
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 M

ar
ch

 2
02

2 
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Yu Q, Kolomeisky AB,
Igoshin OA. 2022 The energy cost and optimal

design of networks for biological

discrimination. J. R. Soc. Interface 19:
20210883.

https://doi.org/10.1098/rsif.2021.0883
Received: 23 November 2021

Accepted: 2 February 2022
Subject Category:
Life Sciences–Physics interface

Subject Areas:
bioenergetics, biophysics, systems biology

Keywords:
kinetic proofreading, energy dissipation,

cellular energetics, non-equilibrium

thermodynamics, biochemical networks,

reaction kinetics and dynamics
Author for correspondence:
Oleg A. Igoshin

e-mail: igoshin@rice.edu
© 2022 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5848997.
The energy cost and optimal design of
networks for biological discrimination

Qiwei Yu1,7, Anatoly B. Kolomeisky1,2,3,4 and Oleg A. Igoshin1,2,5,6

1Center for Theoretical Biological Physics, 2Department of Chemistry, 3Department of Chemical and
Biomolecular Engineering, 4Department of Physics and Astronomy, 5Department of Bioengineering, and
6Department of Biosciences, Rice University, Houston, TX 77005, USA
7Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

QY, 0000-0003-0610-3484; ABK, 0000-0001-5677-6690; OAI, 0000-0002-1449-4772

Many biological processes discriminate between correct and incorrect sub-
strates through the kinetic proofreading mechanism that enables lower
error at the cost of higher energy dissipation. Elucidating physico-chemical
constraints for global minimization of dissipation and error is important
for understanding enzyme evolution. Here, we identify theoretically a
fundamental error–cost bound that tightly constrains the performance
of proofreading networks under any parameter variations preserving
the rate discrimination between substrates. The bound is kinetically
controlled, i.e. completely determined by the difference between the
transition state energies on the underlying free energy landscape. The
importance of the bound is analysed for three biological processes.
DNA replication by T7 DNA polymerase is shown to be nearly optimized,
i.e. its kinetic parameters place it in the immediate proximity of the error–
cost bound. The isoleucyl-tRNA synthetase (IleRS) of E. coli also operates
close to the bound, but further optimization is prevented by the need for
reaction speed. In contrast, E. coli ribosome operates in a high-dissipation
regime, potentially in order to speed up protein production. Together,
these findings establish a fundamental error–dissipation relation in bio-
logical proofreading networks and provide a theoretical framework for
studying error–dissipation trade-off in other systems with biological
discrimination.
1. Introduction
The remarkable fidelity in cellular information processing, including DNA
replication [1], transcription [2] and translation [3,4], is realized through a
non-equilibrium error-reduction mechanism called kinetic proofreading [5,6].
The proofreading process is dissipative as it introduces an extra energy cost
in exchange for improved discrimination against the formation of incorrect pro-
ducts [7]. Besides error and energy dissipation, the reaction speed constitutes
another important property of the proofreading system, shown to be optimized
in processes such as replication and translation [8–11]. The interplay among
speed, accuracy and energy dissipation in systems involving kinetic proofread-
ing (KPR) has been studied in different contexts [8,9,12–26], providing insights
to both general KPR networks and specific biological systems achieving
discrimination through KPR.

Nonetheless, a fundamental difference distinguishes speed from error and
dissipation. In a non-equilibrium steady state, the magnitude of a probability
flux is generally affected by the energy levels of both barriers (maxima) and dis-
crete states (minima) of the free energy landscape, but the ratio of fluxes only
depends on the barriers (maxima) [23]. In the KPR network, speed is character-
ized by the magnitude of the product-forming flux, whereas error and
dissipation (per product formed) can be expressed as flux ratios. Therefore,
speed depends on both minima and maxima, while error and dissipation
are determined only by energy maxima. The variation of energy barriers
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could create a fundamental constraint (trade-off ) between
error and dissipation, but speed is decoupled from this
trade-off since it can be varied independently by perturbing
energy minima. Elucidating this fundamental error–dissipa-
tion trade-off is of great importance to the mechanistic
understanding of KPR.

Besides the theoretical motivation, the need to quantitat-
ively understand experimentally characterized KPR systems
also necessitates the investigation of the error–dissipation
bound. Specifically, the trade-offs between speed, error, dissi-
pation and noise in KPR systems have been studied locally,
i.e. by examining the change in these characteristic properties
due to the variation of a certain rate constant [8,9]. However,
different reaction steps may have different priorities in the
optimization of characteristic properties. In the KPR network
of tRNAIle aminoacylation, for instance, the amino acid acti-
vation step optimizes speed, but the amino acid transfer
step optimizes dissipation [22]. A more global approach
that examines the effect of simultaneously varying multiple
rate constants might be better suited to understand the evol-
utionary principle and consequence in the placement of the
rate constants. This approach reveals a global error–
dissipation constraint that illustrates the importance of mini-
mizing the energy cost in tRNAIle aminoacylation [22] and
coronavirus genome replication [27]. The error–dissipation
constraint defines a manifold along which the decrease in
error will lead to increase in energy cost and vice versa. In
this sense, it is reminiscent of the concept of the Pareto
front in phenotype space due to natural selection [28].
However, much remains unknown about this constraint,
including its physical origin and biological importance.
Previously, a general matrix method was developed to
study the relation between error and energy cost under
different constraints [14]. Furthermore, multiple proofread-
ing regimes where accuracy depends on binding energy
difference in distinct fashions were discovered [17,18]. More
recently, scaling analysis was employed to obtain an asympto-
tic energy–accuracy–speed relation [19]. The thermodynamic
uncertainty relation also imposes a lower bound on the
energy dissipation rate [29]. To unify these relations and
apply them to understanding biological proofreading systems
[4,11,30], it is crucial to develop a general method to obtain the
explicit relationship between minimal error and dissipation for
biologically relevant models.

In this work, we seek to address these challenges by
developing a unified understanding of the fundamental
error–dissipation trade-off in general KPR networks. To this
end, a theoretical framework is developed with a three-
pronged approach unifying the perspectives of chemical kin-
etics, reaction fluxes and free energy landscape. The KPR
process is described by the steady state of a chemical reaction
network governed by chemical master equations (CMEs),
which can be explicitly transformed into a flux-based form-
alism enabling the derivation of the exact error–dissipation
bound. The bound strictly encapsulates all possible systems,
and it can only be approached in the presence of strong
non-equilibrium driving in the proofreading cycle and
with the fine-tuning of certain flux-splitting ratios. From
the free energy landscape perspective, the bound is only
determined by the difference of energy barriers between
cognate and non-cognate networks, indicating that
the trade-off is under kinetic rather than thermodynamic
control [24].
The general theoretical framework developed here could
be utilized to identify the error–dissipation bound in a
large class of KPR networks. We first illustrate its usage
in well-recognized models such as Hopfield’s scheme and
multi-stage proofreading networks with dissociation-based
rate discrimination. The methodology’s impact, however,
is not limited to simplified systems. It is applicable to
complex models with arbitrary discrimination factors and
multiple intermediates or proofreading pathways. The
error–dissipation bound in these systems reveals important
physical and biological insights. To demonstrate this,
we study three examples whose reaction networks were
previously characterized: DNA replication by T7 DNA poly-
merase, aminoacyl-tRNA selection by E. coli ribosome [8],
and aminoacylation by E. coli isoleucyl-tRNA synthetase
(IleRS) [22]. The global parameter sampling confirms
that the error–dissipation bound is valid in these systems
and that the non-equilibrium driving provided by hydrolyz-
ing energy-rich molecules in the futile cycles is indeed
sufficiently large, allowing for the bound to be closely
approached. By comparing the native systems with the
optimal ones that sit on the error–dissipation bound, we
search for general constraints and principles in these
biological discrimination systems.
2. Results
2.1. Theoretical formalism
2.1.1. Error and cost in Hopfield’s kinetic proofreading scheme
In the classic proofreading scheme proposed by Hopfield [5],
the free enzyme E can either bind to the correct substrate (R)
forming the cognate complex ER or bind to the incorrect sub-
strate (W ) forming EW. The complex then enters an
intermediate state ER* or EW*, where it can either generate
a product PR/W or undergo proofreading, i.e. resetting with-
out generating any product. Both proofreading and product
formation return the enzyme to the unbound state E. This
reaction scheme is shown in figure 1a. All reactions are
pseudo-first-order as fixed concentrations of the substrates
and products are maintained. The networks for right and
wrong substrates are identical in structure but differ in reac-
tion rates (highlighted in red). In Hopfield’s scheme, such
difference only exists in dissociation steps, where the rate
for the wrong substrate is f-fold larger than the rate for the
right substrate.

The state of the enzyme at any time t is characterized by a
probability distribution vector P(t) = [PE, PER, PEW, PER*,
PEW*]

T, where PE denotes the probability of staying in state E.,
etc. The probabilities are normalized by 1T ·P = 1. The time
evolution of the probability distribution is governed by the
CME

dP
dt

¼ K � P, ð2:1Þ

where the elements of the transition matrix K are given by

Kj,i ¼ ki,j, for j = i
�P

i=m ki,m, for j ¼ i:

�
ð2:2Þ

ki,j denotes the rate of transition from state i to state j. Specifi-
cally, we study the properties of the system at steady state,
which satisfies K ·P= 0 and 1T · P= 1.
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Figure 1. Proofreading schemes and the error–cost trade-off. (a) The proof-
reading scheme proposed by Hopfield [5] with one proofreading pathway and
dissociation-based discrimination. (b) A generalized proofreading scheme with
n proofreading pathways and discrimination factors in all reaction steps. The
discrimination factors f and fi are marked in red, with i labelling the reactions.
(c) The error–cost relation in the Hopfield scheme (a) with f = 1000. N =
2 × 104 points are shown. Red line: theoretical bound in equation (2.10).
(d ) The error–cost relation in the n-stage dissociation-based-discrimination
scheme with f = 10 and n = 1, 2, 3, 4, 5. Solid lines of the corresponding
colour indicate the theoretical bound in equation (2.13). The points are gen-
erated with a biased sampling method that prefers points with low error and
cost [31]. N = 3 × 104 points are shown in total. The thermodynamic con-
straint is lnγ = 20 for (c) and lnγ = 30 for (d).
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The steady-state properties of the reaction network can be
quantified with two key (dimensionless) properties: error η
and proofreading energy cost C. Error is defined as the rate
of forming the incorrect product PW divided by the rate of
forming the correct product PR

h ¼ JW
JR

, ð2:3Þ

where JR = kpPER* and JW= kpPEW* are the probability fluxes of
forming a correct/incorrect product, respectively. Another
important property of such a non-equilibrium reaction
system is the free energy dissipation, which could be quanti-
fied by the total energy dissipation per correct product
formed [9,32,33]:

s ¼ s0 þ Cð1þ hÞDmfutile, ð2:4Þ
where σ0 = σR + ησW is the (fixed) energy cost of making the
products and Δμfutile is the chemical potential difference for
the (futile) proofreading cycles, usually corresponding to
the hydrolysis of energy-rich molecules such as nucleotide
triphosphate (NTP). The cost C is the number of futile
hydrolysis reactions per any product formed, calculated by
taking the ratio of the total (futile) proofreading flux to the
total product formation flux (including both cognate and
non-cognate products) [8,13]

C ¼ Jfutile
JR þ JW

: ð2:5Þ

For example, the futile flux in the Hopfield scheme is

Jfutile ¼ ðk3PER� � k�3PEÞ þ ðk3fPEW� � k�3PEÞ: ð2:6Þ
In this study, we consider σ0 and Δμfutile as constants since
they are usually fixed by constraints external to the
enzyme, such as the chemical potential of substrates, pro-
ducts and other molecules involved in the futile cycle. The
chemical potential Δμfutile is related to the thermodynamic
drive of the futile cycle, g ¼ eDmfutile ¼ ðk1k2k3Þ=ðk�1k�2k�3Þ
[32,33]. Hence, equation (2.4) indicates that the cost C is a
measure of the true (physical) dissipation rate, and the inter-
play between accuracy and energy dissipation of the
proofreading network can be studied by directly investigating
the relation between dimensionless numbers C and η. Before
analysing their relation, however, we generalize the definitions
to other proofreading networks.
2.1.2. Generalizing proofreading schemes
The reaction scheme in figure 1a suffers from a few limit-
ations. First, the difference in reaction rates is only present
in dissociation steps, while experimental data suggest that
disparity in rate constants can exist in any step of the reaction
scheme [4,11,30,34–37]. Second, the Hopfield scheme allows
for only one proofreading pathway that resets the enzyme,
yet many biological systems, such as isoleucyl-tRNA synthe-
tase, involve multiple proofreading pathways [34]. To
address these limitations, we study the interplay between
error and cost in a generalized scheme that has n proofread-
ing pathways and allows for rate discrimination in all
reactions (figure 1b). All proofreading pathways reset the
enzyme to the initial empty state, thereby resulting in dissipa-
tive cycles. The discrimination factors are highlighted in red,
with fi denoting the ratio of rates in step i. Although the net-
work is structurally similar to the McKeithan network [38],
the additional proofreading stages here do not involve mul-
tiple phosphorylation and therefore dissipate the same
amount of free energy. Thus the energy dissipation rate is
still given by equation (2.4), with the error η defined as the
ratio of the flux forming the incorrect product to that forming
the correct product, and the cost C defined as the ratio of the
total proofreading flux to the total product formation flux.

In particular, we first illustrate our methodology using
direct generalization of the Hopfield scheme in which n
proofreading pathways coexist, but the rate discrimination
is still limited to dissociation steps with the same factor f.
The generalized scheme, which we name the ‘n-stage
scheme with dissociation-based discrimination’ (n-stage
DBD), has the same network structure as figure 1b with
discrimination only in a subset of reactions

f�1 ¼ f3 ¼ f5 ¼ � � � ¼ f2nþ1 ¼ f . 1: ð2:7Þ
All the other reactions carry no discrimination factor. Rich
theoretical insights obtained from studying this scheme
would be extended to networks that allow for different dis-
crimination factor in all reactions, especially those
describing real biological proofreading processes.
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2.1.3. Parameter sampling
The parameter sampling (perturbation) is performed by vary-
ing the rate constants {k} with fixed discrimination factors { f},
which is the ratio of a rate constant in the non-cognate network
to the rate of the corresponding reaction in the cognate net-
work. For one-stage proofreading systems, the rates {k} are
sampled from a log-uniform distribution. For multi-stage sys-
tems, a sampling method biased towards points with low
error and low cost is used [31]. Fixing the discrimination fac-
tors is equivalent to maintaining the same energy barrier
differences between cognate and non-cognate reactions, thus
exerting the same level of kinetic control on substrate discrimi-
nation as the original (unperturbed) system. Assuming that
the cognate and non-cognate energy barriers correspond
to the enzyme in the same conformational state interacting
with the respective substrates, perturbation to the enzyme
structure would introduce variation to both barriers by the
same amount, thus maintaining the same discrimination
factor. This is motivated by the commonly used linear free
energy relationship that we assume between the cognate and
noncognate reactions [39,40].
 10883
2.2. Minimal energy cost in Hopfield’s proofreading
scheme

Figure 1c depicts the relation between error and energy cost
in the prototypical Hopfield model (figure 1a) with rate
constants k sampled from a log-uniform distribution over
the range [10−5, 105] and the discrimination factor f kept con-
stant. Each black point represents the error η and cost C of a
distinct combination of rate constants {k}. We find all of the
points constrained above a boundary (red line), which effec-
tively defines a Pareto front where no further improvement in
error is possible without compromising the cost. Along the
boundary, cost decreases monotonically with error, ranging
from zero at ηeq = f−1 to infinity at ηmin = f−2. This is consistent
with the previous finding that dissipative proofreading is
only necessary if the error needs to be reduced below the
equilibrium value f−1, but the error can never be suppressed
below f−2 [5,6]. We focus on the exact relation between error
and cost in the dissipative proofreading regime η∈ (ηmin, ηeq),
where the proofreading mechanism becomes necessary.

To aid the mathematical analysis of the error–cost bound,
we introduce a flux-based formalism that changes the pri-
mary variables of the CME from the probability of each
state ({PA}, where A labels all possible enzyme states) to the
probability fluxes normalized by the correct-product-forming
flux. Figure 2a illustrates the flux-based formalism of the
Hopfield scheme. In the correct half of the network, the
normalized fluxes are given by ji = Ji/JR (i = ±1, ± 2) and
β±1 = J±3/JR, where Ji is the probability flux of reaction step i
and JR = kp PR is the probability flux of forming the right pro-
duct. To quantify the normalized probability fluxes in the
incorrect network, we define an additional error rate η0 as
the ratio of the forward fluxes from EW (ER) to EW* (ER*)

h0 ¼
j02
j2

¼ k2PEW

k2PER
¼ PEW

PER
: ð2:8Þ

We refer to η0 as the zeroth-stage error rate as it is the error
measured before the first proofreading step. The resulting
expressions for the normalized fluxes in the incorrect net-
work are presented in figure 2a, with derivation detailed in
electronic supplementary material, §I. In terms of the normal-
ized fluxes, the energy cost is given by

C ¼ ð1þ hfÞb1 � 2b�1

1þ h
: ð2:9Þ

The steady-state condition K · P = 0 in the chemical master
equation (CME) translates to a set of stationary conditions in
the flux formalism, stipulating that each state must have
equal (normalized) fluxes entering and leaving it. The station-
ary conditions impose four independent constraints on
variables { j, β, η}, leaving three degrees of freedom. We
choose η0, j−2, and β−1 as free variables with respect to
which the cost is minimized. Moreover, η0 is bounded by
the equilibrium error rate, namely η0 > ηeq = f−1, where the
minimum is only achieved in the limit of fast binding and
unbinding between the free enzyme and the substrate. We
discover that the minimum cost is achieved when η0→ f−1

and j−2, β−1→ 0 (see electronic supplementary material, §I
for detailed derivation)

Cminðh, fÞ ¼ 1� h2f2

ð1þ hÞðhf2 � 1Þ , ð2:10Þ

which exactly bounds all data points found in numeric
sampling (figure 1c, red line). Notably, as η decreases
within the range η∈ ( f−2, f−1), the cost Cmin increases mono-
tonically and exhibits a divergence at the minimum error.
This can be compared with the error–cost bound in multi-
stage proofreading schemes, where the cost diverges much
faster toward a smaller error minimum.

The conditions for minimizing the cost reveal how the
probability fluxes should be arranged for the scheme to be
energetically optimal without impairing the accuracy. The
first condition, η0 = f−1, indicates that the reactions between
E, ER and EW are in fast equilibrium. Hence, the ratio of
probabilities PEW and PER is determined by the ratio of
their respective association constants with the enzyme,
which is f−1. In many biochemical systems, the first step cor-
responds to the binding between enzyme and substrates,
which is indeed in fast equilibrium compared to the
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subsequent catalytic reactions. The second condition, j−2→ 0,
indicates that this reverse flux only increases the energy
dissipation. To better understand it, let us imagine a pertur-
bation redirecting j−2 to forming the correct product and
j0−2 to forming the incorrect product. This perturbation will
not change the error rate since j0−2/j−2 = η. The stationary con-
ditions also remain unaffected since the product-forming
fluxes return to the free enzyme state, which is in fast equili-
brium with states ER and EW. In this way, however, we have
generated more products without increasing the futile fluxes
and thereby reduced the cost. Therefore, vanishing fluxes j−2
and j−20 are always energetically favourable. The third con-
dition, β−1→ 0 deals with the reverse proofreading fluxes.
Although these fluxes seem to reduce the dissipation, they
also significantly increase the error: going directly from E to
ER*/EW* introduces error β−10/β−1 = 1, which is always
higher than the error j20/j2 = η0 from going through inter-
mediate states ER/EW. The condition of vanishing β−1
indicates that the reduction in dissipation due to reverse
proofreading is outweighed by the increase in forward
proofreading fluxes needed to mitigate the increase in error.

To summarize, the optimal proofreading system consists
of three independent steps: first, the error is reduced to
η0 = (PEW/PER)→ f−1 through the fast equilibrium in the bind-
ing and unbinding between the enzyme E and the substrate
R/W; second, the complex undergoes an activation step
(from ER/EW to ER*/EW*), which is almost irreversible;
third, the error is reduced from η0 to η with a proofreading
mechanism that is also almost irreversible. Note that the acti-
vation and proofreading steps cannot be strictly irreversible
due to the thermodynamic constraint γ = (k1k2k3)/(k−1k−2k−3).
However, this constraint only increases the minimum cost by
a small correction term of the order γ−1/2 (see electronic
supplementary material, §I), which is usually negligible in
real networks since γ≫ 1 (for instance, γ = e20 in the DNA
replication network).

The key factor that characterizes the intensity of proof-
reading is the partition ratio of proofreading over product
formation

b1 ¼
J3
JR

¼ 1� hf
hf2 � 1

: ð2:11Þ

Under the optimal setting, the ratio decreases monotonically
with η, indicating one-to-one monotonic correspondence
between the optimal proofreading intensity and the desired
accuracy. Networks that are non-optimal always have a
larger partition ratio compared to the optimal network with
the same error rate. The significance of this ratio will be
further illustrated in networks with multiple proofreading
pathways.
2.3. Minimum energy cost in multi-stage schemes with
dissociation-based discrimination

The natural generalization of the Hopfield scheme is to have
multiple proofreading pathways while still localizing the
discrimination to dissociation steps. Hence, we study the
so-called n-stage dissociation-based-discrimination (DBD)
scheme, with network structure shown in figure 1b and dis-
crimination factors given by equation (2.7). By preferentially
sampling systems with low error and proofreading cost
[31], we identify error–cost boundaries for systems with
different numbers of proofreading pathways n (figure 1d ).
For each system, the minimum dissipation starts from zero
at ηeq = f−1 and increases as the error decreases before diver-
ging to infinity at ηmin = f−n−1. The same minimum error
has also been obtained with a graph theoretic approach [41].

Next, we analyse the error–cost bound in the n-stage DBD
scheme with the flux-based formalism (figure 2b). For each
stage m (m = 1, 2,…, n), we define α±m as the normalized for-
ward/backward fluxes and β±m as the normalized
proofreading/reverse proofreading fluxes. The m-stage error
ηm is defined as the ratio of the forward fluxes going from
EWm (ERm) to EWm+1 (ERm+1). The final error is η = ηn.
These η characterize how the error is sequentially reduced
from η0 = ηeq to ηn = η through n proofreading steps. Similar
to the case of the original Hopfield scheme, the normalized
fluxes in the noncognate network can be expressed in terms
of α, β, η, and f (see electronic supplementary material, §II).
Through mathematical induction, we found that the
proofreading cost in a n-stage DBD scheme Cn is bounded by

Cn � ð1þ f�1Þðf � 1Þn
1þ h

Yn
m¼1

hm

hmf � hm�1
� 1, ð2:12Þ

whose equality condition is α−i, β−i→ 0 for i ¼ 1, 2, . . ., n,
j−2→ 0, and η0 = f−1. Effectively, the system is optimal when
the binding step is in fast equilibrium and the chemical reac-
tions towards product formation or proofreading are nearly
irreversible. Complete irreversibility is precluded by the ther-
modynamic constraint, which increases the minimum cost
by a correction term of the order γ−1/(n+1) (see electronic sup-
plementary material, §II). The intermediate error rates {ηm}
characterize the distribution of proofreading burden between
different reaction stages, which can be further optimized. We
introduce λm = ηm−1/ηm > 1 to quantify the increase in accu-
racy at stage m. These ratios are constrained byQn

m¼1 lm ¼ h0=h ¼ ðfhÞ�1. The product under the P notation
in equation (2.12) is thus given by

Qn
m¼1ðf � lmÞ�1. Due

to symmetry, the optimal system has equal λ at all stages,
i.e. λm = (η0/ηn)

1/n = ( fη)−1/n, which leads to the expression
for minimum energy cost (also see electronic supplementary
material, §II):

Cn,minðh, fÞ ¼ ðf � 1Þnðf þ 1Þ
ððhfÞ1=nf � 1Þn

h

1þ h
� 1: ð2:13Þ

Indeed, this boundary constraints all points on the error–cost
plane for each n (solid lines, figure 1d ). In the optimal
scheme, the reduction of error is carried out sequentially,
with each proofreading step reducing the error by a factor
of ηm/ηm−1 = ( fη)1/n. This implies that the burden of correct-
ing errors is evenly distributed across n proofreading
pathways without any preference to early or late pathways.
Notably, the minimum cost exhibits nth-order divergence in
the limit of minimum error (i.e. Cmin ∝ (η− ηmin)

−n), which
is much stronger than the first-order divergence in the
original Hopfield scheme.

The error–cost trade-off in the n-stage DBD scheme is con-
trolled by two parameters: the discrimination factor f and the
number of proofreading pathways n. Increasing either f or n
reduces the overall minimum error ηmin = f−n−1 as well as
the minimum energy cost at any given error rate (equation
2.13). They correspond to two error-correcting strategies:
enhancing the discriminating capability of each individual
proofreading pathways or redistributing the burden of error
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correction to additional pathways. In real biochemical
systems, increasing n often requires the enzyme to have mul-
tiple reaction/proofreading domains, and the discrimination
factor f is determined by the free energy landscape of the
underlying biochemical reactions. Here, we analyse the kin-
etic effects and defer the implication in specific biochemical
contexts to §3. Figure 3a studies the relation between the
minimum cost and the discrimination factor f. For any fixed
n and η, the minimum cost diverges to infinity when f is so
small that the system operates near the minimum error and
approaches zero when f tends to η−1, allowing the system
to operate in the equilibrium discrimination regime. In the
intermediate error range, however, we find the minimum
cost decreasing, with f following a power law with exponent
(1 + n−1) (see electronic supplementary material, §II for deri-
vation). Increasing f in this range results in a non-
diminishing return in the decrease of cost. By contrast,
although increasing n also reduces the minimum cost, the
benefit becomes marginal when n is large, and the minimum
cost never decreases to zero even when n tends to infinity
(figure 3b). These two effects can be summarized in figure
3c, which depicts how the minimum cost depends on n and
f for a given error rate. The orientation of the (dashed) cost
contours demonstrates that the cost decreases with both n
and f but varies more rapidly along the f direction. The
solid black line shows the error minimum, where the cost
diverges.
2.4. The optimal scheme is kinetically controlled
The intermediate error rates ηm in the optimal n-stage DBD
system form a geometric series, where each proofreading
stage reduces the error by the same factor. This is achieved
by a specific combination of rate constants. In particular,
each intermediate state in the optimal scheme has the equal
ratio of partition between proofreading (resetting to E) and
moving forward to the next intermediate state along the
product formation pathway:

am ¼ bm

am
¼ 1� ðhfÞ1=n

fðh fÞ1=n � 1
¼ k2mþ1

k2mþ2
: ð2:14Þ

In fact, this partition ratio reveals how features of the free
energy landscape shape the fundamental trade-off between
accuracy and energy dissipation. To illustrate this, we
construct a simple kinetic model (figure 4a) that elucidates
the flux dynamics in optimal multi-stage proofreading net-
works. The f-fold discrimination due to the fast equilibrium
in the binding steps is captured by the two reactions in the
blue dashed box, which create an f−1-fold difference in the
production of EW1 compared to ER1. All the subsequent
intermediate states are assigned with a reaction rate κi (or
equivalently a time scale ti ¼ k�1

i ) and a partition ratio a
that is identical for all proofreading pathways. We also
assign κ0 to the initial steps. By allowing for completely irre-
versible reactions, this model only calculates the leading
order term of cost in the large γ limit. The steady-state prob-
ability distribution of this model is obtained by directly
solving the CME (see electronic supplementary material,
§III), which reveals that both error η and cost C are comple-
tely determined by only f and a. They are independent of
all the κi (i = 0, 1,…, n). As illustrated in figure 4b, increasing
a continuously from zero to infinity drives the system from
the equilibrium discrimination regime with no proofreading
cost (ηeq = f−1 and C = 0) towards the non-equilibrium limit
with highest accuracy and diverging cost (η→ ηmin = f−n−1

and C→ +∞). Varying κ has no effect on either error or
cost. We also find that the intermediate error rate ηm forms
a geometric series in the same way as seen in the n-stage
DBD scheme, and eliminating a from the expression of η
and C recovers the error–cost bound in equation (2.13). There-
fore, the system sits on the optimal error–cost boundary as
long as all proofreading stages share the same partition
ratio a. Moreover, the ratio a functions as a tuning parameter
that only moves the system along the Pareto front of the
error–cost trade-off (i.e. theoretical bounds in figure 1c,d ).
This relation is depicted in figure 4c, where each value of a
corresponds to the optimal scheme for a different error rate
and all the systems obtained in the previous parameter
sampling fall within the grey accessible region above the
optimal bound.

It is not a coincidence that both error and cost are deter-
mined by the partition ratio a but not rates κi. In fact, the
deeper explanation lies in the different features of the under-
lying free energy landscape captured by these rates. Previous
work has shown that any quantities that can be expressed as
ratios of stationary fluxes, including both η and C, are invar-
iant against perturbation of the energy level of discrete states
(minima on the free energy landscape) and only affected by
perturbation of the energy barriers (maxima) [23]. Expressing
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κm and a in terms of the energy levels [42], we find

km / eem�eym,mþ1 and akm / eem�eym,p , ð2:15Þ
where ϵm is the energy of state ERm, e

y
m,mþ1 is the free energy

barrier between ERm and ERm+1, and eym,p is the free energy
barrier in the proofreading step (from ERm to E). Hence, a
is associated with the difference in energy barriers
ðeym,mþ1 � eym,pÞ, which is key to the kinetic control of station-
ary flux ratios [23]. In contrast, perturbing κm is equivalent
to varying the energy level of ERm, which is irrelevant to
any ratio of stationary fluxes, such as η and C. These results
reinforce the argument that KPR is kinetically controlled
[24] and highlights the importance of the partition ratio in
both investigating natural biological proofreading systems
and engineering synthetic biological systems with high
selectivity.
2.5. Networks with arbitrary discrimination factors
To elucidate the biological implications of the error–dissipa-
tion trade-off studied so far, we need to generalize it to
networks that allow for disparity in the rate constants in all
reaction steps (figure 1b). To illustrate the idea for generaliz-
ation, we first study the classic Michaelis–Menten scheme
with the addition of a resetting reaction (figure 5a, henceforth
named MM-with-proofreading), which could be regarded
as a basic building block that makes up more complex
proofreading networks (e.g. with multiple proofreading path-
ways). The resetting cycle is driven by the cycle chemical
potential difference Δμ = kBTln[k1k2/(k−1k−2)], which allows
for increasing accuracy at the cost of energy dissipation.
The disparity in reaction rates is quantified by the discrimi-
nation factors fi (highlighted in red; i labels the reaction
steps), which obey the thermodynamic constraint f1f2 = f−1f−2.
Following the previous methodology, we define error η as
the ratio of the product formation fluxes and cost C as the
sum of the futile fluxes normalized by the total product
formation flux.

Before studying the accuracy–energy trade-off, we first
identify the parameter regime where dissipative proofreading
becomes relevant. The resetting only improves the accuracy
when it dissociates EW* more readily than ER*. Hence, f2
should be sufficiently large for proofreading to be effective.
In fact, we find proofreading meaningful only when f2 is
greater than both f−1 and fp, which is explained as following.
First, the dissipative resetting is only useful when it creates
more bias than the non-dissipative dissociation step k−1,
which requires f2 > f−1; otherwise using only the equilibrium
discrimination would be more accurate and less dissipative.
Second, the proofreading mechanism should proportionally
dissociate more wrong complexes compared to the right
ones, which requires the non-cognate network to have a
larger proofreading-to-product-formation partition ratio,
namely k2,W/kp,W > k2,R/kp,R. This is equivalent to stipulating
f2 > fp. With these two conditions, we find the system capable
of achieving the minimum error ηmin = f1fp/f2, which is lower
than the minimum error of equilibrium discrimination ηeq =
min ( f1, f1fp/f−1), calculated in the absence of proofreading
(k±2 = 0). Therefore, the trade-off between accuracy and
energy dissipation is analysed in the error range η∈ (ηmin,
ηeq), which can only be realized with proofreading. With
the flux-based method, it can be shown that for a given
error rate, the energy cost C is minimized when the reverse
reaction rates k−1,−2 become vanishing (see electronic
supplementary material, §IV). The minimum cost reads

Cmin ¼ ðf1 � hÞð1þ hð f2= fpÞÞ
ð1þ hÞðhð f2= fpÞ � f1Þ : ð2:16Þ

To examine this bound numerically, we sample all reac-
tion rates in the MM-with-proofreading scheme with fixed
discrimination factors and chemical potential. Figure 5c,d
present the sampling results for two different sets of
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discrimination factors. Consistent with theory, all sampled
systems reside above the boundary given by equation (2.16)
(red lines). The cost diverges to infinity as the error
approaches minimum. Towards the h ! h�

eq limit, however,
the minimum cost approaches zero in the case of figure 5c
but converges to a positive value in figure 5d. As zero proof-
reading cost is expected in the equilibrium regime (η > ηeq),
the discontinuity in figure 5d indicates a sudden change
of the optimal rate configuration during the transition from
the non-equilibrium regime to the equilibrium regime. In
the absence of proofreading, the minimum error is achieved
by making either k1 or kp rate-limiting, which leads to error
rates of η = f1 or η = f1fp/f−1, respectively. ηeq corresponds to
the more accurate one of these two configurations. In the opti-
mal scheme in the non-equilibrium regime, nonetheless, the
rate k−1 is always vanishing as seen in the cost minimization
condition derived above. Hence, there is a discontinuous
regime change if fp < f−1, where the k±1 step is in fast equili-
brium on the equilibrium side and almost irreversibly
driven forward on the non-equilibrium side, resulting in
the discontinuous error–cost relation as seen in figure 5d. If
fp≥ f−1, however, k−1 is vanishing on both sides of ηeq, and
the error–cost bound is continuous at ηeq, which is the case
in figure 5c. This regime change is a feature present only in
networks whose rate discrimination is not limited to
dissociation steps. Other than the discontinuity at ηeq, the
error–cost bound has the same quantitative profile as the
original Hopfield scheme.

It is remarkable that out of all the discrimination factors,
the error–cost relation (equation 2.16) is only controlled by f1
and the ratio f2/fp. This can be understood from the perspec-
tive of free energy landscape (figure 5b), where previous
analysis has shown that both error and cost are determined
solely by the energy barriers. We denote the energy barriers
by eyl,R=W, where λ∈ {1, 2, p} labels the reaction and R/W
distinguish the right/wrong half of the network. The
discrimination factors are associated with the difference of
energy barriers for cognate and non-cognate substrates

f1 / e�Dey1 ,
f1f2
f�1

/ e�Dey2 and
f1fp
f�1

/ e�Deyp , ð2:17Þ

where Deyl ¼ eyl,W � eyl,R denotes the difference between
energy barriers (figure 5b). Hence, the ratio f2/fp, which
equals to the partition ratio in the non-cognate network
divided by the partition ratio in cognate network, is pro-
portional to eDe

y
p�Dey2 . In other words, the fundamental

error–dissipation trade-off is governed only by the energy
barrier differences Dey1 and ðDeyp � Dey2Þ. Moreover, the
error–cost bound in more complex biological proofreading
networks can be readily derived by identifying the equiva-
lents of f1 and f2/fp since they already capture all the
relevant features of the energy landscape. Next, we apply
this technique to three real proofreading systems with par-
ameters provided in previous studies [8,9,22] and discuss
biological implications.
2.6. Error–cost trade-off in real biological networks
To illustrate the robustness of the bound, we apply our theoreti-
cal framework to three real biological proofreading networks,
where numerical sampling confirms that the bound formulated
with our theory tightly constrains the error and cost of all sys-
tems sampled. The position of the native systems compared to
the bound reveals the relative importance in the evolutionary
optimization of functionalities including speed, accuracy and
dissipation in KPR systems.

We start with DNA replication by T7 DNA polymerase
(DNAP), which employs a one-cycle proofreading mechan-
ism [8,10]. Its reaction network is similar to the MM-with-
proofreading scheme with an additional intermediate state
in the proofreading step. Since the proofreading step is irre-
versible at the bound, the presence of this intermediate
state does not affect the validity of the error–cost bound
given in equation (2.16) (see electronic supplementary
material, §V for details). Figure 6a presents the result of
sampling all rate constants while fixing the discrimination
factors. Indeed, all the sampled systems fall exactly above
the theoretical bound outlined by the red line. Notably, the
native system (green diamond) resides close to the boundary.
The energy cost C for the native system is only 4.3% larger
than the minimum possible cost at the native error rate,
which means that only a small portion of futile hydrolysis
is excessive. The energy efficiency of the DNA polymerase
could also be assessed by the proofreading-to-product-for-
mation partition ratio a = k2/kp = 8 × 10−4, which is close to
its minimum possible value amin = 4.5 × 10−4 for the optimal
system at the native error rate. In analogy to the original Hop-
field scheme, the DNAP network approaches the error–cost
bound by driving both polymerization and proofreading irre-
versibly forward. Indeed, we find the forward/backward
polymerization rate ratio to be k1/k−1 = 250≫ 1, and the
rate ratio in proofreading to be (k2k3)/(k−2k−3) = 2 × 106≫ 1.
These reactions are driven forward by the non-equilibrium
driving Δμ = 20kBT in the futile cycle, which comes from
hydrolyzing one dNTP (deoxynucleoside triphosphate)
molecule. Going below the native error rate, the system has
the potential of reducing the error by more than two orders
of magnitude (from 10−8 to 10−10). However, this will lead to
about one futile hydrolysis per product formed (C≈ 1), effec-
tively doubling the total energy dissipation of DNA
replication. Hence, it is possible that further increase in replica-
tion accuracy is prevented in order to avoid potentially
disadvantageous excessive energy dissipation.

Next, we consider the aminiacyl-tRNA (aa-tRNA) selec-
tion process by ribosome during translation [8,43]. This
network also has only one proofreading pathway, and the
error–cost bound is fully captured by equation (2.16) with f1
replaced by the minimum error achievable in steps prior to
proofreading and f2 replaced by the discrimination in the
proofreading step in this network (see electronic supplemen-
tary material, §V for details). The error–cost bound is also
obtained for a more detailed ribosome model [44], which
demonstrates that taking additional intermediate states into
account does not change the form of the bound (see electronic
supplementary material, §V for details). As shown in figure
6b, the bound (red line) exactly encapsulates all sampled sys-
tems on the error–cost plane. The vertical part of the bound
indicates the minimum error for equilibrium discrimination
ηeq, above which proofreading becomes unnecessary and
the minimum cost is zero. Unexpectedly, the native system
resides within this equilibrium regime, seemingly suggesting
that the proofreading mechanism is redundant. The error–
cost trade-off has also been analysed for the error-prone
and hyperaccurate mutants of the ribosome [43], whose
native error rates are also larger than ηeq (see electronic
supplementary material, §V).
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To understand what prevents the ribosome from realizing
the theoretical possibility of maintaining the native error
rate without proofreading, we remove both forward and
backward proofreading reactions (k±2 = 0) and examine
adjustments in the other rate constants required to achieve
the native error rate. Theoretically, the error is minimized
when the product formation step is rate-limiting. It requires
a time-scale separation where kp, which corresponds to the
accommodation of the aa-tRNA into the A site of the large
subunit and the subsequent peptidyl-transfer, is much smal-
ler than the rate constants of all the preceding reactions.
Experimental measurements, however, found kp comparable
to the rates of preceding reactions [43]. It is threefold smaller
than the GTP hydrolysis rate and fivefold smaller than the
binding rate of the ternary complex containing tRNA,
EF-Tu (elongation factor Tu) and GTP. Restoration of the
native error rate would require reducing kp and/or increasing
other rate constants. On the one hand, reducing kp directly
slows down the speed of protein synthesis and eventually
the speed of cell growth, especially since translation is
suggested as a rate-governing process in bacterial growth
[45]. If all the other rate constants remain invariant, kp
needs to be decreased 700-fold to recover the native error
rate. This leads to significant decrease in the growth rate,
which would seem evolutionarily detrimental. On the other
hand, amplification of the rates of the preceding reactions
faces physical limitations. For example, the rate of ternary
complex binding is already close to its upper limit, which cor-
responds to diffusion-limited reaction [46], rendering further
rate increase impossible. Therefore, it would seem that the
condition to maintain the native error rate without proofread-
ing could not be fulfilled without sacrificing the overall rate
of protein synthesis and bacterial growth. The analysis
above indicates that reaction speed becomes an important
factor when considering real proofreading networks, where
the low-cost equilibrium discrimination regime permissible
in the theory could be kinetically prohibited. Therefore, the
proofreading mechanism is still necessary in the native
system, contributing to a 20-fold increase in the translation
fidelity [43]. The above analysis indicates that the minimum
dissipation for protein translation is limited by the speed
constraints rather than the error–cost trade-off.

To extend our analysis to multi-stage proofreading net-
works, we study the reaction network for IleRS in E. coli
[22]. The enzyme pairs tRNAIle with the cognate amino
acid isoleucine (Ile) by discriminating it against a chemically
similar amino acid, valine (Val) [34]. The network has
the structure of figure 1b with n = 3 proofreading stages.
The error–cost bound could be derived by generalizing the
bound in the MM-with-proofreading scheme with the math-
ematical induction method used in the n-stage DBD scheme
(see electronic supplementary material, section V). Figure 6c
presents the error–cost relation due to the rates sampling,
demonstrating that all systems sampled fall above the theoreti-
cal error–cost bound. The native system falls within the non-
equilibrium discrimination regime (i.e. η < ηeq). Similar to T7
DNA polymerase, the enzyme resides close to the boundary,
whose cost is 2.6-fold of the minimum cost required to
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maintain the same error rate. In terms of the energy dissipated
per Ile-tRNAIle formed (σ), the dissipation of the native system
is only slightly (less than 20%) larger than the optimal system.
This finding reaffirms that IleRS is energetically efficient [22].

The reason why the dissipation could not be further
reduced could be explained by analysing the optimal
schemes corresponding to the bound. In contrast to the
n-stage DBD scheme where all proofreading pathways are
equally leveraged, the IleRS network has three different
proofreading regimes characterized by different number of
‘effective’ proofreading pathways with nonzero proofreading
fluxes. To understand this, we calculate the optimal partition
ratios a1,2,3 as a function of error η (figure 6d ). The full error
range η∈ (ηmin, ηeq) can be categorized into three phases (rep-
resented by different shades in figure 6d ) by the number of
nonzero partition ratios. When the error is sufficiently
small, all three stages need to be functional (yellow phase,
n = 3). Due to the different discrimination factor, however,
the partition ratios are different among the three stages. The
post-transfer proofreading pathway, which has the most
discrimination, has the largest partition ratio a3. Conversely,
the first pre-transfer proofreading pathway has the smallest
partition ratio a1. These partition ratios decrease as the error
is increased until a threshold (left black dashed line) is
reached where a1→ 0. Further increase in error leads to a
negative a1, which is prohibited since the rate constants are
always positive. Negative a1 is also thermodynamically
impossible since all proofreading pathways have the same
non-equilibrium driving γ, which precludes coexistence of
proofreading and anti-proofreading in different pathways
(otherwise there will be cyclic flux on a reaction loop with
no driving, such as the loop ER1–E–ER2 in figure 1b). There-
fore, the first pre-transfer proofreading pathway is turned off
(namely a1 = 0) for error larger than this threshold. Similarly,
there is a second threshold (right black dashed line) where
a2→ 0, turning off the second pre-transfer proofreading path-
way. The optimal system effectively operates in a two-stage
proofreading regime for error rates between the two
thresholds (green phase, n = 2) and in a one-stage regime
for error larger than the second threshold (blue phase, n = 1).
The native system (red diamond) resides in the one-stage
regime where the optimal scheme utilizes only the post-trans-
fer proofreading mechanism. The native partition ratios a1 and
a2 are indeed negligibly small, while the native a3 is about two-
fold of its optimal value, accounting for the increased cost. The
increased a3 can in fact be attributed to steps before proofread-
ing, where the actual error rate is about twice of the minimum
error ηeq. Reducing this error rate requires decreasing the rate
of amino acid activation, which will decrease the speed of pro-
duct formation. This is consistent with the previous trade-off
analysis on the activation rate, which indicated that the reac-
tion optimizes speed over energy dissipation [22]. Therefore,
similar to the case of translation, the native IleRS system’s
deviation from the optimal bound could be explained by the
speed requirement. Moreover, the small partition ratios in
pre-transfer editing (a1,2) could be a result of selective pressure
to reduce the energy dissipation in aminoacylation. It is poss-
ible that after the early emergence of the CP1 editing domain,
which is responsible for post-transfer editing [47], the pre-
transfer editing activity (a1,2) evolved to decrease, allowing
errors to be corrected more efficiently in post-transfer editing
(a3). Taken together, the analyses of translation and aminoacy-
lation seem to suggest that E. coli places high priority on
optimizing the rate of protein synthesis and therefore growth
rate, even at the expense of higher proofreading cost.
3. Discussion
3.1. The error–dissipation trade-off is kinetically

controlled
We have analysed the error and energy cost of kinetic proof-
reading in a large class of reaction networks whose
dynamics are governed by the CME. In terms of methodology,
we propose a formalism whereby the probability fluxes serve
as the primary variables of interest. The flux-based formalism
complements the CME formalism and provides a useful math-
ematical device for understanding the flux kinetics in reaction
networks, especially those with symmetric and branching
structures. Applying the flux-based formalism to models of
biological proofreading could reveal important biological
insights. In terms of physical interpretation in the context of
the free energy landscape, we demonstrate that both error η
and cost C depend only on the energy barriers rather than
the energy levels of discrete states (kinetic control). More pre-
cisely, the energy barriers determine error and cost through the
partition ratio a. Having uniform partition ratios in different
proofreading stages is necessary for optimizing the error–
cost relation in the n-stage DBD scheme, and the magnitude
of the partition ratio determines the extent to which error or
dissipation is prioritized in their trade-off. In the minimal
multi-stage proofreading scheme (figure 4a), it is further
demonstrated that the energy level of discrete states is irrele-
vant to both error and cost, and that the uniform partition
ratio parameterizes the system’s position along the error–cost
bound (figure 4c).

These theoretical analyses suggest experimental charac-
terization of reaction fluxes rather than the rate constants as
an important way to understand the kinetics of networks
involving proofreading or similar branching structures.
Moreover, any properties that involve only the ratio of
stationary fluxes, such as error and cost studied here, are
fully characterized with the knowledge of energy barriers,
which are, in turn, fully captured by the partition ratio of
fluxes without knowing all the reaction rates.

The significance of transition state energy is further eluci-
dated in the MM-with-proofreading scheme. It is shown that
while the energy barriers (eyl,R=W) affect error and cost, the
difference of energy barriers between the correct and
incorrect networks (Deyl) fully determines the fundamental
error–cost bound. More precisely, the energy barrier differ-
ence corresponds to the free energy difference between
cognate and non-cognate substrates interacting with the
enzyme in the same conformational state, which would be
invariant under perturbations to the enzyme structure if a
linear free energy relationship is assumed. The rate sampling
is equivalent to perturbing the energy landscape without
affecting the energy barrier difference, and the networks are
optimized in the sense of tuning ey with fixed Dey. While
the energy difference of discrete states is well characterized,
for example, by the ratio of association constants, it is more
difficult to determine the difference of energy barriers both
experimentally and computationally. A system-specific mol-
ecular dynamic analysis of the transition state configuration
might be useful to account for the barrier difference of Dey,
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which is the key to understanding how a specific biological
discrimination process is kinetically controlled. Importantly,
although the expression of the error–dissipation bound
is system-specific, the theory and the kinetic control
picture are general and by no means limited to the models
studied here.

3.2. Constraints and strategies in real proofreading
systems

The error–cost bound obtained in this work has several impli-
cations. First, although it is known that the minimum error
always corresponds to infinite dissipation, the bound provides
the complete quantitative description of how fast dissipation
must increase and eventually diverge as error is decreased. It
also helps to explain why several biological systems capable
of achieving very low error maintain a relatively higher error
instead [8,9,22]. Second, the multi-stage proofreading schemes
reveal two approaches of reducing the cost at a given error:
increasing the discrimination capacity of each proofreading
pathway (f ) or the number of proofreading pathways (n). In
biological systems, however, the values of f and n are upper-
bounded by various constraints. f is constrained by the
difference in transition state energies, and n is limited since
introducing new proofreading pathways requires the
enzyme to have either additional conformational states or
dedicated domains for proofreading, such as the editing site
in aminoacyl-tRNA synthetases [34,48]. Depending on the bio-
chemical structure as well as the functional purpose of the
enzyme, one of the two constraints might be predominantly
challenging to circumvent, resulting in the enzyme preferen-
tially adopting the alternative strategy to reduce the energy
cost of proofreading. However, the analysis in the multi-
stage DBD scheme demonstrates that increasing n leads to a
diminishing benefit of cost reduction compared to increasing
f. This suggests that proofreading with fewer pathways and
larger discrimination factors is favourable to proofreading
with numerous pathways and small discrimination factors,
potentially accounting for the rarity of multi-stage proofread-
ing in nature. The method is also applied to models with
multiple intermediate states, demonstrating that these states
do not change the form of the bound.

The general applicability of our theoretical framework is
demonstrated in three real biological proofreading networks.
Surprisingly, the three systems seem to operate in different
regimes. The DNA polymerase resides remarkably close to
the error–dissipation bound, demonstrating high energy effi-
ciency in DNA replication. By contrast, the ribosome is
unable to optimize its energy dissipation, possibly as a conse-
quence of maximizing speed. IleRS operates relatively close
to the error–dissipation bound, but further optimization
also seems to be prohibited by speed requirements. Therefore,
although speed is in theory decoupled from the error-–
dissipation trade-off, it still plays an important role in the
evolutionary trade-offs among characteristic properties due to
realistic limitations to which biochemical reactions can be
accelerated. The generalization of our formalism in these com-
plex models allows identification of key states or mechanisms,
which will be important to characterize experimentally. The
theoretical optimal scheme requires the binding and unbinding
reactions to be much faster than the subsequent reaction. In rea-
lity, however, such time-scale separation is not always possible
since the binding/unbinding rates are upper-bounded by pro-
cesses such as diffusion and substrate recognition, and the rate
of the subsequent reaction is lower-bounded by the minimum
overall reaction speed. Future studies generalizing the theoretical
framework to include speed should take into consideration how
these restrictions on rate constants constrain the free energy
landscape and thereby affect the optimal error–cost bound.

Finally, our work provides a general framework of
analysing the error–dissipation trade-off in biochemical
reaction networks capable of achieving high fidelity with
non-equilibrium proofreading. Given the importance of par-
tition ratios, the error–cost bound could be determined as
soon as a few key discrimination factors are measured.
Further insights could be revealed by subjecting the
energy barrier differences, which exert the key kinetic con-
trol on both error and dissipation, to a more detailed and
specific molecular dynamics or experimental investigation.
It would also be important to see the implication of the
error–cost bound for other biological systems involving
proofreading.
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