors are needed for a virus to enter the
cell, which might lead to even longer and more complex diffusion
processes.13

The problem of association of small ligands with specific active
sites on the surfaces has been investigated before using various the-
oretical tools.14–20 Analysis of this class of problems was initiated by
Berg.14 In the elegant approach by Zhou and Szabo, the effect of the
surface was modeled as a short-range attraction potential, leading
to analytical results for different systems.15,16 The surface-assisted
association has been analyzed as a dynamic search process by one
of us,17 but the analytical results have been obtained only in certain
limiting cases. It should be noted here that the enhancement of the
association rates due to the presence of the surface is an example
of more general dynamic target search facilitation, which is accom-
plished by switching the participating particles between different
dynamic regimes with different dimensionalities. In the case under
consideration, particles are alternating between 3D bulk motion
and 2D surface sliding. It is worth mentioning that significant
progress has been achieved earlier in understanding the mechanisms
of facilitated diffusion,21–30 where the dynamics switches between
3D and 1D regimes. This 3D/1D facilitation mechanism has been
extensively discussed due its importance for protein target search
on DNA that initiates all major biological processes. These ideas

were initially stimulated by the pioneering work of Adam and
Delbruck on dimensionality reduction and diffusion in biological
systems.31

In the present study, we propose a new theoretical frame-
work to describe the surface-assisted molecular/particle associa-
tions to specific sites. It can be viewed as a generalization of the
Smoluchowski–Collins–Kimball approach that accounts for non-
specific interactions in the system. We model one of the binding
partners as an immobile partially absorbing sphere with a small per-
fectly absorbing patch that corresponds to the active site and the
second binding partner is viewed as a diffusing point particle that
might reversibly bind to the surface. It can then diffuse along the
surface until it finds the active site, or it can dissociate back into
the bulk solution. If the size of the active site is small, the overall
binding process can be considered as trapping by a uniform par-
tially absorbing sphere. This allows us to derive explicit formulas for
dynamic properties of the process. Extensive Brownian Dynamics
(BD) simulations are then utilized to test our theoretical predic-
tions and the range of parameters where our approximate method
works.

THEORETICAL METHOD

Our main goal is to understand the molecular mechanisms of
various processes in Chemistry and Biology that involve intermit-
tent reversible binding to surfaces. For this purpose, we would like
to develop a quantitative description of the dynamics of surface-
assisted trapping of diffusing particles by small active sites. More
specifically, the effective trapping rates for such processes need to
be explicitly evaluated. To calculate these rates, we notice that the
process starts with many particles diffusing in the bulk and ends as
soon as one of these particles binds to the active site. In the ensem-
ble of such systems, there is a time-dependent flux of particles to
the site. In the course of time, this flux approaches its steady-state
value that can be used to calculate the rate constant characteriz-
ing particle trapping by the site, similarly to what was done in the
classical work by Smoluchowski.32 At low particle concentrations
in the bulk, in the overwhelming majority of copies of the ensem-
ble, particles are trapped after the flux reaches its steady-state value.
Therefore, this steady-state flux is the key quantity in our analysis of
the problem.

To develop a theory of surface-assisted trapping of particles
by active sites, let us consider a system schematically shown in
Fig. 1(a). We have an immobile sphere of radius R surrounded by
the medium with diffusing point particles. When the sphere is per-
fectly absorbing, a particle touching its surface is instantly trapped.
In this case, the steady-state flux of trapped particles is given by the
Smoluchowski formula,32

JSm = kSmc∞, kSm = 4πDR, (1)

where kSm is the Smoluchowski rate constant, D is the particle bulk
diffusivity, and c∞ is the concentration of particles far away from the
sphere.

If the sphere is only partially absorbing, the steady-state flux
of trapped particles is lower than JSm since a particle touching the
sphere has a chance to escape back to the bulk solution. This flux is

J. Chem. Phys. 155, 184106 (2021); doi: 10.1063/5.0069917 155, 184106-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Schematic representations of dynamic processes considered in this work. (a) Setup for developing the approximate analytical theory. A partially reversibly absorbing
sphere of radius R is shown in blue, a fully absorbing patch of radius a is shown in dark gray, and the diffusing particle is shown in red. (b) Numerical simulations setup. The
color scheme is the same as for panel a. A fully reflecting sphere of radius Rout is used to not allow the particle to escape to infinity. More details are provided in the text.

given by the Collins–Kimball theory,33

JCK = kCK c∞ = JSmPCK
tr , (2)

where kCK is the Collins–Kimball rate constant and PCK
tr is the trap-

ping probability for a particle that starts from the partially-adsorbing
surface of the sphere. The Collins–Kimball rate constant is given by

kCK = kSmktr

kSm + ktr
= kSmPCK

tr , (3)

where ktr = 4πR2κtr is the rate constant in the trapping-controlled
regime (when D→∞), with κtr denoting the surface trapping
rate (κtr = 0 and ∞ for perfectly reflecting and absorbing sur-
faces, respectively). As can be seen from Eqs. (1)–(3), the trapping
probability, defined as PCK

tr = JCK/JSm = kCK/kSm, is equal to

PCK
tr = ktr

kSm + ktr
= 1

1 +D/(Rκtr) . (4)

As D/(Rκtr)→ 0, the trapping probability tends to unity and kCK
approaches kSm. In the opposite limit when D/(Rκtr)→∞, the
probability PCK

tr tends to zero as Rκtr/D, and kCK approaches ktr .
In a more realistic situation when the trapping ability is not uni-

form over the surface of the sphere [see Fig. 1(a)], we can introduce
an effective trapping probability Ptr and an effective rate constant k,
such that the steady-state flux of trapped particles can be written as

Jss = JSmPtr = kc∞, k = kSmPtr . (5)

By analogy with Eq. (4), we can use Ptr to introduce an effective
uniform trapping rate of the surface, κeff , by the following relation:

Ptr = Jss

JSm
= k

kSm
= 1

1 +D/(Rκeff ) , (6)

which leads to

κeff = DPtr

R(1 − Ptr) . (7)

This allows us to map the problem of nonuniform trapping by a
spherical surface to an effective Collins–Kimball problem of trap-
ping by the uniform partially absorbing sphere characterized by the

effective trapping rate κeff . To determine κeff , we have to find the
steady-state flux, from which one can calculate the effective rate con-
stant and trapping probability using the relations given in Eq. (5) and
eventually κeff by Eq. (7).

Applying the “boundary homogenization” approach outlined
above to trapping of diffusing particles by a small absorbing disk
of radius a located on the otherwise reflecting sphere of radius R,
a≪ R, we can write the steady-state flux as

Jss = kHBPc∞ = JSmPHBP
tr . (8)

Here, kHBP is the Hill–Berg–Purcell rate constant that describes trap-
ping of diffusing particles by an absorbing disk of radius a located on
the otherwise reflecting flat wall,34,35

kHBP = 4Da = kSmPHBP
tr , (9)

and PHBP
tr = Jss/JSm = kHBP/kSm is the probability to be trapped by the

disk for a particle whose starting position is uniformly distributed
over the surface of the sphere, including the disk,

PHBP
tr = a

πR
. (10)

Using this, we can introduce the effective trapping rate κHBP
eff , which,

according to Eq. (7), is given by

κHBP
eff = DPHBP

tr

R(1 − PHBP
tr )

= Da
R(πR − a) ≃

Da
πR2 , (11)

as a≪ R.
Now, we generalize the above considerations to the case where

diffusing particles can reversibly bind to the surface of the sphere
outside the disk and diffuse on this surface with a diffusivity Ds
[Fig. 1(a)]. This allows particles to reach the disk not only via direct
association from the bulk solution but also by the surface diffusion,
leading to the overall increase in the steady-state flux and hence the
effective rate constant. The steady-state flux of particles trapped by
the disk is the sum of the fluxes coming to the disk from the bulk
and from the surface, denoted by J(b)ss and J(s)ss , respectively. Since
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the disk is small, a≪ R, its presence affects the particle concentra-
tion only in close vicinity of the disk. With this in mind, we assume
that the flux J(b)ss can be well approximated as

J(b)ss = kHBPc(R), (12)

where c(R) is the steady-state concentration of unbound particles
near the surface of the sphere.

In addition, we assume that the flux J(s)ss is the product of the
mean number Ns of bound particles diffusing on the surface at the
steady state and the rate constant ks that describes the trapping of
these particles by the disk,

J(s)ss = ksNs. (13)

Since the disk is small, ks is the inverse mean first-passage time τs of
a particle diffusing on the surface to the disk boundary, on a condi-
tion that the particle starting point is uniformly distributed over the
surface. This mean first-passage time is given by36

τs = R2

Ds
f (a/R), f (z) = 2 ln(2/z) − 1. (14)

Thus, the rate constant ks is

ks = 1
τs
= Ds

R2 f (a/R) . (15)

The steady-state number of particles diffusing on the surface is
proportional to the stationary concentration c(R) of unbound par-
ticles near the surface. Let kb and kd be the rate constants for the
particle binding to and dissociation from the surface, respectively, as
illustrated in Fig. 1(a). We use these rate constants and the trapping
rate constant ks to write the balance equation for the steady-state
number of particles diffusing on the surface,

(kd + ks)Ns = kbc(R). (16)

Thus, we have

Ns = kb

kd + ks
c(R). (17)

This allows us to write the flux J(s)ss , Eq. (13), in terms of the
concentration c(R),

J(s)ss = ksNs = kskb

kd + ks
c(R). (18)

Summing up the two contributions to the steady-state flux of the
particles trapped by the disk, we obtain

Jss = J(b)ss + J(s)ss = (kHBP + kskb

kd + ks
)c(R). (19)

This steady-state flux is maintained by the bulk diffusion of
particles to the sphere from infinity. Assuming that the angular
anisotropy of the particle concentration in the bulk is small and,

therefore, can be neglected, and denoting this concentration at dis-
tance r from the center of the sphere (r > R) by c(r), one can write
the steady-state flux in the bulk as

Jss = 4πr2 dc(r)
dr

, r > R. (20)

Solving this equation subject to the boundary condition c(r)∣r→∞
= c∞, we find that

c(r) = c∞ − Jss

4πDr
. (21)

This expression is now used to find the concentration c(R) of
unbound particles near the surface of the sphere,

c(R) = c∞ − Jss

4πDR
= c∞ − Jss

kSm
. (22)

Substituting the above expression for c(R) into Eq. (19), we arrive at

Jss = (kHBP + kskb

kd + ks
)(c∞ − Jss

kSm
). (23)

Eventually, we determine the steady-state flux by solving this equa-
tion. The result is

Jss =
kSm(kHBP + kskb

kd+ks
)

kSm + kHBP + kskb
kd+ks

c∞ = JSm
kHBP + kskb

kd+ks

kSm + kHBP + kskb
kd+ks

. (24)

Now, we take advantage of the relations in Eq. (5) to find the
effective rate constant and trapping probability,

k = Jss

c∞
=

kSm(kHBP + kskb
kd+ks
)

kSm + kHBP + kskb
kd+ks

(25)

and

Ptr = Jss

JSm
= k

kSm
= kHBP + kskb

kd+ks

kSm + kHBP + kskb
kd+ks

. (26)

Finally, we find the effective trapping rate, Eq. (7),

κeff = κHBP
eff + 1

4πR2
kskb

kd + ks
. (27)

A particle diffusing on the surface of the sphere either dissoci-
ates and becomes unbound or is trapped by the disk. The probability
of the second outcome, denoted by P(s)tr , is given by

P(s)tr =
ks

ks + kd
. (28)

Introducing the notation κs for the binding rate of unbound particles
to the surface of the sphere outside the absorbing disk,

κs = kb

4πR2 , (29)

we can rewrite the effective trapping rate, Eq. (27), as

κeff = κHBP
eff + κsP(s)tr . (30)
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We use the trapping probability P(s)tr to write Eqs. (25) and (26) in
the form convenient for further analysis,

k =
kSm(kHBP + kbP(s)tr )
kSm + kHBP + kbP(s)tr

(31)

and

Ptr = kHBP + kbP(s)tr

kSm + kHBP + kbP(s)tr

. (32)

To summarize, main results of our analysis are the expressions
for the effective rate constant, Eq. (31), the trapping probability,
Eq. (32), and the trapping rate, Eq. (30).

The effective rate constant k is a function of the geometric
parameters a and R as well as the parameters that characterize the
dynamics of the system: D, Ds, kb (or κs), and kd. From Eqs. (31) and
(32), one can see that the effect of particle binding to the surface on
the effective rate constant and trapping probability (at fixed values of

a, R and D) is determined by the term kbP(s)tr = kbks/(kd + ks). The
rate constant k is a monotonically increasing function of this para-
meter. As kbP(s)tr increases from zero (no effect of binding) to infinity
(very strong binding), the effective rate constant grows from its min-
imum value kmin = kSmkHBP/(kSm + kHBP) ≃ kHBP to its maximum
value kmax = kSm. Correspondingly, the effective trapping probability
increases from kHBP/kSm to unity.

Note that the effective rate constant in Eq. (31) approaches zero,
as a→ 0, much more slowly than kHBP given in Eq. (9). This is a
consequence of the fact that the surface diffusion of the particles to
the disk plays a dominant role in this limiting case. According to
Eq. (31), we have

k∣a→0 ≃ kbks

kd
= kbDs

kdR2[2 ln(2R/a) − 1] , (33)

whereas kHBP = 4 Da is proportional to the disk radius.

FIG. 2. Comparison between numerical simulations and theoretical predictions for the mean lifetimes of Brownian particles for Rout = 2, 3, 4, and 6.
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NUMERICAL TESTS OF THE THEORY

To test our analytical theory for a wide range of parameters,
we employ Brownian Dynamics (BD) simulations. More specifi-
cally, our goal is to compute the mean lifetime of a Brownian par-
ticle diffusing in a spherical layer between two concentric spheres.
Our simulation setup is illustrated in Fig. 1(b). The outer sphere of
radius Rout is a reflecting boundary for the particle. The inner sphere
of radius R (R < Rout) contains a small absorbing disk of radius a
(a≪ R). The particle can reversibly bind to the surface of the inner
sphere outside the disk and diffuse on it. Although the surface diffu-
sivity is typically lower than its bulk counterpart, in our simulations,
we assume that the particle diffuses on the surface with the same dif-
fusivity D as in the bulk. Thus, the particle can reach the disk and be
trapped either coming to the disk from the bulk or by surface diffu-
sion. At t = 0, the particle is not bound to the surface and its starting
point is uniformly distributed over the surface of the inner sphere,
including the disk area.

The system is characterized by six dimensional parameters such
as a, R, Rout , D, kd, and κs. It seems convenient to use R as the unit
of length and R2/D as the unit of time. So, in our computer simula-
tions, we choose R = D = 1. The mean particle lifetime τsim obtained
from the computer simulations can be compared with its counter-
part predicted by our analytical theory, τtheory. Then, the measure
of the success of our theoretical analysis is how close are these two
times, i.e., we need to calculate the ratio τtheory/τsim.

The main idea of our approach is to replace the nonuniform
surface of the inner sphere by a homogeneous partially absorbing
surface with the effective trapping rate κeff . To test this idea, we
compare the mean lifetimes of the particle predicted by the theory
based on the boundary homogenization and obtained from our sim-
ulations. The mean lifetime of a particle diffusing between partially
absorbing and fully reflecting surfaces of radii R and Rout , respec-
tively, which starts from the partially absorbing surface, is given by37

τtheory = 1
3κeff R

(R3
out − R3). (34)

This time can be rewritten in the dimensionless form as

τ̃theory = τ
D
R2 =

1
3κ̃eff
[(Rout

R
)

3
− 1], (35)

where κ̃eff is the dimensionless effective trapping rate of the surface
given by

κ̃eff = κeff
R
D

. (36)

For numerical tests, it is convenient to present the dimension-
less effective trapping rate as

κ̃eff = a
πR − a

+ ε2

1 + ε3
, (37)

where new dimensionless parameters are given by

ε2 = kb

kSm
= κsR

D
, ε3 = kd

ks
= kd

R2

D
[2 ln(2R/a) − 1]. (38)

Our idea is to test analytical predictions in computer simulations by
varying ε2 and ε3 since they contain all relevant parameters of the
process.

The comparison between theoretical predictions and the results
of computer simulations for the surface-assisted binding process are
presented in Fig. 2. One can see that pushing the outer boundary
away from the surface (increasing Rout) significantly improves the
agreement between the theory and simulations. This is an expected
result because the theoretical arguments for replacing the originally
heterogeneous surface by an effective homogeneous one are appli-
cable for Rout/R≫ 1. One should also notice that the theory works
quite well for all ranges of parameters already for small ε2 and large
ε3 that correspond to weak bindings to the surface and frequent dis-
sociations from it. In this case, the surface plays a relatively small
role in the overall dynamics. The opposite limit of large ε2 and
small ε3 presents the situation where the presence of the surface
is crucial. In this case, the agreement between theory and simula-
tions is not as good, although increasing Rout clearly shows the right
tendency.

To emphasize the important role of the surface in our system,
we also consider an effective acceleration parameter γ that is defined
as a ratio of the effective trapping rate constant k, Eq. (31), to the
Hill–Berg–Purcell rate constant kHBP, Eq. (9), which corresponds to
the fully inert sphere. This ratio provides a quantitative measure of
how the presence of the surface influences the overall trapping rate
by the specific site. It can be shown that

γ = k
kHBP

= 1 + πR
a

ϵ2
1+ϵ3

1 + a
πR + ϵ2

1+ϵ3

. (39)

Figure 3 presents this acceleration as a function of two dimension-
less parameters ϵ2 and ϵ3 for the system with a = 0.05. As given in
Eq. (38), the parameter ϵ2 is proportional to the binding rate (κs) and
the parameter ϵ3 is proportional to the desorption rate constant (kd).
From Fig. 3, one can see that the highest values of the acceleration
are achieved for high values of ϵ2 and low values of ϵ3. The max-
imum theoretically possible acceleration can be simply estimated

FIG. 3. Acceleration of binding due to the presence of nonspecific interactions for
R = 1 and a = 0.05 as a function of dimensionless parameters ϵ2 and ϵ3. The
maximum theoretical acceleration for this system is γ ≈ 62.8.
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as

γmax ≃ kSm

kH
= πR

a
. (40)

This means that the surface effect is most pronounced when the
active site is very small and the surface binding is strong.

SUMMARY AND CONCLUSIONS

We developed a new theoretical framework to describe trap-
ping of particles by an active site located on the surface. It gen-
eralizes the Smoluchowski–Collins–Kimball approach32,33 by tak-
ing into account interactions between the particles and the surface
where the active site is located. Our main idea is to replace the inho-
mogeneous surface by an effective homogeneous one. This allows
us to find the steady-state flux in the system, which is then used to
obtain an explicit analytical expression for the trapping rate. Our
approximate theoretical method gives correct predictions in the lim-
iting cases of strong binding and no binding to the surface. It was
also tested using extensive BD computer simulations. The analysis
suggests that interactions with the surface can significantly accelerate
the trapping process in the systems with small active sites.
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