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Abstract
The dynamics of motor protein molecules consisting of two subunits is
investigated using simple discrete stochastic models. Exact steady-state
analytical expressions are obtained for velocities and dispersions for any number
of intermediate states and conformations between the corresponding binding
states of proteins. These models enable us to provide a detailed description
and comparison of two different mechanisms of the motion of motor proteins
along the linear tracks: the hand-over-hand mechanism, when the motion of
subunits alternate; and the inchworm mechanism, when one subunit is always
trailing another one. It is shown that the proteins in the hand-over-hand
mechanism move faster and fluctuate more than the molecules in the inchworm
mechanism. The effect of external forces on dynamic properties of motor
proteins is also discussed. Finally, a quantitative method,based on experimental
observations for single motor proteins, is proposed for distinguishing between
two mechanisms of motion.

1. Introduction

Motor proteins, also called molecular motors, are active enzyme molecules that play a
fundamental role in most biological processes, but especially in cellular transport, motility,
cell division, and transcription [1–3]. Motor proteins, such as kinesins, dyneins, myosins,
polymerases, helicases, etc, function by stepping between equally spaced binding sites along
the rigid polar linear tracks (microtubules, actin filaments, DNA molecules), and the motion
is powered by the hydrolysis of adenosine triphosphate (ATP) or related compounds. The
mechanisms of the transformation of chemical energy of hydrolysis into the mechanical work
in motor proteins are not yet fully understood [3].

Recent experimental advances have allowed for the determination of structural and
dynamic properties of motor proteins with a high degree of precision at a single-molecule
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level [4–16]. Crystal structures suggest that many motor proteins have two domains elastically
coupled together, each capable of hydrolysing ATP and moving along the linear track [3, 5].
Two possible mechanisms of the coordinated motion of protein molecules with two motor
heads have been proposed [3]. In a hand-over-hand mechanism, at each step only one
motor head undergoes a sequence of mechanochemical transitions so that the motor subunits
alternate between trailing and leading positions at the beginning of the cycle. In this
mechanism the motor subunits are fully equivalent to each other. In contrast, according
to an inchworm mechanism, one motor domain is always ahead of the other one during
the cycle; i.e., the motor heads are not equivalent at all times. Experiments on single-
molecule fluorescently labelled myosins V, that step along the actin filaments, and on
kinesins, that move along microtubules, support the hand-over-hand mechanism for these
motor proteins [12, 13, 15, 16]. However, there are indications that dyneins probably utilize
the inchworm mechanism [17].

Successes in experimental studies have strongly stimulated many theoretical investigations
of mechanisms and dynamics of molecular motors [18–31]. Most theoretical work on
motor proteins follows two main directions. One approach utilizes the concept of thermal
ratchets [19, 28, 30]. According to this idea, the motor protein is viewed as a Brownian
particle that moves in two different periodic but asymmetric potentials, switching stochastically
between them. This method takes into account the internal structure and interactions between
different domains in protein molecules; however, the results are mainly numerical and
depend on the specific potentials used in calculations. An alternative approach is based
on multi-state discrete stochastic (chemical kinetic) models [18, 20–26, 29, 31]. In this
method, it is assumed that the motor proteins move sequentially between different molecular
conformations and states. The molecular motors are associated with particles that move along
one-dimensional periodic lattices with different forward and backward rates. The lattices
correspond to biochemical pathways for the motor proteins, while the sites in the period
describe the biochemical cycle when the protein molecule travels between two consecutive
binding sites. Using this mapping of the motion of a random walker and applying the
method of Derrida [32], exact analytical expressions for the mean velocities and dispersions
are derived for any number of intermediate states (i.e., for the period of any size) and for
different complexity of biochemical pathways [21–25]. It was demonstrated that this approach
allowed for the successful analysis of the full dynamics of single kinesin and myosin V
molecules [26, 29]. However, the weakness of this method is the fact that the internal structure
of motor proteins, namely, the motion and interactions of different subunits, is not taken into
account.

Determining how the different motor heads move relative to each other is critical for the
overall understanding of a motor protein’s dynamics and functions. Current experimental
methods with single-molecule fluorescent labels, that distinguish between the different types
of molecular motion, require a detailed knowledge of the protein structure, which is not
always available. In addition, the labelled proteins may change their biochemical properties in
comparison with the original species. However, it would be more advantageous to use simpler
less-invasive experimental methods along with better theoretical models to study the specific
mechanisms of molecular motors. In this article we investigate the dynamics of motor proteins
by developing a set of simple multi-state discrete stochastic models. In our approach the
motor proteins consist of two interacting particles that correspond to different motor subunits
in real enzymes. Explicit formulae for the velocities and dispersions are obtained for two
different mechanisms of motion. We suggest a method to distinguish between two possible
mechanisms by analysing time trajectories of single motor proteins obtained in optical-trap
experiments [6–11] in combination with the bulk biochemical kinetic data.
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Figure 1. General schematic view of periodic stochastic models of motor proteins consisting of
two subunits. Two parts of the molecular motor cannot occupy the same site and cannot be more
than m sites apart. The motor domain at site j can make a forward or backward step with the rate
u j or w j , correspondingly, if these transitions are allowed by another motor domain.

2. Theoretical approach

2.1. General model

Consider a motor protein molecule with two subunits that travels along the filament track. We
model this system as two identical interacting particles moving on a periodic one-dimensional
lattice, as shown in figure 1. There are N intermediate discrete states on a biochemical
pathway between two consecutive binding sites. In the simplest approximation, we assume
that the particles interact through hard-core exclusion, i.e., they cannot occupy the same site.
Also, the particles cannot run away from each other. If x1 and x2 are the positions of the motor
particles then

|x1 − x2| � m, (1)

where m is an integer that specifies how far apart two motor domains can be found in the
protein molecule. In the lattice the sites x = ±Nl (l = 0, 1, . . .) correspond to binding sites
of the molecular motor. The distance between two consecutive binding sites is d , which is
equal to 8.2 nm for kinesins and dyneins moving on microtubules and 36 nm for myosins V
and VI travelling along the actin filaments [1–3].

The particle at site j moves forward (backward) with the rate u j (w j ) if the site j + 1
( j − 1) is available and the move does not violate the condition (1): see figure 1. Because of
periodicity the transition rates are related, u j±Nl = u j and w j±Nl = w j for l = 0, 1 . . . and
0 � j � N − 1. The dynamic properties of motor proteins are specified by the drift velocity

V = V ({u j , w j }) = lim
t→∞

d

dt
〈x(t)〉, (2)

and dispersion (or diffusion constant)

D = D({u j , w j }) = lim
t→∞

1

2

d

dt
[〈x2(t)〉 − 〈x(t)〉2], (3)

where x(t) is the position of the centre of mass of the protein molecule at time t . It is convenient
to express the degree of fluctuations of the molecular motor in terms of a dimensionless function
called randomness [4]

r = 2D

dV
. (4)

This function sets bounds on the number of rate-limiting biochemical transitions and thus yields
important information about the mechanism of a motor protein’s processivity [8, 23, 26].
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Figure 2. The general picture of the hand-over-hand mechanism for the motor proteins with two
heads. Each motor moves along its own discrete lattice. While the trailing grey head jumps, the
black leading head does not move. The distance between the neighbouring binding sites for each
subunit is 2d. Arrows indicate the allowed transitions.

The motor proteins in experiments and in the cellular environment frequently work
against external loads [1–3]. External forces modify the transition rates in the following
way [21–25]:

u j (F) = u j(0) exp

(
−θ+

j Fd

kBT

)
, w j(F) = w j (0) exp

(
+

θ−
j Fd

kBT

)
, (5)

where
∑N−1

j=0 (θ+
j + θ−

j ) = 1, and θ±
j are load-distribution factors that specify how the external

load changes the energy activation barriers for the biochemical transitions from the state j .
The dynamic properties of the motor proteins with two domains depend on the specific

mechanism of the motion. Below we consider in detail the hand-over-hand and the inchworm
mechanisms.

2.2. Hand-over-hand mechanism

In this mechanism, the trailing subunit makes N intermediate steps and becomes the leading
particle, as shown in figure 2. Then the next particle makes N transitions. During the cycle
each head advances the distance 2d so the centre of mass of the protein molecule moves only
the distance d . This mechanism then can be viewed as a motion of two particles on periodic
parallel one-dimensional lattices, where the distance between neighbouring binding sites is
2d . Because the particles are identical, this picture is easily mapped into the motion of the
single particle (centre of mass) on the original one-dimensional lattice, for which the dynamics
is well understood [32, 21].

At large times the exact expression for the drift velocity is given by [32, 21]

Vhoh = d

(
1 −

N−1∏
j=0

w j

u j

)/
RN , (6)

and

RN =
N−1∑
j=0

r j , r j = u−1
j

[
1 +

N−1∑
k=1

j+k∏
j+1

wi

ui

]
. (7)

The corresponding expression for dispersion can be written as [32, 21]

Dhoh = d

N

(
dUN + V SN

R2
N

− (N + 2)V

2

)
, (8)
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Figure 3. Two possible configurations for the inchworm mechanism of the motion with m = 2. The
black particle is always leading. The allowed transitions are indicated by arrows. The parameter l
labels different binding sites.

where the auxiliary functions are

SN =
N−1∑
j=0

s j

N−1∑
k=0

(k + 1)rk+ j+1, UN =
N−1∑
j=0

u jr j s j , (9)

and

s j = u−1
j

[
1 +

N−1∑
k=1

j−k∏
j−1

wi+1

ui

]
. (10)

It can also be demonstrated that in this mechanism rhoh > 1/N for any set of transitions rates
{u j , w j } [8, 23, 26].

2.3. Inchworm mechanism

Now consider the inchworm mechanism of the motion of the motor proteins with two subunits.
In this mechanism one particle is always leading the other one, as shown in figure 3. In the
simplest approximation, we discuss only the case m = 2 in equation (1), i.e., the two motor
particles can only be found on two nearest-neighbour sites or next-nearest-neighboursites: see
figure 3.

To determine the dynamic properties of motor proteins in this model we develop a method
that generalizes the original Derrida’s approach [32, 23, 24]. The first step is to introduce
Pj,k(l, t) which is the probability of finding the trailing subunit of the motor protein molecule
in state j and the leading subunit in state k (k = j + 1 or j + 2) with the trailing head at site
l at time t (see figure 3). Here the parameter l labels the motor binding sites. Between two
binding sites there are N intermediate protein states, labelled by j = 0, 1, . . . , N − 1. The
time evolution of this probability is governed by Master equations for 1 � j < N − 1:

dPj, j+1(l, t)

dt
= u j−1 Pj−1, j+1(l, t) + w j+2 Pj, j+2(l, t) − (u j+1 + w j)Pj, j+1(l, t)

dPj, j+2(l, t)

dt
= u j+1 Pj, j+1(l, t) + w j+1 Pj+1, j+2(l, t) − (u j + w j+2)Pj, j+2(l, t).

(11)

The Master equations are slightly different for j = 0,

dP0,1(l, t)

dt
= uN−1 PN−1,1(l − 1, t) + w2 P0,2(l, t) − (u1 + w0)P0,1(l, t)

dP0,2(l, t)

dt
= u1 P0,1(l, t) + w1 P1,2(l, t) − (u0 + w2)P0,2(l, t).

(12)
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Similarly, for j = N − 1 we have

dPN−1,0(l − 1, t)

dt
= uN−2 PN−2,0(l − 1, t) + w1 PN−1,1(l − 1, t)

− (u0 + wN−1)PN−1,0(l − 1, t)
dPN−1,1(l − 1, t)

dt
= u0 PN−1,0(l − 1, t) + w0 P0,1(l, t)

− (uN−1 + w1)PN−1,1(l − 1, t).

(13)

Because of the conservation of probability, we require

+∞∑
l=−∞

N−1∑
j=0

[Pj, j+1(t) + Pj, j+2(l, t)] = 1 for all t . (14)

Next, following Derrida’s method [32], we define auxiliary functions

B j, j+1(t) ≡
+∞∑

l=−∞
Pj, j+1(l, t), B j, j+2(t) ≡

+∞∑
l=−∞

Pj, j+2(l, t), (15)

and

C j, j+1(t) ≡
+∞∑

l=−∞
( j + Nl)Pj, j+1(l, t),

C j, j+2(t) ≡
+∞∑

l=−∞
( j + Nl)Pj, j+2(l, t).

(16)

Using the Master equations (11) we derive

d

dt
B j, j+1(t) = u j−1 B j−1, j+1(t) + w j+2 B j, j+2(t) − (u j+1 + w j)B j, j+1(t),

d

dt
B j, j+2(t) = u j+1 B j, j+1(t) + w j+1 B j+1, j+2(t) − (u j + w j+2)B j, j+2(t);

(17)

and

d

dt
C j, j+1(t) = u j−1C j−1, j+1(t) + w j+2C j, j+2(t) − (u j+1 + w j )C j, j+1(t)

+ u j−1 B j−1, j+1(t)
d

dt
C j, j+2(t) = u j+1C j, j+1(t) + w j+1C j+1, j+2(t) − (u j + w j+2)C j, j+2(t)

+ w j+1 B j+1, j+2(t).

(18)

In the limit of t → ∞, again following Derrida’s suggestions [32], we introduce the
ansatz

B j,k(t) → b j,k, C j,k(t) − a j,kt → Tj,k . (19)

Note that the parameters b j,k, a j,k and Tj,k are periodic, i.e., b j,k = b j+N,k+N , a j,k = a j+N,k+N

and Tj,k = Tj+N,k+N . Now define two new functions,

f (1)

j−1 ≡ w j b j, j+1 − u j−1b j−1, j+1, f (2)

j+1 ≡ w j+2b j, j+2 − u j+1b j, j+1. (20)

At steady state dB j,k(t)
dt = 0, and equations (17) transform into

0 = u j−1b j−1, j+1 + w j+2b j, j+2 − (u j+1 + w j)b j, j+1,

0 = u j+1b j, j+1 + w j+1b j+1, j+2 − (u j + w j+2)b j, j+2.
(21)
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Substituting (20) into these equations, we obtain

f (1)

j = w j+1b j+1, j+2 − u j b j, j+2 = f0,

f (2)
j+1 = w j+2b j, j+2 − u j+1b j, j+1 = f0,

(22)

where f0 is a constant. Then it can be shown that f (1)

j = f (1)

j−1 = f0 = f (2)

j = f (2)

j+1. This
leads to the following expression for b j,k:

b j, j+1 = − f0

u j+1
+

w j+2

u j+1
b j, j+2 = − f0

u j+1

[
1 +

w j+2

u j

]
+

w j+1w j+2

u j u j+1
b j+1, j+2,

b j, j+2 = − f0

u j
+

w j+1

u j
b j+1, j+2 = − f0

u j

[
1 +

w j+1

u j+2

]
+

w j+1w j+3

u j u j+2
b j+1, j+3.

(23)

Solving these equations by iteration, and using the periodicity and the normalization
condition,

N−1∑
j=0

(b j, j+1 + b j, j+2) = 1, (24)

we finally derive

b j,k = r j,k

RN
, RN =

N−1∑
j=0

[r j, j+1 + r j, j+2], (25)

where

r j, j+1 = 1

u j+1

{
1 +

N−1∑
k=1

j+k−1∏
i= j

(
wi+1wi+2

ui ui+2

)
+

w j+2

u j

[
1 +

N−1∑
k=1

j+k−1∏
i= j

(
wi+1wi+3

ui+1ui+2

)]}
,

r j, j+2 = 1

u j

{
1 +

N−1∑
k=1

j+k−1∏
i= j

(
wi+1wi+3

ui+1ui+2

)
+

w j+1

u j+2

[
1 +

N−1∑
k=1

j+k−1∏
i= j

(
wi+2wi+3

ui+1ui+3

)]}
.

(26)

To determine the coefficients a j,k and Tj,k , the ansatz (19) is substituted into equations (18)
in the limit of large times. This yields the following equations:

0 = u j−1a j−1, j+1 + w j+2a j, j+2 − (u j+1 + w j)a j, j+1,

0 = u j+1a j, j+1 + w j+1a j+1, j+2 − (u j + w j+2)a j, j+2.
(27)

Also the parameters Tj,k must satisfy

a j, j+1 = u j−1Tj−1, j+1 + w j+2Tj, j+2 − (u j+1 + w j)Tj, j+1 − u j−1b j−1, j+1,

a j, j+2 = u j+1Tj, j+1 + w j+1Tj+1, j+2 − (u j + w j+2)Tj, j+2 − w j+1b j+1, j+2.
(28)

Comparing equations (27) with equations (21) we conclude that a j,k = Ab j,k. The coefficient
A can be found using the normalization condition (24) and it is equal to

A =
N−1∑
j=0

u jr j, j+2 − w j r j, j+1

RN
= N

1 − ( ∏N−1
j=0

w j

u j

)2

RN
. (29)

To calculate the coefficients Tj,k we introduce another set of auxiliary functions

y(1)

j+1 ≡ w j+2Tj, j+2 − u j+1Tj, j+1, y(2)

j−1 ≡ w j Tj, j+1 − u j−1Tj−1, j+1. (30)

Then equations (28) can be rewritten in the following form:

a j, j+1 = y(1)

j+1 − y(2)

j−1 + u j−1b j−1, j+1,

a j, j+2 = y(2)
j − y(1)

j+1 − w j+1b j+1, j+2.
(31)
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As shown in [23, 24], these equations are solved to yield the functions y(1)

j and y(2)

j

y(1)
j = −a j−1, j+1 +

A

N

(
1 +

N−1∑
i=0

(i + 1)[b j+i, j+i+1 + b j+i, j+i+2]

)
+ C1,

y(2)

j = u j b j, j+2 +
A

N

[
N−1∑
i=0

(i + 1)b j+i+1, j+i+2 + b j+i+1, j+i+3

]
+ C2,

(32)

where the coefficients C1 and C2 are arbitrary constants that cancel in the final expression for
dispersion. Then the final expressions for Tj,k are found to be [23, 24]

Tj, j+1

[
1 −

(
N−1∏
j=0

w j

u j

)2]
= −1

u j+1

[
y(1)

j+1 +
N−1∑
k=1

y(1)

j+k+1

j+k−1∏
i= j

(
wi+1wi+2

ui ui+2

)

+
w j+2

u j

(
y(2)

j +
N−1∑
k=1

y(2)
j+k

j+k−1∏
i= j

(
wi+1wi+3

ui+1ui+2

))]
;

Tj, j+2

[
1 −

(
N−1∏
j=0

w j

u j

)2]
= −1

u j

[
y(2)

j +
N−1∑
k=1

y(2)

j+k

j+k−1∏
i= j

(
wi+1wi+3

ui+1ui+2

)

+
w j+1

u j+2

(
y(1)

j+2 +
N−1∑
k=1

y(1)

j+k+2

j+k−1∏
i= j

(
wi+2wi+3

ui+1ui+3

))]
.

(33)

For simplicity the trailing subunit is chosen as a marker for derivation of the explicit
expressions for the drift velocity and dispersion. It can be shown that the same results are
obtained if the centre of mass is used. The position of this particle at any time is given by

〈x(t)〉 = d

N

∞∑
l=−∞

N−1∑
j=0

( j + Nl)[Pj, j+1(l, t) + Pj, j+2(l, t)]

= d

N

N−1∑
j=0

[C j, j+1(t) + C j, j+2(t)]. (34)

Utilizing this result along with the Master equations (11) we get

d〈x(t)〉
dt

= d

N

∞∑
l=−∞

N−1∑
j=0

( j + Nl)[u j−1 Pj−1, j+1(l, t)

− w j Pj, j+1(l, t) + w j+1 Pj+1, j+2(l, t) − u j Pj, j+2(l, t)]. (35)

Then the average drift velocity (2) has a simple form V = d
N A where the function A is given

by equation (29). The final expression for the velocity is

V = d

[
1 − (

∏N−1
j=0

w j

u j
)2

]
RN

. (36)

A similar approach can be used to determine the dispersion, which can be done with the
help of the following equation:

〈x2(t)〉 = d2

N2

+∞∑
l=−∞

N−1∑
j=0

( j + Nl)2[Pj, j+1(l, t) + Pj, j+2(l, t)]. (37)

The time evolution of this quantity, again applying the Master equations (11), is given by

d〈x2(t)〉
dt

= 2

(
d

N

)2 N−1∑
j=0

[
u j C j, j+2(t) − w j C j, j+1 +

1

2
(u j B j, j+2 + w j B j, j+1)

]
. (38)
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Then after some algebra the expression for dispersion is written as

D =
(

d

N

)2 N−1∑
j=0

[
u j Tj, j+2 − w j Tj, j+1 +

1

2
(u j b j, j+2 + w j b j, j+1) − A(Tj, j+1 + Tj, j+2)

]
. (39)

And using the definition (3) we obtain the final formula:

D = d

N

(
dUN + V SN

R2
N

− N + 2

2
V

)
, (40)

where

UN =
N−1∑
j=0

[
s2( j)u jr j, j+2 + s1( j)

A

N
(RN − Nr j−1, j+1)

]
,

SN =
N−1∑
j=0

(s1( j) + s2( j − 1))

N−1∑
i=0

(i + 1)[r j+i, j+i+1 + r j+i, j+i+2],

s1( j) = 1

u j

[
1 +

N−1∑
k=1

j−k+1∏
i= j

wi−1wi

ui−2ui−1
+

w j−1

u j−2

(
1 +

N−1∑
k=1

j−k+1∏
i= j

wi−2wi

ui−3ui−1

)]
,

s2( j) = 1

u j

[
1 +

N−1∑
k=1

j−k+1∏
i= j

wiwi+2

ui−1ui+1
+

w j+2

u j+1

(
1 +

N−1∑
k=1

j−k+1∏
i= j

wiwi+1

ui−1ui

)]
.

(41)

In this mechanism the bounds on the randomness parameter r can be estimated by
calculating the dynamic properties for the simple limiting case when u j = u and w j = 0
for all j . Then equations (25), (26) and (36) yield

RN = 2N

u
, Vinch = d

u

2N
, (42)

while for dispersion we get from equations (40) and (41)

SN = 2N2(N + 1)

u2
, UN = 3N

2u
, Dinch =

(
d

N

)2 u

8
. (43)

This analysis leads to r = 1/2N , which is the smallest possible value for this parameter. For
any other set of transition rates {u j , w j } the velocity is always smaller and the dispersion is
larger, giving the general inequality for the inchworm mechanism

rinch � 1

2N
. (44)

Although we considered here only the case of m = 2, the method can be extended to
include the inchworm models where the particles can be found more than two states apart.

2.4. Comparison of two mechanisms

The existence of exact analytical expressions for the dynamic properties of motor proteins
with two heads in the hand-over-hand and the inchworm mechanisms allows us to analyse and
compare these mechanisms very efficiently.

Consider first the simplest N = 1 models. Then the average velocity and dispersion for
the hand-over-hand mechanism is given by

Vhoh = d(u − w), Dhoh = d2(u + w)/2, (45)

The corresponding expressions for the inchworm mechanism can be obtained from
equations (25), (26), (36), (40) and (41)

Vinch = d(u − w)/2, Dinch = d2(u + w)/8. (46)
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Figure 4. Force–velocity curves for N = 2 model with u0 = 10 s−1, u1 = 100 s−1, w0 = 1 s−1,
w1 = 10 s−1, θ+

0 = θ−
0 = θ+

1 = θ−
1 = 0.25 and d = 8.2 nm. The solid line describes the

hand-over-hand mechanism, while the dashed line corresponds to the inchworm mechanism.

Thus the mean velocity in the inchworm model is only half of the velocity in the hand-over-hand
mechanism, while the inchworm dispersion is only a quarter of the hand-over-hand value.

A more interesting case is N = 2 models where the average velocity and dispersion for
the hand-over-hand mechanism are [32, 20, 21]

Vhoh = d(u0u1 − w0w1)/σ, Dhoh = 1
2 d2[(u0u1 + w0w1) − 2(Vhoh/d)2]/σ, (47)

where σ = u0 + u1 + w0 + w1. For the inchworm mechanism the expression for the mean
velocity can be written as

Vinch = d
(u0u1)

2 − (w0w1)
2

2σ(u0u1 + w0w1) + (u0w0 − u1w1)(u0 + w0 − u1 − w1)
, (48)

while the explicit formula for dispersion is very bulky and it will not be presented here. Instead,
we analyse the dependence of the dynamic properties of motor proteins on external forces using
equations (5).

For illustration, the force–velocity curves for different mechanisms are presented in
figure 4. It can be seen that the velocity for the inchworm mechanism is always smaller
then the corresponding curve for the hand-over-hand mechanism, although the stall forces are
the same. This can be explained by recalling that the stall force is a thermodynamic parameter
for the sequential chemical kinetic models [21]. It is equal to the free energy difference between
two consecutive binding sites divided by the step size d . Both the free energy difference and
the step size are the same for the hand-over-hand and the inchworm mechanism, and this leads
to the same value of the stall force.

The properties of dispersions for two mechanisms at different external loads, as shown
in figure 5, are similar to the mean velocities. The particles that move via the inchworm
mechanism fluctuate much less than the motor proteins utilizing the hand-over-hand method.
This behaviour is expected since one of the motor subunits lowers the stochastic fluctuations
of another motor head in the inchworm mechanism.

It is also interesting to compare the dimensionless function randomness for each
mechanism: see figure 6. These results suggest that the motor proteins in the inchworm
mechanism move more slowly and fluctuate less than the particles in the hand-over-hand
mechanism, but the relative decrease in the fluctuations is larger than the relative lowering of
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Figure 5. Dispersion as a function of external loads for different mechanisms of the motion.
The solid line describes the hand-over-hand mechanism, while the dashed line corresponds to the
inchworm mechanism. The parameters are the same as in figure 4.
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Figure 6. Randomness at different external forces. The solid line describes the hand-over-hand
mechanism, while the dashed line corresponds to the inchworm mechanism. The parameters are
the same as in figure 4.

the average speed. This observation, that is correct for any N , is very important and it can
be used for the experimental discrimination between different mechanisms of motor protein
motility.

We propose the following procedure to determine the mechanism of the motion of
motor proteins using only experimental measurements. First, from the independent bulk
biochemical kinetic experiments determine the number of rate-limiting intermediate states.
This information provides the size of the period, i.e., the parameter N . Second, from the high-
precision single-molecule trajectories extract the velocity and dispersion for different (ATP)
and different external forces. Such data can be obtained from the single-molecule optical
trap experiments [6–11]. In the final step, analyse the randomness. If for some system this
procedure yields r < 1/N , and the known number of intermediate states is N , it indicates that
the motor protein cannot move by the hand-over-hand mechanism. However, for r > 1/N
both mechanisms are still possible.
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3. Summary and conclusions

The dynamics of motor proteins that move along the linear molecular tracks is discussed by
taking into account the molecular structure and analysing in detail two possible mechanisms of
motility. The motor proteins are viewed as two interacting particles that correspond to different
motor domains in many conventional molecular motors [3]. The explicit expressions for the
velocity and dispersion are obtained for the hand-over-hand mechanism, when the motor heads
pass each other in the alternate fashion, and for the inchworm mechanism, when one motor
domain is always ahead of the other one.

The exact calculation of the dynamic properties of molecular motors in the hand-over-
hand mechanism is performed by mapping the dynamics of two particles into the one-particle
system, for which the dynamic properties are known exactly. It shows that in this case the
dynamics is identical to the motion of the single free motor domain on the same biochemical
pathway. The situation is very different for the inchworm mechanism. In this case we derived
the exact analytic expressions for the velocity and dispersion by generalizing the single-particle
Derrida’s method [32, 21, 23, 24] to the system with two interacting particles.

Comparing the dynamics of molecular motors in two different modes, we conclude that the
proteins in the inchworm mechanism move more slowly and fluctuate less than the particles
in the hand-over-hand mechanism. Our results also indicate that the relative decrease in
dispersion, expressed via the randomness parameter, is smaller for the inchworm mechanism.
We suggest using this observation for the analysis of experimental data on motor proteins. The
method of possible discrimination between two mechanisms of motor protein motility based
on experimental observations is presented. In addition, the effect of external forces on the
dynamic properties of molecular motors in the two mechanisms is also discussed.

The dynamic properties of motor proteins that move through the inchworm mechanism
are obtained via the two-particle calculations. However, the average velocity and dispersion
could also be obtained by mapping the system with two motor domains into the system with
only one particle, for example, the centre of mass of the molecule. In general, the inchworm
model where the distance between the individual motor domains is not larger than m sites can
be mapped into the motion of a single particle on m − 1 parallel biochemical pathways, for
which the dynamic properties are known exactly [25].

Our analysis of motor protein dynamics is rather very simplified since we considered
molecules in which subunits interact only through the hard-core exclusion potential. However,
the heads in motor proteins coordinate their motion and thus interact much more strongly than
might otherwise be expected [3, 31]. It will be interesting to investigate the motor proteins
with more realistic interactions between the subunits. The theoretical method used here seems
capable of investigating more realistic systems of molecular motors.
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