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Abstract.  To mimic the collective motion of interacting molecular motors, 
we propose and discuss an open two-lane symmetrically coupled interactive 
TASEP model that incorporates interaction in the thermodynamically consistent 
fashion. We study the eect of both repulsive and attractive interaction on the 
system’s dynamical properties using various cluster mean field analysis and 
extensive Monte Carlo simulations. The interactions bring correlations into the 
system, which were found to be reduced due to the side motion of particles. 
We produce the steady-state phase diagrams for symmetrically split interaction 
strength. The behavior of the maximal particle current with respect to the 
interaction energy E is analyzed for dierent coupling rates and interaction 
splittings. The results suggest that for strong coupling and large splittings, the 
maximal flow of the motors occurs at a weak attractive interaction strength 
which matches with the known experimental results on kinesin motor protein.

Keywords: driven diusive systems, exclusion processes, molecular motors, 
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1.  Introduction

Molecular motors or motor proteins are the nanomachines that play a crucial role in all 
vital functions of a cell such as cell division, cell locomotion, cell motility, cargo trans-
port along the filaments, etc [1–6]. During intracellular transport, they function in a 
team and drive the cargo transport along linear cytoskeletal filaments by transforming 
chemical energy, typically derived from ATP hydrolysis, into the mechanical energy 
[6]. Moreover, external energy suppliers can also support motor proteins’ movement 
by generating electro-potential gradient [4, 5]. Uncovering the mechanisms of motor 
proteins has been a subject of multiple studies. In the last two decades, various single-
molecular studies, in vivo and in vitro experiments as well as theoretical approaches, 
have suciently probed the mechanochemical and dynamic properties of motor proteins 
[4, 5, 7]. These single molecular level studies assure that the mechanism of molecular 
motors can not be fully explained without taking into account the reversibility of asso-
ciated biochemical processes according to the fundamental laws of physics. Although 
these studies have provided a good insight over the properties of motor proteins, the 
collective behavior of motor proteins, which generally work in a team, needs yet to be 
well explored [5, 7, 8].

The recent experiments on microtubule-bound kinesin motor proteins indicate that 
they interact with their neighbors with some energy estimated to be weakly attractive 
(1.6± 0.5kBT  ) [9, 10]. The similar interactions can also be assumed to exist among 
other motor proteins. Such mutually attractive interactions might modify the coordi-
nation mechanism of motor proteins as well as the various chemical transitions such 
as hydrolysis of ATP, association and dissociation of motor protein from the track etc 
occurring at the single molecular level highlighting the important role of interactions on 
motor proteins’ dynamics [5]. The multi-particle dynamics on non-equilibrium systems 
in physics, chemistry as well as in biology can be well replicated by the minimal model 
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among the class of driven diusive system, totally asymmetric simple exclusion process 
(TASEP) [11–14]. Several variants of open and closed TASEP’s have been utilized 
to analyze the collective dynamics of interacting molecular motors [15–20], but these 
studies were phenomenological and did not take into account the eect of interactions 
on microscopic level properties of motor proteins.

Recently, the coordination among interacting molecular motors has been analyzed 
using a new variant of open one-lane TASEP [21, 26] that can completely describe 
the eect of interactions on the chemical transitions occurring at the single molecular 
level. The theoretical approaches in these studies suggested the important role of cor-
relations in the system. The optimal interaction strength for the maximal flow of the 
motors was found to be weakly repulsive which is in opposite regime of the interaction 
strength known through experiments [9]. Since the biochemical network of motor pro-
teins includes multiple pathways which give the possibility for the motors to change 
lane. The mechanism of motor proteins can be well understood if the interactions’ eect 
is observed on the various biochemical transitions of the motor proteins when they are 
moving collectively along the parallel cytoskeletal filaments [5].

In this paper, we consider the symmetric coupling in between two open parallel 
interacting TASEP lanes. The model can successfully capture the eect of inter as well 
as intra-lane interactions on the cooperative dynamics of motor proteins along linear 
filaments using fundamental thermodynamic way. We analyze the role of interactions 
and dierent coupling strengths on the steady-state phase diagrams, maximal particle 
current and correlations in the system using the various vertical cluster mean field 
theories and Monte Carlo simulations. Most importantly, we observe the eect of side 
motion and symmetry of interactions on the optimal interaction strength corresponding 
to the maximal current and relate the results with existing experimental predictions.

The paper is organized as follows. In section 2, we define our model and its govern-
ing dynamical rules. In sections 3.1 and 3.2, the non-equilibrium steady state (NESS) 
properties of the system are analyzed using dierent vertical cluster mean field theories. 
In section 4, we discuss the important results and analyze the role of side motion on 
cooperative mechanisms of interacting molecular motors. We also compare our theor
etical results with Monte Carlo simulations, experimental evidence, and 1-lane interact-
ing TASEP’s results. We finally conclude in section 5.

2. Model description

To mimic the transport of motor proteins along parallel filaments, we define our 
model by considering an open two-lane coupled lattice comprising of N × 2 sites, 
where N denotes the number of sites in each lane. Particles drift unidirectionally from 
the leftmost site of a lane to its rightmost site. Both first and last sites of each lane 
are connected with infinite reservoirs of particles. Particles obey the hard-core exclu-
sion principle that says no two particles can simultaneously occupy the same site 
(figure 1). Each sth site (1 � s � N) of a tth lane (t ∈ {1, 2}) is assigned an occupa-
tion variable τs,t ∈ {0, 1}, where τs,t = 1 (τs,t = 0) denotes the occupied (empty) state 
of the site.

https://doi.org/10.1088/1742-5468/aa75e1
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Moreover, the nearest neighbor interaction of particles within the lane (intra-lane) 
and among particles of opposite lanes (inter-lane) are considered. It is assumed that an 
energy E is associated with a bond holding two particles together and the intra-lane 
hopping rates depend on whether the bond is broken or created [21]. We represent the 
rates associated with creating and breaking of pair of bonds by q and r, respectively. 
The intra-lane interactions are completely thermodynamically consistent. In the inter-
lane interactions, a particle at an sth site of one lane can hop to its vertically opposite 
site, provided it is empty. Let ω (0 � ω � 1) be the rate associated with a vertical trans
ition without taking into account the intra-channel interactions. Based on the break-
ing and making of horizontal bonds, the vertical transitions can occur from sixteen 
dierent configurations. Considering all the vertical transition rates namely six ω, four 
ωr, four ωq, one ωr2 and one ωq2 arising from the sixteen dierent configurations make 
the system dynamics quite complex. For simplicity, we assume the constant hopping 
rate ω which is dominating among all possible vertical rates. It can be thought of as 
the mean field approximation for all the configurations. Most importantly, in the case 
of lane changing of a particle with a rate ω, the horizontal transition rates in our model 
are modified keeping in view the fundamental thermodynamic concepts. However, it is 
assumed that the presence of the particle at the vertically opposite site of an sth site 
does not alter the intra-lane interactions. This approximation can be justified as there 
is no experimental evidence at present for such interactions of the particles in opposite 
lanes. The above considered dependency of the intra-lane interactions on the inter-lane 
transitions are not only limited to the case of motion of molecular motors but also 
applies to other transport processes such as vehicular trac [22–25].

According to the random-sequential update rules, a site (s, t) is randomly selected 
from a randomly chosen lane t. To understand all possible hoppings arising from intra 
as well as inter-lane interactions, it is assumed that there is a particle at the (s, t)th 
site and the next site, (s  +  1, t)th, is empty. For the case, when the latter site is occu-
pied, the particle can hop to (s, t′)th site (where t′ �= t), if it is empty, with a rate ω. 
At any infinitesimal small time step, a particle chosen for hopping is either isolated or 
a part of a cluster (non-isolated). Here, an isolated particle at the sth site means that 
its both leftmost and rightmost neighboring sites are vacant. Thus, whenever a particle 
shifts between its isolated and non-isolated states, the energy of the system and hence 
the hopping rates of the particle change. The dynamical rules in the bulk as shown in 
figure 2 (bulk rules) can be understood as follows. When τs,t′ = 1(0), an isolated particle 

Figure 1.  Schematic view of an open two-lane symmetrically coupled interacting 
TASEP model. Solid (black) and dotted (red) lattice represent lane 1 and lane 2, 
respectively. A filled circle denotes an occupied site whereas the absence of circle 
means an empty site. Arrows represent possible hoppings of the particles, whereas 
the crossed arrows mean there is no hopping.

https://doi.org/10.1088/1742-5468/aa75e1
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at the (s,t)th site hops to the next site with a rate q (q(1− ω)) to become non-isolated 
and with a rate 1 (1− ω), to become isolated. Whereas, a non-isolated particle at the 
(s,t)th site breaks its bond to become either isolated with a rate r (r(1− ω)) or non-
isolated with a rate 1 (1− ω) at the next site, when the vertically opposite site, (s, t′)
th, is occupied (empty). Further, if any horizontal hopping does not takes place the 
particle at (s,t)th site can shift to the vertically opposite empty site with a rate ω (figure 
2-Lane changing rules).

The eect of interactions have also been incorporated at the boundaries (figure 
2—entry and exit rules). A particle can enter from the left reservoir to an empty first 
site of a lane, to become either isolated with a rate α or non-isolated with a rate qα. 
Whereas, a non-isolated particle at Lth site leaves with a rate rβ in the presence of the 
particle at the opposite site, otherwise in the absence the rate is rβ(1− ω). In the case 
of an isolated particle at Lth site, the exit rate is β when the vertically opposite site is 
occupied, otherwise the hopping rate is β(1− ω). If the particle does not leave, it can 
shift its lane with a rate ω when τL,t′ = 0.

The hopping rates associated with the shifting from isolated to non-isolated state 
and vice-versa can be understood in terms of opposing chemical transition that leads 

to the relation q
r
= e

E
kBT [26]. Here, kBT  represents the thermodynamic energy, where 

kB and T are respectively, the Boltzmann constant and thermodynamic temperature. 
To manage the eect of interaction energy E on stepping rates q and r, a dimensionless 
splitting parameter θ (0 � θ � 1) is introduced which explicitly determines q and r as

q = e
θE
kBT , r = e

(θ−1)E
kBT .� (1)

Here, the rates q and r vary according to the strength of interaction energy E. For the 
case of attractive interaction (E  >  0), the bond making rate, q, is larger as compara-
tive to bond breaking rate, r. However, the reverse happens for repulsive interactions 
(E  <  0). For the special case, E  =  0, the model reduces to the original two-lane sym-
metrically coupled TASEP model [22]. When the interactions are repulsive, system’s 
dynamics can also represent vehicular trac flow, where a vehicle generally moves at a 

Figure 2.  The solid (black) and the dotted (red) lattice, respectively, reflect a 
portion of lane 1 and lane 2. The dotted open circles depict that the site can 
either be empty or occupied. The filled circles and the empty sites, respectively, 
indicate the presence and absence of particles. The transition rules for dierent 
possible hoppings in lane 1 given the configuration of lane 2 are shown and their 
corresponding rates are mentioned above and below the arrows.

https://doi.org/10.1088/1742-5468/aa75e1
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higher rate (r  >  1) if it is followed behind by an another vehicle. However, it generally 
slows down its speed (q  <  1) when a vehicle finds another vehicle in its following path 
[23].

3. Cluster mean field theory

Mean field analysis has worked as an important tool to explore the qualitative proper-
ties of interacting many-body systems. The simple mean field theory that neglects all 
correlations between the state variables works well for a system with zero or very weak 
interactions [24, 27]. Systems in which, a particle’s dynamics depend strongly upon its 
neighboring sites can be analyzed more appropriately using cluster mean field analysis 
that considers some correlation between the state variables [28–33]. A general n-cluster 
mean field approximation treats a cluster of n neighboring sites exactly. Here, any large 
cluster of size (say) k � n is factorized into the product of clusters of n sites with two 
neighboring clusters having (n  −  1) common sites. The inter-lane interactions in a two-
lane system can be analyzed by treating a (1-) vertical cluster made up of two vertically 
opposite sites exactly. Let us denote a 1-vertical cluster consisting of sth site of both 
the lanes by ξs = τs,tτs,t′, where t �= t′ ∈ {1, 2}. Based on the occupancy of the sth site 
of both the lanes, ξs can exist in one of the four possible states namely {0}, {1}, {2}, 
and, {3}. When both sites of ξs are occupied (empty), its state is {3} ({0}). Whereas, ξs 
is in state {1} or {2}, depending on the occupied state of lane 1 or lane 2, respectively 
(figure 3). Let Vi denote the probability of a 1-vertical cluster to be in state {i}, where 
i ∈ {0, 1, 2, 3}. Now, we define a n-vertical cluster to be a cluster consisting of n succes-
sive 1-vertical clusters. According to the system’s dynamics, the particle current in each 
lane is aected by the inter as well as intra-channel interactions and can be analyzed 
for any site in the bulk by considering a 4-vertical cluster (figure 2—bulk rules). Let 
Vijkl denote the probability of a 4-vertical cluster in state {ijkl}, where {i}, {j}, {k} and 
{l}, respectively, denote the states of first, second, third and fourth 1-vertical cluster. 
Considering all the eight possible hoppings as shown in configurations figures 2(a)–(d), 
the total bulk current for lane 1 can be expressed as

Jbulk =
∑

j={1,3}

∑
k={0,2}

(
1− (3− j)

2
ω

)[ ∑
i={0,2}

( ∑
l={0,2}

Vijkl + q
∑

l={1,3}

Vijkl

)

+
∑

i={1,3}

(
r

∑
l={0,2}

Vijkl +
∑

l={1,3}

Vijkl

)]
.

�

(2)

Figure 3.  Four possible states of a 1-vertical cluster in a two-lane system.

https://doi.org/10.1088/1742-5468/aa75e1
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Similarly a particle’s entry and exit dynamics can be analyzed using a 2-vertical cluster 
(figure 2). Based on the states of first and second vertical cluster, (say) {i} and {j}, 
respectively, a 2-vertical cluster can be found in sixteen dierent states denoted by 
{ij}, where i, j ∈ {0, 1, 2, 3} (see figure 4). Let Vij denote the probability of a 2-vertical 
cluster in state {ij}, then the particle current at the entry and exit sites for lane 1 can 
be written as

Jentr = α
∑

i,j={0,2}

Vij + qα
∑

i={0,2}
j={1,3}

Vij,
� (3)

Jexit = β
∑

j={1,3}

[(
1− (3− j)

2
ω

)
[(V0j + V2j) + r(V1j + V3j)]

]
.� (4)

One can obtain the similar expression of the particle current at the bulk and the bound-
aries for lane 2. Now, we determine the characteristics of the system by simplifying the 
current expressions using cluster mean field analysis.

3.1. 1-vertical cluster mean field theory (1-VCMFT)

The 1-vertical cluster mean field theory [22] treats a vertical cluster exactly but com-
pletely ignores the correlations between two neighboring vertical clusters. The mutu-
ally exclusive and exhaustive nature of the four states of a 1-vertical cluster implies

3∑
i=0

Vi = 1.� (5)

The probability of a 4-vertical cluster and 2-vertical cluster, under the 1-VCMFT 
approach, can be factorised as

Vijkl ≈ ViVjVkVl,� (6)

Vij ≈ ViVj.

Thus, the bulk current and the boundary currents expressions from equations (2)–(4) 
simplifies to

Jbulk = (V3 + (1− ω)V1)(1− ρ1)[(2− q − r)(ρ21 − ρ1) + 1],� (7)

Figure 4.  Sixteen possible states of a 2-vertical cluster in a two-lane system.

https://doi.org/10.1088/1742-5468/aa75e1
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Jentr = α(1− ρ1)(1− ρ1 + qρ1),� (8)

Jexit = β((1− ω)V1 + V3)(1− ρ1 + rρ1).

Here, ρ1 = V1 + V3 is the density of lane 1. The particle current from the above equa-
tions can be determined if the probability of each 1-vertical cluster is known. The mas-
ter equations for Vi’s, under the 1-VCMFT approach, can be written as

dV0

dt
=

2∑
i=1

[
[V0((1− ω)Vi + V3)− (1− ω)Vi(1− ρi)]

× [(2− q − r)(ρ2i − ρi) + 1]
]
,

�

(9)

dV1

dt
= [V0((1− ω)V1 + V3)− (1− ω)V1(1− ρ1)]

× [(2− q − r)(ρ21 − ρ1) + 1]

+ [V3(V0 + V1)− V1((1− ω)V2 + V3)]

× [(2− q − r)(ρ22 − ρ2) + 1] + ω(V2 − V1),

�

(10)

dV2

dt
= [V0((1− ω)V2 + V3)− (1− ω)V2(1− ρ2)]

× [(2− q − r)(ρ22 − ρ2) + 1]

+ [V3(V0 + V2)− V2((1− ω)V1 + V3)]

× [(2− q − r)(ρ21 − ρ1) + 1] + ω(V1 − V2),

�

(11)

dV3

dt
=

2∑
j=1
j �=i

2∑
i=1

[
Vj((1− ω)Vi + V3)− V3(1− ρi)

]

× [(2− q − r)(ρ2i − ρi) + 1].

�

(12)

Here, ρ2 = V2 + V3 is the density for lane 2. The above master equations at steady state 
reduces to

V3V0 = (1− ω)V1V2,� (13)

and V1 = V2.

It is noteworthy to mention that equation (13) is free from intra-lane interaction param
eters q and r and thus, it match exactly with the steady state conditions of the two 
channel symmetrically coupled TASEP model without interactions [22]. Additionally, 
it implies that ρ1 = ρ2 = ρ and combining it with the normalization condition, we get

V1 =

{
−V3+

√
V 2
3 +(1−ω)V3(1−V3)

1−ω
, ω �= 1

1−V3

2
, ω = 1.

� (14)

Now, the particle current can explicitly be expressed as a function of single-ordered 
parameter, V3, which for ω �= 1 implies

https://doi.org/10.1088/1742-5468/aa75e1
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Jbulk =
c(1− c− ω(1− V3))

(1− ω)3

[
(1− ω)2 + (2− q − r)

× (ω(1 + ω)V 2
3 + (1− ω(ω − 2c))V3 − c(1− ω))

]
,

�

(15)

Jentr =
α(1− c− ω(1− V3))

(1− ω)2

[
1− c(1 + q)− ω(1− (1 + q)V3)

]
,� (16)

Jexit =
βc

(1− ω)

[
1− c(1− r)− ω(1− (1− r)V3)

]
.� (17)

Here, c =
√

V3(1− ω(1− V3)).
For the case of strong coupling (ω = 1), the particle current can be computed sepa-

rately as the system has only 2 types of vertical clusters: fully filled and half filled. The 
non-existence of fully empty vertical cluster leads to zero particle current for a non-zero 
entrance rate, that is physically irrelevant [22]. Thus, the particle currents per channel 
are simplified to

Jbulk =
V3(1− V3)

8

[
(q + r)(1− V 2

3 ) + 2(1 + V 2
3 )
]
,� (18)

Jentr =
α(1− V3)

4

[
(1− V3) + q(1 + V3)

]
,� (19)

Jexit =
βV3

2

[
(1− V3) + r(1 + V3)

]
.� (20)

Alternatively, the above expressions of particle currents, for ω = 1, can also be obtained 
by mapping the proposed system into an eective single channel interacting TASEP 
system. The fully filled vertical clusters can be interpreted as particles, whereas the 
half-filled vertical clusters with the particle only at the upper and the lower site are, 
respectively, interpreted as holes of type A1 and A2. Then, the particle current and 
density per channel of the proposed system is related to the particle current, J *, and 
density, ρ∗ = V3, of the eective one-channel system by the following relations:

J =
J∗

2
, ρ =

(1 + ρ∗)

2
.

Note that if there is no interaction i.e. E  =  0, then A1 and A2 are identical, and the 
system is mapped into original single-channel TASEP model with entrance rate as α 
and exit rate as 2β.

Next, we derive the steady-state phase diagrams for intermediate as well as for 
strong coupling. When the bulk current dominates and remains unaected by the 
entrance and exit rates, the system attains the maximal current (MC) phase. In this 

phase, the condition ∂Jbulk∂V3
= 0 holds, which for ω �= 1 implies
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c(1− ω)2(2− q − r)(1− c− ω(1− V3))

×
[
1− 2c− 2ω(1− 4V3 + 2cV3) + ω2(8V 2

3 − 4V3(c+ 2) + 2c+ 1)
]

+
[
(1− ω)2 + (2− q − r)

(
ω(1 + ω)V 2

3 + (1− ω2 − 2cω)V3 − c(1− ω)
)]

×
[
2c2(1− ω(1− 2V3)− 2cω)− (1− ω(1− 2V3)(1− c− ω(1− V3)))

]
= 0,

�

(21)

and for ω = 1 yields

(2 + q + r)(1− 2V3) + (2− q − r)V 2
3 (3− 4V3) = 0.� (22)

The above equations can be solved for relevant root, V MC
3  which eventually provides 

V MC
1 , density, ρMC and maximal current, JMC.

For the low density (LD) phase, entrance current dominates the bulk dynamics. 
Thus, the continuity of current implies Jentr = Jbulk which gives

α =

{
(V3+(1−ω)V1)(1−(2−q−r)ρ(1−ρ))

(1+(q−1)ρ)
, ω �= 1

V3((q+r)(1−V 2
3 )+2(1+V 2

3 ))

2(1−V3+q(1+V3))
, ω = 1.

� (23)

The above equations can be utilized to calculate the relevant root, V LD
3 (α), which fur-

ther gives V LD
1 , the density, ρLD and the particle current in the LD phase. The second-

order continuous phase transition line between LD and MC phases can be found by 
substituting V1 and V3 from MC phase in the above equations.

For the case when exit current limits the bulk dynamics, the system attains the high 
density (HD) phase. V HD

3 , the density, ρHD and the particle current can be obtained 
using equation of continuity for the exit and bulk current that gives

β =




(1−ρ)(1−(2−q−r)ρ(1−ρ))
(1+(r−1)ρ)

, ω �= 1

(1−V3)((q+r)(1−V 2
3 )+2(1+V 2

3 ))

4(1−V3+q(1+V3))
, ω = 1.

� (24)

Additionally, the second-order continuous phase transition line between the HD and 
MC phases can be obtained from the above relations by substituting V3 = V MC

3  and 
ρ = ρMC from the MC phase.

The first order continuous phase transition line between LD and HD phases can be 
constructed from the condition, Jentr = Jexit, which gives the following relation between 
α and β:

α =




β(1+(r−1)ρHD)(V LD
3 +(1−ω)V LD

1 )

(1−ρHD)(1+(q−1)ρLD)
, ω �= 1

2βV LD
3 (1−V HD

3 +r(1+V HD
3 ))

(1−V HD
3 )(1−V LD

3 +q(1+V LD
3 ))

, ω = 1.
� (25)

3.2. 2-vertical cluster mean field theory (2-VCMFT)

In contrast to the 1-VCMFT, the 2-vertical cluster mean field theory (2-VCMFT) con-
siders the correlation and treats two neighboring vertical clusters exactly. The mutually 
exclusive and collectively exhaustive nature of 2-vertical cluster’s probabilities imply

https://doi.org/10.1088/1742-5468/aa75e1
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3∑
i=0

3∑
j=0

Vij = 1.� (26)

The definition of density together with the relation V1 = V2 under the Kolmogorov con-
sistency conditions for the given translational invariant system imply

∑
i={1,3}

3∑
j=0

Vij =
∑

i={1,3}

3∑
j=0

Vji =
∑

i={2,3}

3∑
j=0

Vij =
∑

i={2,3}

3∑
j=0

Vji = ρ.� (27)

Clearly,

Vi =
3∑

j=0

Vij and� (28)

3∑
j=0

Vij =
3∑

j=0

Vji, for i ∈ {0, 1, 2, 3}.� (29)

The probability of a 4-vertical cluster, Vijkl, under 2-VCMFT approximation, can be 
written as

Vijkl = Vi|jVjkVk|l,� (30)
where,

Vi|j =
Vij∑3
i=0 Vij

, Vk|l =
Vkl∑3
l=0 Vkl

.� (31)

Thus, the bulk current expression from equation (2) simplifies to

Jbulk =
∑

j={1,3}

∑
k={0,2}

(
1− (3− j)

2
ω

)(
Vjk

VjVk

)[ ∑
i={0,2}

( ∑
l={0,2}

VijVkl + q
∑

l={1,3}

VijVkl

)

+
∑

i={1,3}

(
r

∑
l={0,2}

VijVkl +
∑

l={1,3}

VijVkl

)]
.

�

(32)

Note that the entrance and exit current from equations  (3) and (4) remain intact 
under 2-VCMFT approximation as they are already in terms of 2-vertical cluster 
probabilities. Now, the dynamical properties of the system such as density, particle 
current can be obtained if all the 2-vertical cluster probabilities are known. Since 
there are sixteen unknown probabilities; it requires sixteen independent equations to 
find Vij’s. The master equation for V33, in terms of 4-vertical cluster probabilities, 
gives

https://doi.org/10.1088/1742-5468/aa75e1
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dV33

dt
= q(1− ω)[V0213 + V1213 + V0123 + V2123]

+ q[V0313 + V1313 + V0323 + V2323]

+ (1− ω)[V2213 + V3213 + V1123 + V3123]

+ [V2313 + V3313 + V1323 + V3323]

− r[2V3300 + V3320 + V3302 + V3322 + V3310 + V3301 + V3311]

− [V3301 + V3302 + V3321 + V3312 + V3323 + V3313 + 2V3303],

�

(33)

which, under 2-VCMFT approximation, in steady state reduces to

3∑
i=1
i �=k

2∑
j=1
j �=k

2∑
k=1

(
1− (3− i)

k
ω

)
VikVk3

ViVk

[(Vji + V3i) + q(V0i + Vki)]

=
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

V33V3i

V3Vi

[(Vik + Vi3) + r(Vi0 + Vij)] .

�

(34)

Similarly, the master equations for other fifteen 2-vertical cluster probabilities can be 
obtained (see appendix). Now, in totality, we have twenty-five equations among which 
a system of sixteen independent equations  can be chosen appropriately. One set of 
sixteen independent equations is equations (26), (27) and ((29) for i  =  3), (A.1)–(A.3), 
(A.5)–(A.9), (A.11) and (A.15). Although such highly non-linear system of equations can 
not be solved analytically, their numerical solution can be obtained as a function of 
parameter ρ.

We now derive the steady-state phase diagrams of the interactive system using cur
rent expressions obtained under 2-VCMFT analysis. For each value of q and r, there 
corresponds a density, ρMC (say) at which Jbulk is maximum and the system attains 
the maximal current phase. For ρ > ρMC, the bulk current is found to be equal to the 
exit current and the system reaches the exit dominated phase or high density phase. 
Similarly, for ρ < ρMC, the system enters into low density (LD) phase, and it gives the 
bulk current to be same as the entrance current. As entrance rate limits the bulk cur
rent, the phase is also said to be an entrance dominated phase.

The two-phase coexistence lines can be computed in a similar fashion as obtained 
for the 1-VCMFT approach. The second order continuous phase transition line sepa-
rating LD (HD) and MC phase is obtained by equating the particle current as well as 
density of both the phases. Similarly, the first order continuous LD–HD phase bound-
ary line is obtained by equating the entrance and exit current.

4. Results and discussion

In this section, we discuss the eect of dierent attractive and repulsive interaction 
strength as well as various coupling rates on boundary induced phase transitions, 
maximal particle current and correlations in the system using approximation theories 
discussed in the previous section. To find the best-suited theory for the interactive 
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system, we compared the results with extensive Monte Carlo simulations (MCS). We 
considered the system of 2000 lattice sites to avoid any finite size and boundary eects 
and adopted a random-sequential update algorithm. Each simulation was run over 
109–1010 time steps and first 20% of time steps were avoided to reach steady state. 
While computing the phase boundary lines, the density profiles and particle current 
were compared with a precision of 0.01.

Firstly, we would like to point out that in the absence of interactions both theor
etical approaches namely the 1-VCMFT and 2-VCMFT yield the same results which 
match exactly with the simulation results. Now, for a fixed coupling strength, we 
analyze the eect of attractive as well as repulsive interactions on the phase diagram 
(figure 5). As compared to simulations, for repulsive and weakly attractive interactions 
the 1-VCMFT approach works reasonably well but fails to predict the MC phase in 
the [0, 1]× [0, 1] phase plane of (α, β) for the case of stronger attractive interactions (see 
figure 5(d)). Whereas, the 2-VCMFT results are in good agreement with simulations 
for both types of interactions. Parallel to the case of single channel interactive TASEP 
[26], it is found that the interactions do not alter the topology of the phase diagram 
of a two-channel symmetrically coupled system. However, the quantitative changes 

Figure 5.  Stationary phase diagrams for interactive two-channel symmetrically 
coupled TASEP with coupling strength ω = 0.2 and splitting parameter θ = 0.5 
for : (a) E = −1.7kBT ; (b) E = −0.7kBT ; (c) E = 1.6kBT ; (d) E = 3kBT . Solid lines, 
dotted lines and markers, respectively represent the results of the 2-VCMFT, 
1-VCMFT and simulations.
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i.e. shifting in the location of triple points and phase transition lines are observed. In 
the case of repulsive interactions, the LD–HD and HD–MC phase transition lines shift 
downwards, while the LD–MC line moves rightwards which results in the enlargement 
of the LD region (figures 5(a) and (b)). The reason for the observed behavior is that 
repulsive interaction decreases the eective entrance rate (q  <  1) and increases the 
eective exit rate (r  >  1). However, the opposite happens in the case of attractive inter-
actions where the eective entrance rate increases (q  >  1) and the eective exit rate 
decreases (r  <  1). As a result, the LD region shrinks and the HD, MC phases dominate 
the phase diagram (figures 5(c) and (d)).

We now analyze the eect of side motion on the interactive TASEP’s phase dia-
gram by plotting the coordinates of the triple point for various interaction energy 
(figure 6). It is clear from figure 6 that the nature of α and β coordinates with respect 
to the interaction energy remains qualitatively the same under all coupling strengths. 
As interaction energy increases from repulsive to attractive, the 2-VCMFT approach 
complemented with simulations indicate that the α coordinate decreases monotoni-
cally and tends towards zero, thus implying the disappearance of LD region. Whereas, 
under the 1-VCMFT analysis, the qualitative nature of the α coordinate remains same 
but saturates to a non-zero value (figure 6(a)). The β coordinate of the triple points 
obtained from the 1-VCMFT analysis increases monotonically with respect to inter-
action energy, while its behavior is non-monotonous under 2-VCMFT analysis and 
simulations. One can conclude that the 1-VCMFT completely fails for large attractions 
as, here, the β coordinate increases without bound (figure 6(b)). Now, we observe the 
eect of ω on the behavior of α and β coordinates under the 1-VCMFT and 2-VCMFT 
analysis for dierent interaction strength. For the case of repulsive and weakly attrac-
tive interactions, both the theories predict that the β coordinate decreases mono-
tonically, whereas the α coordinate shows non-monotonous behavior on increasing the 
coupling rate. The similar behavior of α and β coordinates was observed in the case of 

Figure 6.  Coordinates of the triple points in the phase diagram as a function of the 
interaction energy, E in terms of kBT  under dierent coupling rates. Dierent lines 
and markers, respectively represent the results of the 1-VCMFT and 2-VCMFT. 
The inset figures  show the zoomed results of E  =  0. Simulation results match 
qualitatively with 2-VCMFT results and have not been shown to avoid overlapping.
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no interactions [22]. Under the strong attractive interactions, the 2-VCMFT shows an 
increase in both the α and β coordinates while the 1-VCMFT predicts decreasing trend 
in both the coordinates with increment in the coupling strength (figure 6).

To further understand the role of interactions in our system, we plot the maximal par-
ticle current with respect to interaction energy for dierent energy splittings (figure 7).  
The maximal particle current predicted by the 1-VCMFT matches with simulation 
results for weak interactions and completely disagrees for large interactions, where it 
predicts the particle current to increase without bound (figure 7). This is physically 
irrelevant because in the presence of large attractive interactions, particles form a big 
cluster which obstructs their movement and makes current to approach towards zero. 
While in the case of strong repulsions, a particle may not have any neighbor, and in this 
situation, the system can behave like TASEP with dimers whose current saturates and 
thus, can not increase without bound [22, 34]. On the other hand, the maximal particle 
current computed from the 2-VCMFT approach agrees well with the simulations for all 
range of interactions. The maximal particle current is found to be a unimodal function 
of the interaction energy E, whose maximum value occurs at a weak repulsive interac-
tion strength (figure 7). This indicates that interactions in a coupled TASEP system 
can maximize the flow of particles. These results are important for the kinesin motor 
proteins from the experimental point of view. It is known that kinesin motor proteins 
form patches during their movement along the cytoskeletal filaments [10]. Such attrac-
tive interaction within the motors is found to be of order E = (1.6± 0.5)kBT , which is 
important for the robust functioning of the motor proteins [9]. The theoretical methods 
namely a cluster mean field, and the modified cluster mean field for the one channel 
system reported that optimal interaction strength corresponding to the maximal cur
rent occurs for repulsive interactions [21, 26]. These theoretical results are in opposite 
regime to the experimental results on kinesin motor protein [9]. As their model was 
limited to one channel and neglected many realistic features of motor proteins such as 
lane changing, backwards stepping, etc the results can not be generalized. Our pro-
posed system includes the eect of side motion of particles as well as energy splittings, 
it will be interesting to observe their eect on the optimal interaction strength, E* that 
corresponds to the maximal current. Figure 8 shows the theoretical results of the opti-
mal interaction strength corresponding to the maximal particle current with respect 
to the coupling rate ω for dierent energy splittings. It is found that for most of the 
interaction splittings (except θ ≈ 1), the optimal interaction strength belongs to the 

Figure 7.  The maximal particle current as a function of interaction energy, E in 
terms of kBT , under the coupling strength ω = 0.2 for : (a) θ = 0.25; (b) θ = 0.5; 
(c) θ = 0.75.
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case of repulsive interaction irrespective of coupling rate. However, when formation of 
the particle cluster is much aected by the interactions (i.e. θ ≈ 1), the optimal interac-
tion strength for maximal particle current is achieved at weakly attractive strength for 
all values of coupling rates. Moreover, when θ = 1 and ω ≈ 0.9, the maximal particle 
current is optimized at the interaction strength known through experiments (figure 9). 
This shows the importance of coupling on kinesin motor proteins that they can maxi-
mize their flow while functioning vigorously [9, 10]. The knowledge of how frequently 
the real motor proteins change lanes and how the interaction eects their movement 
can not be predicted from our mesoscopic theoretical method. Their determination will 
require the more advanced experimental and theoretical approaches.

Our theoretical analysis and simulations show that in an interactive system, spatial 
correlation plays an important role. We now explore the correlations in our system 
using cluster mean field analysis and validate the results with extensive Monte Carlo 
simulations. Since the correlations are uniform in the bulk, we define a correlation func-
tion C between two neighboring vertical clusters (say) ξs and ξs+1 as

C = 〈ξsξs+1〉 − 〈ξs〉〈ξs+1〉,� (35)
where s = 1, 2, · · · , N − 1. 〈· · · 〉 denotes the expected value, which for a 1-vertical clus-
ter gives

〈ξs〉 = 〈τs,tτs,t′〉 =
∑
τs,t

∑
τs,t′

τs,tτs,t′P (τs,t, τs,t′) = V3.
� (36)

Here, P (τs,t, τs,t′) denotes the probability of the sth vertical cluster, ξs. The above 
expectation is non-zero only when the sth site of both the lanes is occupied. The expec-
tation of two neighboring vertical cluster is given by

Figure 8.  The eect of coupling rate (ω) on the optimal interaction strength (E *) 
for dierent interaction splittings predicted using 2-VCMFT.

https://doi.org/10.1088/1742-5468/aa75e1


The eect of side motion in the dynamics of interacting molecular motors

17https://doi.org/10.1088/1742-5468/aa75e1

J. S
tat. M

ech. (2017) 073202

〈ξsξs+1〉 = 〈τs,tτs,t′τs+1,tτs+1,t′〉

=
∑
τs,t

∑
τs,t′

∑
τs+1,t

∑
τs+1,t′

τs,tτs,t′τs+1,tτs+1,t′P (τs,t, τs,t′ , τs+1,t, τs+1,t′).� (37)

Here, P (τs,t, τs,t′ , τs+1,t, τs+1,m′) represents the joint probability of two neighboring ver-
tical cluster whose state depends upon the occupancy state of the four sites involved 
in the 2-vertical cluster. If all the four sites are occupied then the above expression is 
non-zero and is given by V33.

We plot the correlation curves computed theoretically and through simulations for 
dierent interaction splittings (figure 10). Under the 1-VCMFT analysis, the function 
C predicts zero correlation, which is in accordance with the fact that the theory com-
pletely ignores the connection between two neighboring state variables. The correla-
tion curves predicted from the 2-VCMFT approach are in good agreement with the 
simulation results for repulsive and weakly attractive interactions, whereas they match 
qualitatively for stronger attractive interactions. The 2-VCMFT results complemented 
with simulations clearly justify the physical meaning of the correlation function which 
represents the scope of (s  +  1)th vertical cluster to fully occupy in the case of fully 
occupied sth vertical cluster. For the case of repulsion, the presence of particles at one 
vertical cluster does not allow its neighboring vertical cluster to occupy. In this situ-
ation, the two clusters are negatively correlated and we get C  <  0. When the interac-
tions are attractive, the particles at one vertical cluster attract other particles to their 
neighboring vertical cluster. In this situation, the vertical clusters are positively cor-
related which gives C  >  0. At E  =  0, the hopping rates of particles become independent 
of the neighboring sites, hence both the theories and simulations imply zero correlation 
in the system. On comparing our results with one lane, it is observed that the eect of 

Figure 9.  The maximal particle current as a function of interaction energy E for 
θ = 1 and ω = 0.8, 0.9. Lines and markers, respectively represent the results of 
2-VCMFT and simulations.
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lane changing of particles considerably reduces the magnitude of the correlation func-
tion [26].

Now, we justify the reason for why the 2-VCMFT worked well in capturing the 
correlations for repulsive and weaker attractive but not for stronger attractive interac-
tions. In the case of repulsion, for a particle at the sth site, the probability of finding a 
particle at the (s  +  1)th site is less and for the subsequent sites is much less. It indicates 
that the correlations decay very fast and are short-range which can be managed by the 
2-VCMFT. On the contrary, for the attractive interactions, the situation is quite oppo-
site since the presence of a particle at the sth site increases the probability of having a 
particle at the (s  +  1)th as well as at the further sites. Thus the expected correlations 
are long-range and strong which can not be suciently captured by the 2-VCMFT4. 
Hence it can be inferred that if n-vertical cluster (n  >  2) mean field theory is utilized, 
then all correlations in the system can be apprehended.

5. Conclusion

In this work, we have discussed a variant of two-lane symmetrically coupled TASEP 
model in which the transition rules are modified to incorporate the nearest neigh-
bor interactions via short range energy E in a thermodynamically consistent fash-
ion. We analyzed the model using two theoretical methods namely the 1-VCMFT 
that captures the inter-lane interactions but ignores the intra-lane interactions, and 
the 2-VCMFT that can study inter as well as intra-lane interactions. The theoretical 
methods along with extensive Monte Carlo simulations can analytically or numerically 
calculate the eect of side motion of particles as well as the nearest-neighbor interac-
tions on the steady-state phase diagrams, the location of triple points and the maximal 
particle current. The results suggest an important role of correlations in the system. 
The 1-VCMFT approach that can analytically calculate the current expressions and 
phase diagrams works well for weak interactions and completely fails for large interac-
tions. The 2-VCMFT approach was successful in capturing the short-range correlations 
and matched qualitatively with simulations for all range of interactions. It was found 

Figure 10.  Correlation curves as a function of interaction energy, E in terms of 
kBT , under the coupling rate ω = 0.2 for : (a) θ = 0.25; (b) θ = 0.5; (c) θ = 0.75. In 
simulations, α = 1, β = 1 is utilized.

4 Similar seemingly surprising dierences have been observed when interacting driven diusive systems were first 
studied, with theoretical understanding being well-established subsequently [35]
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that the side motion of particles reduces the correlations in the system. We also ana-
lyzed the eect of symmetry of interactions and side motion of particles on the optimal 
interaction strength. It was observed that when the formation of cluster is strongly 
influenced and breaking of cluster is weakly influenced by interactions, the optimal 
interaction strength, E* is achieved at a weak attractive strength under the strong cou-
pling. We also discussed the importance of these results for kinesin motor proteins and 
found them to be in agreement with the known experimental results.
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Appendix. Master equations for 2-vertical cluster probabilities

In this appendix, we represent other 15 equations in steady state. From dV32

dt
= 0, we 

have

3∑
i=1
i �=k

2∑
j=1
j �=k

2∑
k=1

[(
1− (3− i)

k
ω

)
VikVk2

ViVk

[Ck(V0i + Vki) +Dk(Vji + V3i)]

]
+ ω(V31 − V32)

+
2∑

i=0

[
V33V3i

V3Vi

[(Vi1 + Vi3) + r(Vi0 + Vi2)]

]

= (1− ω)
1∑

i=0

[
V32V2i

V2Vi

[(Vi2 + Vi3) + r(Vi0 + Vi1)]

]

+
1∑

i=0

[
V32

V3V2

(
Vi3 + V(i+2)3

)
[Ai(V21 + V23) + Bi(V20 + V22)]

]

�

(A.1)

From dV31

dt
= 0, we have

3∑
i=1
i�=k

2∑
j=1
j �=k

2∑
k=1

[(
1− (3− i)

k
ω

)
VikVk1

ViVk

[Cj(V0i + Vki) +Dj(Vji + V3i)]

]
+ ω(V32 − V31)

+
1∑

i=0

[
V33V3i

V3Vi

[r(Vi0 + Vi1) + (Vi2 + Vi3)]

]

= (1− ω)
∑

j={0,2}

[
V31V1j

V1Vj

[(Vj1 + Vj3) + r(Vj0 + Vj2)]

]

+
V31

V3V1

∑
i={0,2}

[(
Vi3 + V(i+1)3

)[
Ai(V12 + V13) + Bi(V10 + V11)

]]

�

(A.2)
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From dV30

dt
= 0, we have

3∑
i=1
i �=k

2∑
j=1
j �=k

2∑
k=1

[(
1− (3− i)

k
ω

)
VikVk0

ViVk

[(V0i + Vki) + r(Vji + V3i)]

]

+
2∑

i=0
i�=k

2∑
j=1
j �=k

2∑
k=1

[
(1− ω)

V3kVki

VkVi

[(Vik + Vi3) + r(Vi0 + Vij)]

]

=
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
V30

V3V0

(
Vi3 + V(i+k)3

) [
Ai(V0j + V03) + Bi(V00 + V0k)

]]
�

(A.3)

From dV23

dt
= 0, we have

1∑
i=0

[
V32

V3V2

(
Vi3 + V(i+2)3

)[
Ai(V21 + V23) + Bi(V20 + V22)

]]
+ ω(V13 − V23)

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi0V03

ViV0

[
(V2i + V3i) + q(V0i + V1i)

]]

=
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
V23V3i

V3Vi

[Ck(Vik + Vi3) +Dk(Vi0 + Vij)]

]

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi2V23

ViV2

[
(V1i + V3i) + q(V0i + V2i)

]]

�

(A.4)

From dV22

dt
= 0, we have

∑
i={2,3}

[(
1− (3− i)ω

)Vi0V02

ViV0

[
(V2i + V3i) + q(V0i + V1i)

]]

+
∑

i={0,2}

[
V23V3i

V3Vi

[
(Vi0 + Vi2) + q(Vi1 + Vi3)

]]

=
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi2V22

ViV2

[
(V0i + V2i) + r(V1i + V3i)

]]

+ (1− ω)
∑

i={0,1}

[
V22V2i

V2Vi

[
(Vi2 + Vi3) + r(Vi0 + Vi1)

]]
+ ω(2V22 − V12 − V21)

�

(A.5)

From dV21

dt
= 0, we have
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1∑
i=0

[
V30

V3V0

(
Vi3 + V(i+2)3

)[
Ai(V01 + V03) + Bi(V00 + V02)

]]
+ ω(V11 + V22 − 2V21)

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi0V01

ViV0

[
(V0i + V1i) + r(V2i + V3i)

]]

+
∑

i={0,1}

[
V23V3i

V3Vi

[
(Vi2 + Vi3) + r(Vi0 + Vi1)

]]

= (1− ω)

[
V21

V2V1

∑
i={0,2}

[(
Vi2 + V(i+1)2

)[
Ai(V12 + V13) + Bi(V10 + V11)

]]

+
∑

i={0,2}

[
V21V1i

V1Vi

[(Vi0 + Vi2) + q(Vi1 + Vi3)]

]]

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi2V21

ViV2

[
(V1i + V3i) + q(V0i + V2i)

]]

�

(A.6)

From dV20

dt
= 0, we have

∑
i={2,3}

[(
1− (3− i)ω

)Vi0V00

ViV0

[
(V0i + V1i) + r(V2i + V3i)

]]
+ ω(V10 − V20)

+ (1− ω)
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
V2kVki

VkVi

[Ck(Vik + Vi3) +Dk(Vi0 + Vij)]

]

= (1− ω)
V20

V2V0

∑
i={0,2}

[(
Vi2 + V(i+1)2

)[
Ai(V02 + V03) + Bi(V00 + V01)

]]

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi2V20

ViV2

[
(V0i + V2i) + r(V1i + V3i)

]]

�

(A.7)

From dV13

dt
= 0, we have

∑
i={1,3}

[(
1− (3− i)

2
ω
)Vi0V03

ViV0

[
(V1i + V3i) + q(V0i + V2i)

]]
+ ω(V23 − V13)

+
V31

V3V1

∑
i={0,2}

[
(Vi3 + V(i+1)3)[Ai(V12 + V13) + Bi(V10 + V11)]

]

=
∑

i={0,1}

[
V13V3i

V3Vi

[(Vi0 + Vi1) + q(Vi2 + Vi3)]

]
+

∑
i={0,2}

[
V13V3i

V3Vi

[(Vi1 + Vi3) + r(Vi0 + Vi2)]

]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi1V13

ViV1

[
(V2i + V3i) + q(V0i + V1i)

]]

�

(A.8)
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From dV12

dt
= 0, we have

V30

V3V0

∑
i={0,2}

[(
Vi3 + V(i+1)3

)[
Ai(V02 + V03) + Bi(V00 + V01)

]]
+ ω(V11 + V22 − 2V12)

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi0V02

ViV0

[
(V0i + V2i) + r(V1i + V3i)

]]

+
∑

i={0,2}

[
V13V3i

V3Vi

[
(Vi1 + Vi3) + r(Vi0 + Vi2)

]

= (1− ω)

[ ∑
i={0,1}

[
V12V2i

V2Vi

[
(Vi0 + Vi1) + q(Vi2 + Vi3)

]]]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi1V12

ViV1

[
(V2i + V3i) + q(V0i + V1i)

]]

+ (1− ω)
V12

V1V2

∑
i={0,1}

[
(Vi1 + V(i+2)1)[Ai(V21 + V23) + Bi(V20 + V22)]

]]

�

(A.9)

From dV11

dt
= 0, we have

∑
i={1,3}

[(
1− (3− i)

2
ω
)Vi0V01

ViV0

[(V1i + V3i) + q(V0i + V2i)]

]

+
∑

i={0,1}

[
V13V3i

V3Vi

[(Vi0 + Vi1) + q(Vi2 + Vi3)]

]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi1V11

ViV1

[
(V0i + V1i) + r(V2i + V3i)

]]
+ ω(2V11 − (V12 + V21))

= (1− ω)
∑

i={0,2}

[
V11V1i

V1Vi

[(Vi1 + Vi3) + r(Vi0 + Vi2)]

]

�

(A.10)

From dV10

dt
= 0, we have

∑
i={1,3}

[(
1− (3− i)

2
ω
)Vi0V00

ViV0

[
(V0i + V2i) + r(V1i + V3i)

]]
+ ω(V20 − V10)

+ (1− ω)
2∑

i=0
i �=j

2∑
j=1
j �=k

2∑
k=1

[
V1jVji

VjVi

[Ck(Vij + Vi3) +Dk(Vi0 + Vik)]

]

= (1− ω)
V10

V1V0

∑
i={0,1}

[
(V0i + V0(i+2))

[
Ci(V01 + V21) +Di(V11 + V31)

]]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi1V10

ViV1

[
(V0i + V1i) + r(V2i + V3i)

]]

�

(A.11)
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From dV03

dt
= 0, we have

(1− ω)
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
Vjk

VjVk

(Vij + V(i+k) j)
[
Ai(Vkj + Vk3) + Bi(Vk0 + Vkk)

]]

=
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
V03V3i

V3Vi

[(Vi0 + Vij) + q(Vik + Vi3)]

]

+ (1− ω)
2∑

j=1
j �=k

2∑
k=1

[
Vk0V03

VkV0

[(Vkk + V3k) + q(V0k + Vjk)]

]

+
V30V03

V3V0

(
(qV03 + V33)[(1 + q)(V13 + V23)]

)

�

(A.12)

From dV02

dt
= 0, we have

(1− ω)
V20

V2V0

∑
i={0,2}

[(
Vi2 + V(i+1)2

)[
Ai(V02 + V03) + Bi(V00 + V01)

]]
+ ω(V01 − V02)

+
∑

i={0,2}

[
V03V3i

V3Vi

[(Vi0 + Vi2) + q(Vi1 + Vi3)]

]

= (1− ω)
∑

i={0,1}

[
V02V2i

V2Vi

[(Vi0 + Vi1) + q(Vi2 + Vi3)]

]

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi0V02

ViV0

[
(V0i + V2i) + r(V1i + V3i)

]]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi0V02

ViV0

[
(V2i + V3i) + q(V0i + V1i)

]]

�

(A.13)

From dV01

dt
= 0, we have

(1− ω)
V10

V1V0

∑
i={0,1}

[
(Vi1 + V(i+2)1)[Ai(V01 + V03) + Bi(V00 + V02)]

]
+ ω(V02 − V01)

+
∑

i={0,1}

[
V03V3i

V3Vi

[
(Vi0 + Vi1) + q(Vi2 + Vi3)

]]

= (1− ω)
∑

i={0,2}

[
V01V1i

V1Vi

[
(Vi0 + Vi2) + q(Vi1 + Vi3)

]]

+
∑

i={1,3}

[(
1− (3− i)

2
ω
)Vi0V01

ViV0

[
(V1i + V3i) + q(V0i + V2i)

]]

+
∑

i={2,3}

[(
1− (3− i)ω

)Vi0V01

ViV0

[
(V0i + V1i) + r(V2i + V3i)

]]

�

(A.14)
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From dV00

dt
= 0, we have

(1− ω)
2∑

i=0
i �=k

2∑
j=1
j �=k

2∑
k=1

[
V0kVki

VkVi

[
(Vi0 + Vij) + q(Vik + Vi3)

]]

=
3∑

i=1
i �=j

2∑
j=1
j �=k

2∑
k=1

[(
1− (3− i)

j
ω
)Vi0V00

ViV0

[
(V0i + Vji) + r(Vki + V3i)

]]�

(A.15)

Here, constants (A0, B0) = (q, 1), Ai  =  1, and Bi  =  r for i = {1, 2}. 
(C0, D0) = (1, r), (C1, D1) = (q, 1) and (C2, D2) = (1, r).
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