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Abstract
Protein search and association to specific sequences on DNA is a starting point
for all fundamental biological processes. It has been intensively studied in
recent years by a variety of experimental and theoretical methods. However,
many features of these complex biological phenomena are still not resolved at
the molecular level. Experiments indicate that proteins can be bound non-
specifically to DNA in multiple configurations. But the role of conformational
fluctuations in the protein search dynamics remains not well understood. Here
we develop a theoretical method to analyze how the conformational transitions
affect the process of finding the specific targets on DNA. Our approach is
based on discrete-state stochastic calculations that take into account the most
relevant physical–chemical processes. This allows us to explicitly evaluate the
protein search for the targets on DNA at different conditions. Our calculations
suggest that conformational fluctuations might strongly affect the protein
search dynamics. We explain how the shift in the conformational equilibrium
influences the target search kinetics. Theoretical predictions are supported by
Monte Carlo computer simulations.

Keywords: facilitated diffusion, discrete-state stochastic models, first-passage
processes, protein search

(Some figures may appear in colour only in the online journal)

1. Introduction

Proteins and DNA are two major classes of biological molecules that essentially control and
regulate all cellular processes [1, 2]. Protein–DNA interactions activate the cascades of
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biochemical transitions in living systems, thus allowing them to function successfully [1, 2].
The starting step in this process is a protein finding and recognizing specific target sequences
on DNA. This fundamental phenomenon has been extensively investigated via both exper-
imental and theoretical methods [3–46]. Although we understand better now the protein
search on DNA, there are still many unanswered questions on mechanisms of underlying
processes [19, 36, 38].

One of the most striking observations in the protein search is the fact that some proteins
can find their specific targets on DNA much faster than expected from 3D bulk diffusional
estimates that follow from the famous theory developed by Smoluchovski more than 100
years ago [3, 4, 10, 36, 38]. This is known as a facilitated diffusion. It has been argued that the
accelerated search is possible due to combining 3D bulk motion with 1D sliding of non-
specifically bound protein molecules along the DNA chain [10, 36, 38]. Recent single-
molecule experiments were able to visualize directly the sliding motion of proteins on DNA
during the search [7, 8, 11, 13, 14, 23, 33, 46]. The surprising results in protein search
dynamics have also stimulated significant theoretical efforts to explain the molecular picture
behind these complex processes [10, 19, 31, 36–38, 41].

Furthermore, several experiments indicated that during the search the non-specifically
bound proteins can exist in several conformations with different hopping dynamics along the
DNA chain and complex transition processes between these states [6–9, 32, 35]. Studies of
tumor suppressor p53 protein found that when this molecule is bound to DNA via one
C-terminal domain it slides fast [6–8]. At the same time, in the conformation that involves
binding of two protein domains to DNA (C-terminal and core) the motion is much slower [6–
8]. Similarly, NMR experiments and MD computational studies on zing-finger Egr-1 proteins
suggested that these molecules scan DNA while undergoing conformational transitions
between the fast sliding and slow sliding conformational states [9, 32]. In addition, using
mutational analysis it was possible to shift the dynamic conformational equilibrium between
these states, influencing the target search kinetics [9]. It is reasonable to expect that many
other proteins also participate in conformational fluctuations during the search process for
specific sites on DNA [35].

The observations of conformational degrees of freedom during the protein search raised a
question on the fundamental role of these fluctuations. It was suggested earlier that the
existence of several conformations is necessary for fast finding targets on DNA in order to
avoid a so-called ‘speed-selectivity paradox’ [34, 36, 37]. In one conformation, called the
recognition mode, the protein interacts stronger with DNA and the specific site can be
recognized only in this conformation. In this state the protein moves slowly along the DNA
chain, and it was argued that it is not efficient for the search. The acceleration can be achieved
by rapid transitioning into another conformational state, called the search mode, where the
protein interacts much weaker with the DNA chain, while sliding fast. But the application of
these ideas for p53 proteins was only partially successful: the predictions that the recognition
state has a higher free energy and conformational transitions are very fast were not fully
supported by experimental observations [6–8]. In addition, it was shown later that the speed-
selectivity paradox does not exist because it is an artifact of the continuum theoretical
description of the protein search process that cannot be utilized for all ranges of parameters
[19]. There were also other theoretical studies of the conformational fluctuations in the protein
search, but they either assumed the conformational equilibrium [12, 30], or utilized the
continuum approach for calculating dynamics properties, which could not fully describe all
search regimes [15, 36, 44].
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In this paper, we present a theoretical approach for analyzing the effect of conformational
transitions in the protein search for targets on DNA. It is based on the discrete-state stochastic
framework that was developed earlier in our group [19]. It provides explicit expressions for
dynamic properties of the system for all ranges of parameters, and the continuum description is a

Figure 1. Schematic pictures for various models of the protein search with
conformational transitions: (a) model with conformational transition only at the target;
(b) model with conformational transitions at all sites and sliding in the searching mode;
(c) model with conformational transitions at all sites and sliding in the recognition
mode; and (d) model with conformational transitions at all sites and sliding in both
searching and recognition modes.
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limiting case of our theoretical method [19]. This method has been already successfully extended
and generalized to account for various complex processes that are taking place during the protein
search [20, 39, 40, 45]. Applying this approach, we find that the conformational fluctuations can
significantly modify the protein search dynamics. Our theoretical calculations are also supported
by extensive Monte Carlo computer simulations.

2. Theoretical method and results

In order to understand the effect of conformational transitions during the protein search for
targets on DNA, the following strategy is employed. We consider a series of discrete-state
stochastic models of increasing complexity, which are shown in figure 1. By adding step by
step the relevant dynamic processes into the system, we can clarify better the role of the
conformational degrees of freedom and their relations to other processes in the protein search
dynamics.

2.1. Conformational transition only at the target

We start with a simplest model where the conformational transition can only take place at the
target site: it is presented in figure 1(a). The DNA molecule has L sites, and the protein can
diffuse along them with a rate u. At the site m the protein can undergo a conformational
transition with a rate kt into a configuration where it can bind DNA stronger, and this corre-
sponds to a specific binding to the target (see figure 1(a)). From any non-specific site on DNA,
the protein can dissociate into solution with a rate koff. Because the bulk diffusion for the protein
molecule is usually very fast, we assume that from the solution the protein can bind with equal
probability to any site on DNA with a total rate kon, i.e. the binding rate per site is just k Lon . It
is assumed also that the protein search always starts from the solution that we label as a state 0
(figure 1(a)). This model is stimulated by experimental observations on lac-repressor proteins
that frequently slide over the specific target before strongly binding to it [23].

The main idea of our theoretical approach is to view the protein search as a first-passage
process, and this leads to a direct method of evaluating all dynamic properties in the system
[19]. One can introduce a function Fn(t) as a probability density to reach the specific target at
time t for the first time if at t=0 the protein started from the state n
( = ¼ + ¼n m m m L0, 1, , , , 1,t ). Note that =n mt corresponds to the target state (see
figure 1(a)), while m corresponds to the state on DNA above the target. Our main goal is to
explicitly evaluate these first-passage probability functions because they fully describe the
search dynamics. It can be done by analyzing the temporal evolution of Fn(t) from the
backward master equations [19]
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At DNA boundaries and at the site m the dynamics is different, and the backward master
equations can be written as
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To solve the backward master equations (1)–(7), we use a method of Laplace transfor-
mations, with the corresponding transformations of the first-passage probability functions
defined as ò=

¥ -F s F t te dn n0
st˜ ( ) ( ) [19, 39, 40]. In this language, the backward master

equations are modified into simpler algebraic expressions
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The initial condition can be written simply as =F s 1mt
˜ ( ) .

The general solutions for Laplace transformations of the first-passage probability func-
tions can be expressed as
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where A, y and B are unknown parameters that will be explicitly determined by substituting
this ansatz into equations (8)–(12) [19]. After the corresponding substitutions, we obtain
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The parameter y is given by
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+ + - + + -

y
s u k s u k u

u

2 2 4

2
. 17off off

2 2( ) ( )
( )

The average protein search time to reach the target can be associated with a mean first-
passage time (MFPT), and it can be directly computed from the Laplace transforms via
[19, 39, 40]
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The final expression for the search time is given by
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One can see that in the limit of very fast conformational change, k 1t , the problem reduces
to a protein search with single conformation at each site that was already fully
analyzed [19, 39].

To describe the effect of conformational fluctuations we construct a dynamic phase
diagram that describes the protein search for all possible conditions. The results are presented
in figure 2. One can see that there are three dynamic search regimes depending on length of
DNA, the average scanning length l = u koff and the size of the target, assumed to be
equal to unity in our model. This dynamic behavior is similar to the protein search without
conformational transitions [19]. For large scanning lengths, l > L, the protein binds to the
DNA chain and it diffuses without dissociation until it goes into the target. Most of the time
the protein spends on DNA, performing a random walk along the sites. For intermediate
scanning lengths, l< < L1 , the protein binds to DNA, slides on average a distance λ and
dissociates into the solution if the target is not reached. This generally allows for the search to

Figure 2. Dynamic phase diagram for the protein search with conformational transition
only at the target. Search times as a function of the scanning length λ are shown for
different conformational transition rates kt. The scanning length is varied by changing
koff. The parameters used for calculations are the following: L=1000, =m L 2,
=u 103 s−1 and =k 10on

3 s−1.
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proceed faster because the protein is not trapped on DNA doing the slow random walk
motions. In both these dynamic regimes the dependence on the conformational transition rate
kt is relatively small, although decreasing the conformational rate kt increases the search time
since this step becomes the rate-limiting for the whole process. But in the regime wherel < 1
so that there is no sliding along the DNA, the conformational effects are much more
important. This is because the protein can only reach the target if it first binds to the site m.
From this site it has a probability = + +p k u k k2t t t off( ) to transition into the specific
configuration. Lowering the scanning length λ for the fixed diffusion rate u corresponds to
increasing the rate koff. Then the protein has to return many times to the site m before the
successful transformation into the target can happen, and this obviously slows down the
search.

It is important to note that the predictions of this model agree with experimental
observations on in vivo search dynamics of lac-repressor proteins [23]. It was shown in these
experiments that this transcription factor slides over the target without strong binding in 90%
of the cases. Our theoretical picture explains this by suggesting that the protein most of the
time not in the recognition mode, and the internal switching dynamics controls whether it
finally gets bound or not only above the target site.

We can also investigate how the protein search dynamics depends on the position of the
target m. This is illustrated in figure 3. Our results suggest that the position of the special site
is important only in the random-walk regime for l > L. For fast transitions into the specific
conformation there is a strong dependence on m/L, which decreases with lowering the rate kt.
This can be easily understood if we recall that for small transition rates the conformational
transition becomes the rate-limiting step in the whole search process, and the time to reach the
site m, which gives the dependence on the target location for large kt, becomes negligible.

Figure 3. Normalized search times as a function of the relative position of the
target along the DNA chain for different conformational transitions rates kt. For
calculations the following parameters were utilized: L=1000, =u 103 s−1, =k 10on

3

s−1 and l = =u k 10000off . The green curve corresponds to =k 1t s−1, the red
curve describes =k 100t s−1 and the blue curve is for  ¥kt .
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2.2. Conformational transitions at all sites and sliding in the search mode

In the next step, we consider a case where conformational transitions can take place at all sites
on DNA. The corresponding model is shown in figure 1(b). From the solution (state 0) the
protein can bind to DNA in the searching conformation, which we also label as a search mode
or chain 1, with the total rate kon. From the searching conformation on site i (  i L1 ) the
protein can dissociate back into the solution with the rate koff, or it can transition into the
recognition mode (labeled as a chain 2) on site i with a rate k1. The reverse transition is taking
place with a rate k2: see figure 1(b). While being in the search mode (chain 1) the protein can
diffuse with a rate u. But the sliding is not possible in the recognition mode (chain 2). Based
on available experimental observations, this model seems to be the most realistic in the
description of the protein search processes.

To obtain a dynamic description of this system, we again utilize the first-passage analysis
as explained in detail above. We introduce here a function F tn

j ( )( ) defined as first-passage
probability to reach for the first time the target, which is located at the site m on the
recognition chain, at time t if at t=0 the protein started at the site n of the chain j ( j= 1 for
the searching mode or j= 2 for the recognition mode). F t0 ( ) is the first-passage probability to
reach the target starting from the bulk solution (state 0). The temporal evolution of these
probabilities follows the backward-master equations, which can be solved using the Laplace
transformations, as explained for the model with conformational transition only at the target.
Finally, we obtain

=
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It can be shown that the parameter y is equal to
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The final expression for the mean search time is given by
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One can see that in the limit of very large transition rates into the search mode from the
recognition mode ( k 12 ) this expression reduces to the mean search time for the model
with the conformational transition only at the target as presented in equation (19).
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The important length scale for the protein search is the average scanning length λ. For
this model, it is defined as an average distance that the protein moves along the DNA chain in
any conformation, and it can be written as

l =
+

u

k

k

k k
. 26

off

2

1 2( )
( )

The physical meaning of this expressions is the following. Because there is no sliding in the
recognition mode, there is a conformational equilibrium at every site on DNA. Then for the
protein bound to DNA, the probability to be found in the search mode is equal to

+
k

k k
2

1 2
, and

the effective diffusion rate on DNA is equal to

=
+

u u
k

k k
. 27eff

2

1 2( )
( )

The scanning length is related to the diffusion and dissociation rates as l = u keff off , and
this leads to equation (26).

Dynamic phase diagrams for the model with conformational transitions and sliding in the
search mode are presented in figure 4. One can see that again there are three search regimes
depending on the relative values of the relevant length scales in the system. For l > L, the
protein is almost always on DNA in one of two possible conformations. For l< < L1 the
protein does multiple search cycles consisting of attaching to DNA in the search mode,
occasionally reversibly transitioning into the recognition mode and moving the average
distance λ along DNA in the search mode, and dissociating back into the solution. It is
important to note here that the protein can scan the region where the target is located, but it
might not find the target if it does not transition into the recognition mode. For l < 1, the
protein does not slide on DNA after binding to it, and the search process involves multiple

Figure 4. Dynamic phase diagram for the protein search with conformational transition
at all sites and sliding in the search mode. Mean search times as a function of the
scanning length are shown for different affinities K for the recognition conformational
states (defined as =K k k1 2). The scanning length λ (from equation (26)) is varied by
changing koff. The parameters used for calculations are the following: L=1000,

=m L 2, =k 10on
3 s−1, =u 103 s−1 and = =k k 10t1

3 s−1. Curves are theoretical
predictions, symbols are from simulations.
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associations to DNA, reversible conformation transitions, and dissociations back into the
solution.

Figure 4 also shows the effect of conformational transitions on the protein search
dynamics. If we define an affinity to the recognition conformation as =K k k1 2, then our
calculations show that increasing K slows down the search for not very small λ. This is
consistent with a so-called speed-affinity trade-off observed recently in computational and
experimental studies [9]. It was argued that the protein which is bound stronger to DNA in the
recognition mode has a slower target search kinetics. This is a physically reasonable result
since the protein is essentially trapped in the recognition state and this lowers its searching
efficiency [9]. However, figure 4 reveals also that speed-affinity trade-off is not observed for
all search regimes. The calculations indicate that for small scanning lengths the trend is
reversed: stronger affinity is associated with faster search kinetics. To understand this sur-
prising result, we note thatl < 1 corresponds to large dissociation rates koff. So the protein in
the search mode will be frequently removed into the solution, while in the recognition mode
this does not happen. As a result, it is faster to find the specific site if the recognition
conformations are preferred.

2.3. Conformational transitions at all sites and sliding in the recognition mode

Here we consider a different model in which the conformational transitions can take place at
all sites on DNA but the sliding is possible only in the chain 2 (the recognition mode). The
model is illustrated in figure 1(c). All transitions rates are the same as in the model on
figure 1(b), except that the diffusion rate in the recognition mode is now equal to w, and there
is no sliding in the search mode (u= 0).

Using the first-passage method outlined above, the dynamics of the protein search in this
model can be also calculated explicitly. The results are the following: the Laplace transform
of the first-passage probability function of starting in the solution is equal to

=
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The parameter y is found to be
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Then, the expression for mean search time can be written as
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For this model, we can estimate the average scanning length λ of the protein molecule on
DNA in any configuration using the following arguments. Generally, there is no
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conformational equilibrium between the states in the chain 1 and 2. The protein moves along
the DNA chain only in the recognition mode with the rate w, so the average scanning length
corresponds to the average sliding length on DNA while being only in the recognition mode.
It can be written as l = w koff,eff where koff,eff is the effective dissociation rate into the
solution. It can be shown using the first passage arguments that [47]

=
+ +

k
k k

k k k
. 33off,eff

2 off

1 2 off( )
( )

Then the average scanning length is given by

l =
+ +w

k

k k k

k
. 34

off

1 2 off

2

( ) ( )

In the limit of very large transition rates k2 this expression simplifies into the expected result
l = w koff , since in this case the unbinding rate from DNA is equal to koff. At another
limit, k 1off , the dissociation into the solution is essentially given just by the rate k2 and the
scanning length is equal to l = w k2 .

Figure 5 presents the dynamic phase diagram for the system with conformational tran-
sitions at all sites and sliding in the recognition mode. Here the mean search times as a
function of λ are calculated for various values of the conformational transition rates. Three
dynamic search regimes can be realized depending on the relative values of the relevant
length scales in the system (the size of DNA, the scanning length and the target size). In this
model, in contrast to the model with sliding only in the search mode (figure 1(b)), increasing
the affinity =K k k1 2 for the recognition state accelerates the search in all regimes, and the
speed-affinity trade-off is never observed. One should notice that this model is probably less
realistic in the description of the protein search dynamics.

Figure 5. Dynamic phase diagram for the protein search with conformational transition
at all sites and sliding in the recognition mode. Mean search times as a function of the
scanning length are shown for different affinities K for the recognition conformational
states (defined as =K k k1 2). The scanning length λ (from equation (34)) is varied by
changing koff. The parameters used for calculations are the following: L=100,

=m L 2, =k 10on
3 s−1, w=1 s−1 and =k 102

4 s−1. Curves are theoretical
predictions, symbols are from simulations.
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2.4. Conformational transitions at all sites and sliding in both recognition and search modes

Finally, we consider a general model with conformational transitions at all sites and with
sliding in both recognition and search states, as presented in figure 1(d). From the solution the
protein can bind to DNA only in the search conformation, in which it can slide with the
diffusion rate u. In the recognition mode, the protein slides with the rate w. The transition
rates k1 and k2 describe the conformational transitions between two protein–DNA binding
modes: see figure 1(d).

We were not able to solve this model for general sets of conditions, and for this reason it
was mostly analyzed using Monte Carlo computer simulations. At the same time, it should be
mentioned that our analytical solutions for simpler systems presented above in figures 1(b)
and (c) with sliding in only one of the conformational states can approximate the more general
model for corresponding conditions. For example, for w k2 the sliding motion in the
recognition mode is negligible in comparison with the conformation transition into the search
state, and our results for the model in figure 1(b) provide an excellent description for these
parameters (results are not shown). Also for +u k koff 1( ) we have the explicit expressions
for the dynamic properties of the system (results are also not shown). This is because in this
case the sliding in the search mode is small, and our analysis for the model in figure 1(c) can
be directly utilized. These arguments suggest that all dynamic features of the protein search
that we already discussed for simpler models are also valid for this more general system with
conformational fluctuations and diffusion in all conformational states.

Furthermore, explicit description of the dynamics of the protein search can be obtained in
the situation with the conformational equilibrium between the search and recognition modes.
The dynamic phase diagram for this case is shown in figure 6. In this equilibrium limit, one
can define the effective diffusion rate along the DNA chain, which is an average over two

Figure 6. Dynamic phase diagram for the protein search with conformational transition
at all sites and sliding in both recognition and search modes. Mean search times as a
function of the scanning length are shown for different affinities K for the recognition
conformational states (defined as =K k k1 2). The scanning length λ (from
equation (37)) is varied by changing koff. Symbols correspond to Monte Carlo
computer simulations, and curves are theoretical predictions as explained in the text.
The parameters used for calculations are the following: L=100, =m L 2, =k 10on

s−1, u=10 s−1, w=1 s−1 and =k 101
4 s−1.
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possible conformational modes
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with =K k k1 2. Then this system can be mapped into the problem of the protein search for
targets on DNA with a single non-specifically bound state with the diffusion rate ueff, the
dissociation rate koff,eff and the binding rate kon, which has been explicitly analyzed before
[19]. This is also identical to analytical results obtained for the model in figure 1(a) with

 ¥kt (see equation (19)). Theoretical predictions from this approximate description are
given in figure 6. There are three dynamic search regimes observed, as expected. One can also
see that our conformational equilibrium approximation works quite well in the regime of
l > L because in this case the protein is mostly bound to DNA in one of two possible
conformations. It has enough time to equilibrate between the search and the recognition
modes, justifying our assumptions. The approximation is reasonable even for intermediate
scanning lengths λ, and it clearly breaks for small λ, which corresponds to large koff, because
the system spends significant amount of time outside of DNA and the conformational
equilibrium cannot be reached fast.

In figure 6 the mean search times as a function of the length λ are presented for different
affinities =K k k1 2. The phenomenon of speed-affinity trade off is again observed here.
Shifting the conformational equilibrium to the recognition conformations (increasing K )
slows down the protein search. This is because the protein moves slowly in the recognition
states, and for large K it is effectively trapped in this slow mode, which makes the search
inefficient. Lowering K allows the protein to explore better different regions along the DNA
chain, accelerating the search kinetics.

3. Summary and conclusions

We developed a theoretical description that helped us to clarify the role of conformational
transitions during the protein search for targets on DNA. By utilizing the method of first-
passage processes dynamic properties for various systems with conformational fluctuations
were obtained explicitly. To clarify the contributions of the conformational fluctuations
several models with different contributions from conformational transitions and diffusional
sliding along the DNA chain were analyzed. Our calculations show that the presence of
conformations do not change the number of search regimes which is determined by the
relative values of DNA length, the average scanning length of the non-specifically bound
protein and the size of the target. But the conformational transitions might strongly affect the
search dynamics.

In the model where the conformational change is taking place only at the target,
increasing the conformational rate lowers the search time and it makes the dynamics less
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dependent on the position of the specific site. The dynamical behavior is more complex in the
system with the conformational transitions at all sites and the sliding in the search mode. It is
found that shifting the conformational equilibrium into the recognition mode, in which the
target can be recognized, slows down the search dynamics for intermediate and large values
of the average scanning length. This is known as the speed-affinity trade-off when larger
equilibrium constants into the recognition states is associated with larger mean search times,
and it is consistent with available experimental and computational observations [9]. However,
there is a surprising new result from our calculations, suggesting that for small scanning
lengths the trend is reversed and there will be no speed-affinity trade-off. It is argued that this
happens due to frequent dissociations into the solution from the search mode at these con-
ditions. Similar behavior is observed if the diffusion can happen only in the recognition state:
the larger affinity leads to faster search kinetics at all ranges of parameters. This can be
explained by noting that transition into the search mode will not help to explore more regions
on DNA, and thus staying in the recognition conformation is more beneficial for the search.
Finally, we analyzed the general model of the protein search with conformational fluctuations
and diffusion in all conformational states by using Monte Carlo simulations. It is shown that
when the system spends most of the time being on DNA in one of two possible conforma-
tions, the equilibrium between search and recognition modes can be achieved. In this case, the
dynamics can be successfully mapped into the protein search on DNA without conformational
transitions for which the explicit expressions for all dynamic properties are well known.

Although our theoretical analysis provides clear physical picture on the effect of con-
formational dynamics in the protein search for targets on DNA, one should note that our
approach is still rather simplified and many realistic processes are not taken into account.
They include the sequence dependence in the protein–DNA interactions, the role of DNA
conformations, the size of the specific regions and many others. It will be important to test the
proposed theoretical ideas in experiments as well as in more advanced theoretical and
computational studies.
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