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Abstract.  Stimulated by the eect of the nearest neighbor interactions in 
vehicular trac and motor proteins, we study a 1D driven lattice gas model, in 
which the nearest neighbor particle interactions are taken in accordance with 
the thermodynamic concepts. The non-equilibrium steady-state properties of 
the system are analyzed under both open and periodic boundary conditions 
using a combination of cluster mean-field analysis and Monte Carlo simulations. 
Interestingly, the fundamental diagram of current versus density shows a complex 
behavior with a unimodal dependence for attractions and weak repulsions that 
turns into the bimodal behavior for stronger repulsive interactions. Specific 
details of system-reservoir coupling for the open system have a strong eect 
on the stationary phases. We produce the steady-state phase diagrams for 
the bulk-adapted coupling to the reservoir using the minimum and maximum 
current principles. The strength and nature of interaction energy has a striking 
influence on the number of stationary phases. We observe that interactions lead 
to correlations having a strong impact on the system dynamical properties. The 
correlation between any two sites decays exponentially as the distance between 
the sites increases. Moreover, they are found to be short-range for repulsions 
and long-range for attractions. Our results also suggest that repulsions and 
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attractions asymmetrically modify the dynamics of interacting particles in 
exclusion processes.

Keywords: correlation functions, exclusion processes, molecular motors,  
trac models
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1.  Introduction

Driven diusive systems are of fundamental importance for the extensive study of 
non-equilibrium statistical properties. They embrace the non-equilibrium steady state 
(NESS) behavior of various transport processes in Physics, Chemistry and Biology 
such as motion of molecular motors along filaments [1], mRNA translation [2, 3], gel 
electrophoresis [4], vehicular trac [5], pedestrian flow [6], etc. These processes can 
be well studied and interpreted by low-dimensional models involving biased hopping 
of particles under a driven electric field [7]. Such environment of particle hopping 
embarks the non-zero constant steady-state current through the system, which is a 
signature of non-equilibrium systems. Totally asymmetric simple exclusion process 
(TASEP), the minimal model in the class of driven lattice gas models, has extensively 
provided various interesting nontrivial facts of non-equilibrium systems and transport 
mechanisms [8].

TASEP, first introduced in 1968 to model protein synthesis by ribosomes [9], enjoys 
the paradigmatic status for exploring NESS properties of transport systems. Basically, 
the simple TASEP describes the unidirectional particle hopping on a one-dimensional 
(1D) lattice under the hard-core exclusion principle. The type of boundary condition 
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to the lattice plays an important role in determining the steady-state properties. For 
periodic boundary conditions, where the total number of particles are conserved in 
the system, all particle configurations are equally likely [10]. In open systems, the two 
ends of the lattice are coupled to reservoirs of fixed density and the distribution of the 
microstates is non-uniform. Such open boundary conditions are responsible for various 
interesting features such as boundary induced phase transitions [11, 12], shock dynam-
ics [13], shock and pattern formation [14], which are not observed in closed TASEP. 
The simple TASEP has been well explored in the literature using several exact as well 
as approximate analytical methods such as matrix product ansatz [15], domain wall 
theory [16], recursion methods [17] and mean-field theory [17]. For reviews on TASEP, 
one can refer [10, 18, 19].

Many realistic processes such as trac flow, collective dynamics of molecular motors 
along filaments, etc, function under the presence of repulsive and attractive interaction 
energy between the nearest neighboring particles [20–27]. For considering the eect 
of inter-particle interactions, the TASEP in which particles interact only with hard-
core repulsions, needs to be modified. In this direction, several studies and variants of 
TASEP for periodic as well as open boundary conditions have been reported in the lit-
erature [13, 28–33, 35]. For open systems, where the bulk hopping rates depend on the 
configuration of four consecutive lattice sites [13, 28, 29, 31–33], an interesting feature 
of a double-hump like structure appeared in the fundamental diagram of current versus 
density. In these systems, the description of NESS properties, the phase diagrams of 
the bulk density, in particular, was made using maximum and minimum current princi-
ples [11, 28]. Particularly, in [31–33], the application of the extremal current principles 
demanded a very specific set up of reservoir coupling, called the bulk-adapted coupling, 
in which the criterion of ejection and injection rates close to the system boundaries is 
similar to the bulk dynamics. Moreover, the hopping rules in [31–33] satisfied certain 
constraints [33, 34] and the systems were analyzed only for repulsive interactions using 
the time-dependent density functional approach that approximate the non-equilibrium 
distribution by the Boltzmann probability with an eective time-dependent exter-
nal potential. As the experiments on motor protein suggest a possibility of attractive 
interaction among them, it becomes necessary to examine the role of attractions in the 
collective motion of molecular motors [25–27]. Furthermore, many other existing theor
etical studies on interactive exclusions systems are completely phenomenological [13, 
28, 29, 35]. It is known that the inter-molecular interactions influence various chemical 
transitions such as chemical transformations during hydrolysis, association and dissoci-
ation from the tracks, etc, occurring among the motor proteins at the microscopic level. 
So, it is important to regard the quantitative description of such chemical processes in 
the investigation of collective dynamics of interacting particles [24].

More recently, a variant of open TASEP considering the particle-particle repulsive 
as well as attractive interactions in a thermodynamic consistent fashion has been intro-
duced [36, 37]. Here, creating and breaking of bonds between nearest neighbors are 
viewed as opposite chemical reactions, which allow one to apply the detailed balance-
like arguments. In [36], the model was analyzed using a cluster mean-field approach 
that considers some correlations. However, the approach had some limitations. Firstly, 
it did not explicitly calculate the bulk current-density relationship. Secondly, it failed 
to capture the eect of interaction energy on the density corresponding to the maximal 
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current. As a result, the bulk particle current had a single maximum at ρ = 0.5 irre-
spective of any interaction strength. Later, in [37], a new approach called modified 
cluster mean-field was introduced. The approach could account for some correlations 
and found a single point of maximum for particle current, which varied with respect 
to the interaction energy. Also, the phase diagram in [36, 37] had three generic phases, 
which is unlike the earlier models considering the eect of interactions [13, 28, 29, 
31–33]. In addition, the [36, 37] considered only the open boundary conditions and did 
not analyze the bulk current-density relation. The theoretical approaches were also 
approximate, which had only a qualitative agreement with simulations. This motivates 
us to analyze the collective dynamics of interacting particles for periodic as well as open 
boundary conditions with a stronger approximate theory than in [36, 37].

In this paper, we first discuss the TASEP model, where particle-particle interac-
tions are taken in accordance with the thermodynamic consistent rules in section 2. 
We, then, analyze the bulk current-density relation in section 3 with much stronger 
cluster mean-field theories. We also validate our results with extensive Monte Carlo 
simulations. The NESS properties of the open system with the bulk-adapted coupling 
to the reservoirs are discussed in sections 4 and 5. Further, the correlation between two 
sites separated by an arbitrary distance is calculated and analyzed in section 6. Finally, 
we conclude in section 7.

2. Theoretical description

2.1. Model

We consider driven particle unidirectional transport process on a 1D lattice chain with 
N sites, each site being occupied by at most one particle under the exclusion principle. 
The microstate of the system is characterized by the set of occupation number τ = {τi} 
(i = 1, 2, · · · ,N), each of which is either zero (vacant site) or one (occupied site). In 
the process, particles hop in a random-sequential manner to their next site with rates 
depending on the occupancy state of the nearest and next-nearest-neighbor site. It is 
presumed that an interaction energy E is associated with the bond connecting two 
nearest neighboring particles, where E  >  0 (E  <  0) corresponds to attractions (repul-
sions) [36]. In such scenario, the dynamical rules of the model are defined as follows. 
If the particle hopping leads to the bond formation (destruction), the hopping rate is q 
(r). Otherwise, when bond formation and destruction occur simultaneously or neither 
of them occurs, the hopping rate is 1. The four possible hopping rates of a particle at 
an ith site to the vacant (i+ 1)th site depending on the occupancy state of (i− 1)th 
and (i+ 2)th sites are shown in figure 1. The phenomenon of creating and breaking of 
bonds between pair of particles is viewed as reversible chemical reaction and thus the 
rates q and r follow the relation q

r
= eE [36], where E is expressed in units of kBT . The 

explicit values of q and r, which are q = eθE and r = e(θ−1)E , are obtained by introduc-
ing a dimensionless splitting parameter θ (0 � θ � 1). This parameter quantifies how 
much the transitions rates are aected by the interactions. The above choice of hopping 
rules preserves the particle-hole symmetry in the system. In the absence of energy (i.e. 
q  =  r  =  1), the bulk dynamics of our model reduces to the simple TASEP [10]. It is 
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important to note that theoretical models considered in [31–33] correspond to the case 
θ = 0.5 in our language. But these papers also considered only the repulsive interac-
tions, while our model is analyzed for both attractive and repulsive interactions.

The proposed model suits well to analyze the collective dynamics of interacting 
molecular motors [36, 37]. Moreover, the model also interprets the vehicular trac 
flow in the case of repulsive interactions. A driver generally slows down his vehicle, 
if a slowly moving vehicle is found some distance ahead, implying q  <  1 or he speeds 
up in the case of a rear vehicle honking its horn, yielding r  >  1 [29]. However, when 
either both the above cases occur simultaneously or neither of them occurs, a vehicle 
can neither speed up nor slow down, thus moves with its usual rate 1. Similar bulk 
dynamics has been considered in [36, 37]. However, our model diers from these refer-
ences in the context of the boundary conditions and the cluster mean-field approach, 
which together contributes to interesting new findings. We have employed the periodic 
boundary conditions and measured the eect of interactions on the system bulk prop-
erties by analyzing the current-density relation, commonly known as the fundamental 
diagram in the context of vehicular trac. Also, the bulk-adapted coupling to the reser-
voirs is undertaken to study the interplay of particles’ interactions among themselves 
and with the reservoirs of fixed particle densities.

3. Bulk current-density relation: mean-field analysis

In this section, we calculate and analyze the bulk current-density relation in the NESS 
using various mean-field analysis. We denote the steady-state probability of a cluster, 
(τi, τi+1, · · · , τi+n−1), of length n (n-cluster) by P (τi, τi+1, · · · , τi+n−1). According to the 
system dynamics, the bulk particle current in terms of probabilities can be written as

J = P (0, 1, 0, 0) + qP (0, 1, 0, 1) + rP (1, 1, 0, 0) + P (1, 1, 0, 1).� (1)

Figure 1.  Sketch of evolution of four dierent clusters with ith site occupied (filled 
circle) and (i+ 1)th site empty (dotted circle) from the tth time step to the (t+ 1)
th time step with the corresponding transition rates denoted by W.

https://doi.org/10.1088/1742-5468/aab022
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The computation of the current requires the determination of the probability of 4-clus-
ters or the four point spatial correlators 〈τi−1τiτi+1τi+2〉. We first review the particle 
current using simple mean-field (SMF) theory in which the probability of an n-cluster 
is splitted into the product of the probability of every single site of the cluster i.e. 
P (τi, τi+1, · · · , τi+n−1) ≈ P (τi)P (τi+1) · · ·P (τi+n−1). Since the particle density at every 
site is associated with its average occupancy i.e. ρ = 〈τ〉, where ρ is the system density, 
we have P (1) = ρ and P (0) = 1− ρ. This yields the following relation between the bulk 
particle current and the density:

J(ρ) = [ρ(1− ρ)((1− ρ)2 + ρ2)] + (q + r)ρ2(1− ρ)2.� (2)

Clearly, the particle-hole symmetry in the bulk dynamics is preserved as 
J(ρ) = J(1− ρ). We plot the above density-current relation for a repulsive as well as 
attractive interaction energy with a fixed θ = 0.5, which incorporates the maximum 
and equal eect of energy E on the rates q and r, and compare the results with Monte 
Carlo simulations as shown in figure 2(a). Clearly, for both repulsions and attractions, 
the SMF results fail to match with the simulations. Further, it can be seen that the 

maximal particle current, Jmax =
1
8
+ (q+r)

16  obtained for ρ = 0.5 in equation (2), becomes 

unbounded for |E| � 1. This is physically impossible, as for large attractions, the par-
ticles group together to form clusters, which hinders their movement and for stronger 
repulsions, the situation reduces to TASEP with dimers, where the particle current is 
finite (see figure 2(b)) [36, 41]. The reason for the inadequacy of the SMF approach in 
determining the particle current is its ignorance of the correlations between two neigh-
boring sites.

For a reasonable analysis of current-density relation, we apply cluster mean-field 
theory that considers some correlations between neighboring sites. In general, in the 
n-cluster mean-field theory, the master equation governing the time evolution of any 
n-cluster probability, P (τ , t) is given as

Figure 2.  (a) Mean-field analysis and simulation results of the fundamental 
diagram of stationary particle current (J) versus particle density (ρ) for a fixed 
θ = 0.5. (b) On the left : particle maximal current (Jmax) as a function of interaction 
energy (E) and on the right: correlation curve as a function of interaction energy 
(E). Dotted and solid lines, respectively, denote the results of cluster mean-field 
and simple mean-field theories, whereas symbols represent the simulation results.

https://doi.org/10.1088/1742-5468/aab022
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∂P (τ , t)

∂t
=

∑
τ ′ �=τ

W (τ ′ → τ)P (τ ′, t)

︸ ︷︷ ︸
Gain term

−
∑
τ ′ �=τ

W (τ → τ ′)P (τ , t)

︸ ︷︷ ︸
Loss term

,
� (3)

where τ ′ is some (n+ k)-cluster (k � 1) giving rise to or arising from the n-cluster, τ, 
and W (τ ′ → τ) represents the transition rate from cluster τ ′ to cluster τ. In the steady 
state, the probability P (τ ′) of a (n+ k) cluster, given as τ ′ = (τ1, τ2, · · · , τn+k), is split-
ted into the product of the probability of n-clusters such that each pair of adjacent 
n-clusters have (n− 1) common sites [38]. Firstly, we consider the case of n  =  2 and 
employ the two-cluster mean-field (two-cmf) theory to obtain the bulk current-density 
relation.

3.1. Two-cluster mean-field theory

Under the two-cluster mean-field approximation, the joint probability of any 4−cluster 
(τi−1, τi, τi+1, τi+2) is mathematically expressed as

P (τi−1, τi, τi+1, τi+2) = P (τi−1 | τi)P (τi | τi+1)P (τi+1, τi+2),� (4)
where

P (τi−1 | τi) =
P (τi−1, τi)∑

τi−1={0,1} P (τi−1, τi)
� (5)

is the conditional two-cluster probability. For simplicity, we denote the possible distinct 
two-cluster probabilities P (1, 1), P (1, 0) and P (0, 0) by x, y and z, respectively. Clearly, 
P (1, 0) = P (0, 1) due to the particle-hole symmetry in the system. The definition of 
density and the Kolmogorov consistency conditions [39] give the following two equa-
tions about x, y and z:

x+ y = ρ,
� (6)
y + z = 1− ρ.
� (7)

Using equations (4)–(7) in equation (1), the bulk particle current reduces to

J =
y2z + qy3 + rxyz + xy2

ρ(1− ρ)
.� (8)

To obtain the bulk current-density relation, we require x, y and z explicitly in terms 
of density ρ. For this, we compute the steady-state master equation for y using equa-
tion (3) as

rP (1, 1, 0, 0)− qP (0, 1, 0, 1) = 0.

Applying the two-cmf analysis (equations (4) and (5)) to the above equation yields

y2 =
rxz

q
.� (9)

Equation (9) along with the equations (6) and (7) gives the following values of x, y and 
z in terms of ρ:

https://doi.org/10.1088/1742-5468/aab022
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x =





1
2

(
2ρ+

r−
√

r(r+4(q−r)ρ(1−ρ))

(q−r)

)
; if q, r �= 1

ρ2; if q = r = 1,

� (10)

y =




−r+
√

r(r+4(q−r)ρ(1−ρ))

2(q−r)
; if q, r �= 1

ρ(1− ρ); if q = r = 1,

� (11)

z =





1
2

(
2(1− ρ) +

r−
√

r(r+4(q−r)ρ(1−ρ))

(q−r)

)
; if q, r �= 1

(1− ρ)2; if q = r = 1.

� (12)

Note that under the defined thermodynamically consistent relation, the rates q and r 
are not equal for any non-zero interaction energy, which justifies the above three equa-
tions. Substituting x, y and z in J, we get the following current-density relation:

J =

(
(
√

r2 + 4rρ(q − r)(1− ρ)− r)

4(q − r)3ρ(ρ− 1)

)
[4rρ(q − 1)(q − r)(ρ− 1)

+ (
√

r2 + 4rρ(q − r)(1− ρ)− r)(2rq − q − r)].

� (13)

The above equation holds for any general value of interaction energy E and split-
ting parameter θ. It is worth to note that under the two-cluster mean-field theory, 
the maximal particle current does not increase without bound for |E| � 1 as shown 
in figure 2(b) and the results are also in agreement with the Monte Carlo simulations. 
Thus, the two-cmf theory overcomes the major drawback of SMF theory. We now 

Figure 3.  (a) Cluster mean-field analysis and simulations results of the particle 
density corresponding to maximal particle current with respect to interaction 
energy E, kBT . (b) Particle current (J) as a function of interaction energy (E) and 
particle density (ρ); Symbols represent the simulation results.

https://doi.org/10.1088/1742-5468/aab022
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analyze the particle current by defining a new variable X = ρ(1− ρ), which on substi-
tuting in the equation (13) yields

J =
r −

√
r2 + 4r(q − r)X

4(q − r)3X
[4r(1− q)(q − r)X + (

√
(r2 + 4r(q − r)X)− r)

× (2qr − q − r)].
�

(14)

To obtain the extremal points in the current-density relation, we need to determine

∂J

∂ρ
=

∂J

∂X

∂X

∂ρ
=

∂J

∂X
(1− 2ρ) = 0.� (15)

Clearly, ρ = 0.5 is always a critical point of the current-density relation. To obtain the 

other critical roots, we set ∂J∂X   =  0 that yields the following quadratic equation in X:

(r +
√

(r2 + 4r(q − r)X))2 =
2r(q + r − 2qr)

1− q
.� (16)

The two real roots of the above equation exist only for the interaction energy E � Ec(θ), 
where Ec(θ) is a critical interaction energy for 0 < θ � 1. Below and at Ec(θ), the bulk 
current-density relation has three extrema, while above Ec(θ), the number of extreme 
points of the bulk current-density relation reduces to one i.e. ρ = 0.5. We substitute 
X  =  0.25, corresponding to the critical root ρ = 0.5, in equation (16), that leads to the 
following condition on the critical interaction energy:

(1− q)

(
1 +

√
q

r

)2

= 2
(q
r
+ 1− 2q

)
.� (17)

The above equation  can be solved to determine the critical interaction energy, 
Ec(θ) for dierent values of θ. For example, for θ = 0.5, the above equation  gives 
Ec = 2 ln(

√
5− 2) ≈ −2.885kBT  , and this results has been already observed earlier in 

[31]. Similarly, for θ = 1, it gives Ec = 2 ln(
√
2− 2) ≈ −1.76kBT , while for θ = 0.25, it 

gives Ec ≈ −4.87kBT  (see figure 3(a)). It is interesting to note that for θ = 0 there will 
be no splitting of the unimodal curve into bimodal curve at any strength of the interac-
tion. Further, the two critical densities of the current-density relation for the case of 
E < Ec(θ) are given as

ρ∗1,2 =
1

2

(
1∓

√
q(1− q2) + 3r(1− q)− 5qr(1− q)− 2

√
2r(1− q)3(q + r − 2qr)

(1− q)2(r − q)

)
.

�

(18)

These densities act as points of local maximum for E � Ec(θ), whereas for E > Ec(θ), 
the root ρ3 = 0.5 becomes the point of maximum. Figure 3(a) shows the densities corre
sponding to the maximal current, denoted as ρmax, for various values of interac-
tion energy E and splitting parameter θ. Both the analytic and simulation results in 
figure 3(a) indicate that for E > Ec(θ), ρmax acts as a single-valued function of E taking 
the constant value ρ = 0.5, while for E � Ec(θ), ρmax altered to multi-valued func-
tion, with two points of maximal current given by ρ∗1,2. This is an interesting feature 
of the interacting particle system, which has not been observed earlier in [36, 37]. The 
thermodynamically consistent open boundary conditions and theoretical approaches 
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such as cluster mean-field and modified cluster mean-field employed in these references 
produced a single maximum for particle current for any value of interaction energy. 
Whereas the above discussed two-cluster mean-field theory for the periodic interactive 
system yields two dierent densities, one being less than 0.5 and other being greater 
than 0.5, corresponding to maximal particle current in the case of suciently large 
repulsive interactions. The reason for such observation can be understood as follows. 
In the case of strong repulsions, the proposed model converges to TASEP with dimers, 
that corresponds to lower density for maximal current. Further, the particle-hole sym-
metry in the system forces the density for maximal current to be greater than 0.5.

It has been noticed that the the bulk current-density curve remains qualitatively the 
same under dierent values of θ (except θ = 0) (see figure 3(a)). For consideration of the 
maximum eect of energy E on both the rates q and r, we choose θ = 0.5 in the future 
calculations. Moreover, for θ = 0.5, the critical energy is given as Ec = −2.885kBT , as 
was also found before in [31].

The bulk current-density relation obtained in equation (13) has been further ana-
lyzed with a 3D plot in figure 3(b) for various values of interaction energy E. The clus-
ter mean-field results are found to be in agreement with the Monte Carlo simulations. 
The results signify that in the case of attractive and weak repulsive interactions, the 
particle current is a unimodal function of ρ with maximum occurring at ρ = 0.5 while 
for the case of stronger repulsions, it changes its nature to the bimodal function of ρ, 
indicated by the double-hump like structures in the curves. Moreover, here ρ = 0.5 
becomes the point of local minimum. Thus, it can be concluded that for the pro-
posed system interactions can significantly aect the bulk dynamical properties such 
as current-density relation. Further, the density diagram of particle current as a func-
tion of interaction energy E and density ρ computed analytically from equation (13) is 
displayed in figure 4. It is found that the particle current is maximum at ρ = 0.5 and 
E ≈ −1.3kBT  represented at the point A in figure 4. Moreover, it can also be seen that 
ρ = 0.5 is the line of maximal current for E  >  Ec, while for values of E lesser than Ec, it 
becomes the line of minimal current. It is worthwhile to note that in comparison to the 
theoretical results for the interaction energy corresponding to the maximal current in 
[36, 37], the predicted result E ≈ −1.3kBT  by two-cmf is in very good agreement with 
simulations indicating E ≈ −1.25kBT . This implies that the two-cmf theory is stronger 
and handles correlations better than the theories discussed in [36, 37].

Figure 4.  Density plot of particle current in the interaction energy (E) and particle 
density (ρ) phase plane.
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The analysis of our results in figures 2–4 imply that the two-cmf results match 
exactly with simulations for moderate repulsions and weak attractions. However, 
for the case of stronger interactions, the results of two-cmf are in qualitative 
agreement with simulations. This suggests the consideration of three-cluster mean-
field analysis, which treats the correlations between three-consecutive lattice sites 
exactly.

3.2. Three cluster mean-field theory

In this section, we study the bulk current-density relation using three cluster mean-field 
(three-cmf) approximation that assumes

P (τi−2, τi−1, τi, τi+1, τi+2, τi+3) = P (τi−2 | τi−1, τi)P (τi−1 | τi, τi+1)P (τi, τi+1, τi+2)

× P (τi+1, τi+2 | τi+3),
� (19)

where

P (τi−2 | τi−1, τi) =
P (τi−2, τi−1, τi)∑

τi−2={0,1} P (τi−2, τi−1, τi)
.

�

(20)

The possible three-cluster probabilities P (1, 1, 1), P (1, 1, 0), P (1, 0, 1), P (1, 0, 0), 
P (0, 1, 1), P (0, 1, 0), P (0, 0, 1), and P (0, 0, 0) can respectively, be denoted by a, b, c, d, 
e, f, g and h. The normality condition for these probabilities implies

a+ b+ c+ d+ e+ f + g + h = 1.� (21)
Using the general Kolmogorov consistency conditions [39]

1∑
τ=0

P (τ1, τ2, · · · , τn−1, τ) = P (τ1, τ2, · · · , τn−1) =
1∑

τ=0

P (τ , τ1, τ2, · · · , τn−1),

� (22)
for n  =  3, we obtain the following four equations

P (1, 1, 0) + P (1, 1, 1) = P (0, 1, 1) + P (1, 1, 1),

P (1, 0, 0) + P (1, 0, 1) = P (0, 1, 0) + P (1, 1, 0),

P (0, 1, 0) + P (0, 1, 1) = P (0, 0, 1) + P (1, 0, 1),

P (0, 0, 0) + P (0, 0, 1) = P (0, 0, 0) + P (1, 0, 0),

� (23)

which are further simplified to

b = e,� (24)

d = g,� (25)

d+ c = f + b.� (26)
Moreover, the consistency condition along with the definition of density imply

ρ = a+ b+ c+ d.� (27)
Utilizing equations (19), (21), (24)–(27) in equation (1), the bulk particle current, under 
three-cmf, reduces to
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J =
f(d+ qc) + b(rd+ c)

(d+ c)
.� (28)

Using equation (3), we obtain the master equation for b = P (1, 1, 0), a = P (1, 1, 1) and 
h = P (0, 0, 0), each of which in the steady-state reduces, respectively, to

P (1, 1, 0, 1, 0) + P (1, 1, 1, 0, 1) + qP (0, 1, 0, 1, 0) + rP (1, 1, 1, 0, 0)

− P (1, 1, 0, 1)− rP (1, 1, 0, 0) = 0,

P (1, 1, 0, 1, 1) + qP (0, 1, 0, 1, 1)− rP (1, 1, 1, 0, 0)− P (1, 1, 1, 0, 1) = 0 and

P (0, 0, 1, 0, 0) + qP (0, 0, 1, 0, 1)− P (0, 1, 0, 0, 0)− rP (1, 1, 0, 0, 0) = 0.

Using the three-cmf analysis (equations (19) and (20)), the above three equations, 
respectively, reduces to

cf(a+ e)(qc+ b)− eb(rd+ c)(d+ c) = 0,

ce(a+ e)(qf + b)− ab(e+ f)(rd+ c) = 0,

fg(d+ h)(d+ qc)− dh(e+ f)(rb+ f) = 0.
� (29)

To obtain the particle-current in equation  (28) as a function of density ρ, we need 
to solve equations (24)–(29) and determine the unknowns a, b, · · · ,h in terms of den-
sity ρ. But the complexity and the non-linearity involved in these equations forbid 
their analytical solution. However, the particle current and the unknown probabilities 
can be numerically computed for any value of interaction energy E and density ρ. 
Interestingly, for the case of weak attractions and moderate repulsions, the numer
ically computed current from the three-cmf theory matches exactly with the current 
obtained analytically from the two-cmf theory, indicating the two-cmf to be exact 
in this case. Whereas for stronger interactions, the theory is approximate due to the 
qualitative agreement of results with the simulations. In the upcoming sections, we 
analyze and discuss the eect of interactions and correlations on the open system uti-
lizing the simpler two-cmf approach.

Figure 5.  Sketch of evolution of (a) the first site (b) the Nth of the lattice, from 
time step t to (t+ 1) under diernt possible configurations with corresponding 
transition probabilities denoted by W. No circle at a site means the site can either 
be empty or occupied. Here, ρL and ρR, respectively, denote the densities of left (L) 
and right (R) boundary reservoir.
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4. Particles locomotion in open system

In the previous section, we analyzed the role of interactions on the steady-state 
bulk-properties by considering the closed system. In this section, we couple the 
lattice ends with reservoirs of fixed density to study the eect of open boundaries. 
The boundary acts as an inhomogeneity to the system in a way that the interaction 
of the particles with boundary reservoirs leads to dierent dynamics. In the open 
system, we have considered the rates for the jumps from sites i = 2, 3, · · · ,N − 2 
similar to that of the closed system, discussed in section 2.1. Coupling to the res-
ervoirs are taken into account such that the injection from the left reservoir of 
density ρL and ejection to the right reservoir with density ρR occur, respectively, 
for sites 1 and N. The entry and exit rules for sites 1 and N are defined as follows. 
A particle enters to site 1 with the rate α0 (α1) if the site 2 is empty (occupied). 
Whereas, it hops from the first site with the rates α′

0,1 depending on the occupancy 

state of site 3 as vacant/occupied (see figure 5(a)). Similarly, the exit rate from 

site N is β0,1 when the site N  −  1 is empty/occupied and the rate of entering to 

site N from site N  −  1 is β′
0,1 when site N  −  2 is empty/occupied (see figure 5(b)). 

Thus, the steady-state bulk current Ji,i+1 from site i to (i+ 1), i = 2, 3, · · · ,N − 2 
is given by

Ji,i+1 = P (0, 1, 0, 0) + qP (0, 1, 0, 1) + rP (1, 1, 0, 0) + P (1, 1, 0, 1),

which is same as equation (1). Similarly, the flux (current) in and out for both the sites 
1 and N can be written as

JL,1 = α0P (0, 0) + α1P (0, 1),� (30)

J1,2 = α′
0P (1, 0, 0) + α′

1P (1, 0, 1),� (31)

JN−1,N = β′
0P (0, 1, 0) + β′

1P (1, 1, 0),� (32)

JN ,R = β0P (0, 1) + β1P (1, 1),� (33)
where Ji,j represent the flow of particles from ith to jth site. Here, L and R, respectively 
denote the left and right reservoir. Using the two-cmf analysis (equations (4) and (5)), 
the above equations reduce to

JL,1 = α0z + α1y,� (34)

J1,2 =
y(α′

0z + α′
1y)

(1− ρ)
,� (35)

JN−1,N =
y(β′

0y + β′
1x)

ρ
,� (36)

JN ,R = β0y + β1x.� (37)
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5. Bulk-adapted coupling and NESS phases

The kind of coupling conditions to the reservoirs for open systems has a strong eect 
on the steady-state phase diagrams. We recall that the thermodynamically consistent 
open boundary conditions utilized in [36, 37], whose bulk-dynamical rules are same 
as that of our model, produce the phase diagrams with only three stationary phases, 
namely, low-density (LD), high-density (HD) and maximal current (MC), irrespective 
of the strength of interaction energy. While the application of minimum and maximum 
current principles to the bulk current-density relation suggests the dependency of the 
number of phases on the interaction strength [11, 13, 28]. In this section, we embrace 
the bulk-adapted coupling to the reservoirs, which considers the relation between the 
density and the correlators near the system boundaries to be same as in the bulk [32] 
and analyze the open system using the two-cmf approach. These boundary conditions 
are not thermodynamically consistent, but the benefit of such coupling of the system 
to the reservoirs is that the steady-state phase diagrams constructed from the extremal 
current principles become valid. In such coupling environment, the number of station-
ary phases depends strongly on the nature and the strength of interactions.

In the bulk adapted coupling, the lattice is viewed as being continued into the 
left (L) and right (R) reservoirs, corresponding to the relation between the correlators 
〈τi−1τiτi+1τi+2〉 and density ρ = 〈τi〉 in the bulk [32]. Since the bulk hoppings in the sys-
tem consider the four point correlators, so to define the entry and exit rates for both 
the sites 1 and N in accordance with the bulk rates, the missing nearest or next-nearest-
neighboring sites of 1 and N need to be fictitiously created. The rates αk, α

′
k and βk, 

β′
k (k = {0, 1}) depend on the reservoir densities ρL and ρR, respectively and for site 1, 

in particular, they can be understood as follows. As discussed in section 2 that if the 
configuration (τi+1 = 0, τi+2) exists in the bulk, a particle at ith site can hop with rate 
qτi+2 when τi−1 = 0, otherwise the hopping rate is r(1−τi+2). For a given configuration 
(τi+1 = 0, τi+2) with probability P (τi+1 = 0, τi+2) > 0, we define the conditional probabil-
ities for configuration (τi−1, τi = 1) to occur in the NESS of a closed system with density 

ρ as P (0, 1 | 0, τi+2; ρ) =
P (0,1,0,τi+2;ρ)
P (0,τi+2;ρ)

 when τi−1 = 0 and P (1, 1 | 0, τi+2; ρ) =
P (1,1,0,τi+2;ρ)
P (0,τi+2;ρ)

 

when τi−1 = 1. The injection rate, ατ2, to site 1, is obtained from a weighting of rates 
with the probabilities P (0, 1 | 0, τ2; ρL) and P (1, 1 | 0, τ2; ρL) corresponding to virtual 
configurations {τ−1 = 0, τ0 = 1, τ1 = 0, τ2} and {τ−1 = 1, τ0 = 1, τ1 = 0, τ2}, respectively 
at the boundaries. Similarly, the hopping rate, α′

τ3, from site 1 to site 2 results from 
a weighting of rates with probability P (0|1, 0, τ3; ρL) and P (1|1, 0, τ3; ρL) for virtual 
configurations {τ0 = 0, τ1 = 1, τ2 = 0, τ3} and {τ0 = 1, τ1 = 1, τ2 = 0, τ3}, respectively. 
Thus, for k = {0, 1},

αk = qkP (0, 1 | 0, k; ρL) + r(1−k)P (1, 1 | 0, k; ρL),
α′
k = qkP (0 | 1, 0, k; ρL) + r(1−k)P (1 | 1, 0, k; ρL).

� (38)

Similarly, the rates for in and out from site N, βk and β′
k, where k = {0, 1}, are defined 

as

βk = rkP (0, 0 | 1, k; ρR) + q(1−k)P (1, 0 | 1, k; ρR),� (39)
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β′
k = rkP (0 | 0, 1, k; ρR) + q(1−k)P (1 | 0, 1, k; ρR).� (40)

The conditional probability, involved in the entrance and exit rates for site 

N, such as P (0, 0|1, k; ρR) is inferred as P (k,1,0,0;ρR)
P (k,1;ρR)

 for the virtual configuration 

{τN−1 = k, τN = 1, τN+1 = 0, τN+2 = 0} and given configuration {τN−1 = k, τN = 1}. 
Similarly, the other involved probabilities can be understood. Using two-cmf analysis 
from equation (5) and equation (4), the input and output rates are written as

αk =
yL(q

kyL + r(1−k)xL)

ρL(1− ρL)
,� (41)

α′
k =

qkyL + r(1−k)xL

ρL
,� (42)

βk =
yR(r

kzR + q(1−k)yR)

ρR(1− ρR)
,� (43)

β′
k =

rkzR + q(1−k)yR
1− ρR

,� (44)

where k = {0, 1} and xL/R, yL/R and zL/R are computed from equations  (10)–(12) for 
ρ = ρL/R.

The above defined bulk-adapted coupling to the reservoirs allows one to obtain the 
steady-state phase diagram by applying the minimum and maximum current principles 
[11, 13, 28]. In figure 6(a), we plot the bulk current-density relation in NESS, computed 
using two-cmf in section 3.1 for interaction energy E = −5kBT < Ec. Clearly, the fun-
damental diagram exhibits three extrema: two of them corresponding to the maximal 
current, marked by ρ∗1 and ρ∗2, and one corresponds to the point of local minimum in 
the density range (ρ′1, ρ′2). Further, figure 6 (b) shows that the boundary-induced phase 
diagram with seven stationary phases as predicted from extremal current principles is 
in good agreement with the simulation results. However, small deviations occur due to 
the approximate bulk current-density relation produced by two-cmf analysis. Thus, it 
can be concluded that for E � Ec = −2.885kBT , the boundary induced phase diagram 
has seven phases, namely, two maximal current phases (MC1 and MC2) with respec-
tive bulk densities as ρ∗1 and ρ∗2, one minimal current phase (MC3) with bulk density as 
ρ = 0.5, two LD and two HD phases, with bulk densities as ρL and ρR, respectively. The 
transition between any of the two phases is either first-order or second-order continu-
ous as indicated by solid and dotted lines, respectively, in figure 6(b). Since for E  >  Ec, 
the particle current density curve has only one extremum i.e. ρ = 0.5, which corre-
sponds to the maximal current, the corresponding steady-state phase diagram of open 
system has only three phases: (MC) phase with bulk density ρ = 0.5 for ρL > 0.5, LD 
phase for ρ = ρL < 0.5 and HD phase for ρ = 1− ρR > 0.5. This shows the importance 
of the nature of interactions and type of coupling conditions on system’s dynamical 
properties.
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6. Correlations

In this section, we compute the two-point classical correlation function between sites i 
and j, where (1 � i �= j � N), defined by

C = 〈τiτj〉 − 〈τi〉〈τj〉,� (45)
where the two-point and the one-point density functions are given as

〈τiτj〉 =
∑
τi

∑
τj

τiτjP (τi, τj) = P (τi = 1, τj = 1)
� (46)

and

〈τi〉 =
∑
τi

τiP (τi) = ρ.

� (47)
Physically, the correlation function C, measures the eect of the particle at ith site on 
the occupancy state of jth site. If the distance between sites i and j is n i.e. sites i and 
j are separated by n sites, then the function C can be written as

C(n) =
∑

τ1,τ2,··· ,τn−1

P (τi = 1, τ1, τ2, · · · , τn−1, τj = 1)− ρ2,
� (48)

where τ1, τ2, · · · , τn−1 ∈ {0, 1}. For simplification, we denote ∑
τ1,τ2,··· ,τn−1

P (τi = 1, τ1, τ2, · · · , τn−1, τj = 1) by tn. Then, using the two-cmf analysis, 

we obtain t1  =  x, t2 =
y2

1−ρ  +  x
2

ρ  and tn for n  >  2 (see appendix) reduces to

tn =
(x
ρ
+

z

1− ρ

)
tn−1 +

x

ρ

( y2

x(1− ρ)
− z

1− ρ

)
tn−2.� (49)

Figure 6.  (a) Fundamental diagram of particle current (Jmax) versus density ρ, 
(b) Phase diagram of the open interactive TASEP system, for E = −5kBT  and 
θ = 0.5. Solid and dotted lines, respectively represent the first and second order 
phase transition lines.
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Substituting equation (49) into equation (48) and using the notation u = x
ρ
+ z

1−ρ
 and 

relation
(x
ρ
+

z

1− ρ

)
+

x

ρ

( y2

x(1− ρ)
− z

1− ρ

)
= 1,� (50)

the correlation function given by equation  (48) produces the following second-order 
linear homogeneous recurrence relation

C(n) = uC(n− 1) + (1− u)C(n− 2), forn > 2.� (51)

Solving the above relation for conditions C(1) = x− ρ2 and C(2) = y2

1−ρ  +  x
2

ρ
− ρ2 

yields C(n) = ρ(1− ρ)

(
1 + y

ρ(ρ−1)

)
n. Clearly, C(n) → 0 for E → 0 (or y → ρ(1− ρ)). 

Moreover, using the equation (10), the classical two point nearest neighbor correlation 
between two consecutive sites, denoted by C(1), can be written as

C(1) =




r+2ρ(1−ρ)(q−r)−
√

r(r(1−2ρ)2+4qρ(1−ρ))

2(q−r)
, q, r �= 1

0, q, r = 1.

� (52)

The semi-dotted curve and symbols initiating from the right hand side of figure 2(b) 
shows the two-point nearest neighbor correlation (C(1)), computed from two-cmf and 
simulations, respectively, in the maximal current phase as a function of interaction 
energy E, kBT . It is interesting to note that the nearest neighbor correlations first 
decreases with the decrease in interaction energy from 7kBT  as shown in figure 2(b), 
becomes minimum for Ec = −2.885kBT  and then starts increasing for higher values of 
repulsive interaction energy. Further, it is fascinating to see that the maximal particle 
flux occurring at E = −1.3kBT  does not corresponds to the interaction energy for mini-
mum correlations. To explain this observation, we note that the minimum of correla-
tions observed in figure 2(b) corresponds to the maximum in the anti-correlation. This 
means that at this interaction strength (−2.885 kBT ) the system prefers to have the 
alternating particles and holes, i.e. 101010 configurations. But then the flux depends 

Figure 7.  Plot of absolute value of correlation function (C) versus distance n for 
(a) repulsive (b) attractive energy measured in kBT . Lines are the interpolation 
of analytical results at dierent n, while symbols represent the simulation results.
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mostly on the rate q, which is quite small at these conditions. Lowering the repulsion 
increases the rate q, but simultaneously, as one can see from figure 2(b), it decreases the 
fraction of alternating configurations. The interplay between these two trends deter-
mines the position of the maximal particle current.

Moreover, the curves in figures 2(b), 3(b) and 6 indicate that the simulation results 
are in agreement with the cluster mean-field results for repulsions and weak attractions 
while for stronger interactions, the results match qualitatively. The reason for such 
behavior can be analyzed by calculating C(n) for repulsive and attractive interactions 
(see figure 7). It can be seen that eect of a particle’s presence on one site to other 
site decreases exponentially as the distance between the sites increases [40]. However, 
for the repulsive interactions, the correlation dies out faster (i.e. for a comparatively 
smaller n) than the attractive interactions. This indicates that the correlations are 
short-range for repulsions, while they are long-range in the case of attractions. This is 
also physically justified since for the case of attractions, the particles group together 
to form a large cluster, which implies that the presence of particle at first site of the 
cluster aects the occupancy of far apart sites. However, for repulsions, the particles 
tend to isolate, that causes the correlation to be short-range and weak for the distant 
sites. As the two-cmf theory considers the short-range i.e. two nearest neighboring sites 
correlations, the theory fits well for the repulsions and weak attractions. For the case 
of higher attractions, one requires a more advanced theory.

7. Conclusion

To summarize, we have considered a 1D TASEP model incorporating the eect of 
repulsive as well as attractive nearest neighbor inter-particle interactions in accor-
dance with the thermodynamic consistent rules. The bulk hopping rules of our model 
are more general and are dierent from [31–33], that require the sum of the bond 
breaking rate and the bond making rate to be equal to the sum of the rates corre
sponding to the situations: when neither bond-breaking nor bond-making occur and 
when both of them happen simultaneously. The system is analyzed theoretically using 
the two-cluster mean-field approximation for both periodic and open boundary condi-
tions. The approach treats the nearest neighbor correlation exactly and is dierent 
from the approaches presented in [31–33, 36, 37]. The influence of interactions on 
bulk current-density relation has been thoroughly scrutinized. Interestingly, the bulk 
current-density relation is perceived as a unimodal function for the case of attractions 
and weak repulsions and it changed its nature to a bimodal function (with equal modes) 
after a critical value of repulsive interaction energy, which was not found in [36, 37] 
whose bulk dynamical rules are the same as that of our model. The reason for two 
equal modes at densities less than and greater than 0.5 is the particle-hole symmetry 
prevailing in the system and the reduction of the model to TASEP with dimers for the 
case of stronger repulsions that reduces the maximal particle density to less than 0.5. 
The role of interactions is also observed on the maximal particle current that dies for 
the case of large attractive interactions and saturates for stronger repulsions. Moreover, 
the particle current computed from two-cmf is found to be maximum for a weak 
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repulsive interaction strength E ≈ −1.3kBT , which matches with the simulations. It 
implies that the proposed two-cmf approach describes the system better than the theo-
ries in [36] and [37] which predicted the optimal interaction strength as E ≈ −3kBT  
and E ≈ −0.9kBT , respectively. All the system’s properties are also investigated using 
three-cluster mean-field theory, whose numerical calculations match precisely with the 
analytical results obtained from the two-cmf for the case of moderate repulsions and 
weak attractive interactions. Further, in this case, the results also matched exactly 
with Monte Carlo simulations implying the predictions from the two-cmf theory to be 
exact. However, for stronger interactions, there is only a qualitative agreement between 
simulations and the two theories.

The steady-state phase diagram for interactive systems has not been easy to retrieve. 
The application of maximum and minimum current principles to the bulk current-den-
sity relation predicts seven phases in the phase diagram for stronger repulsions, while 
the simulation results for an open boundary condition as in [36, 37] yields only three 
stationary phases. For validating the phase diagram predicted from extremal current 
principles and for testing the eect of thermodynamic constraints in the boundary con-
ditions, we have deliberately chosen the bulk-adapted coupling to the reservoirs [32]. 
The simulations, as well as theoretical results, then indicate three phases in the phase 
diagram for the case of attraction and weak repulsion, while seven generic phases are 
predicted for the stronger repulsive interactions. However, the approximate nature of 
bulk current-density relation brings out small discrepancies between the two-cmf and 
the simulation results for the case of stronger interactions. We have also computed the 
correlations between two lattice sites as a function of the distance between them and 
found the correlations to decrease exponentially for both attractive and repulsive inter-
actions. Moreover, they are observed to be short-range for repulsion and long-range for 
the case of attractions.
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Appendix. Calculation of tn

tn =
∑

τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 1, 1) +
∑

τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 0, 1).

� (A.1)
Using equations (4) and (5), we get

P (1, τ1, τ2, · · · , τn−2, 1, 1) =P (1, τ1)P (τ1 | τ2) · · ·P (τn−3 | τn−2)P (τn−2 | 1)P (1 | 1)
=P (1, τ1, τ2, · · · , τn−3, τn−2, 1)P (1 | 1)

� (A.2)
and
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P (1, τ1, τ2, · · · , τn−2, 0, 1) = P (1, τ1)P (τ1 | τ2) · · ·P (τn−3 | τn−2)P (τn−2 | 0)P (0 | τ1)

= P (1, τ1, τ2, · · · , τn−3, τn−2, 1)
P (τn−2 | 0)P (0 | 1)

P (τn−2 | 1)
,

�

(A.3)

which implies

tn =
∑

τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 1)
(x
ρ
+

yP (τn−2, 0)

(1− ρ)P (τn−2, 1)

)

=
∑

τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 1, 1)
(x
ρ
+

yP (1, 0)

P (1, 1)(1− ρ)

)

+
∑

τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 0, 1)
(x
ρ
+

P (0, 0)

(1− ρ)

)

=

(
x

ρ
+

y2

x(1− ρ)

) ∑
τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 1, 1) +

(
x

ρ
+

z

(1− ρ)

)

×
( ∑

τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 1)−
∑

τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 1, 1)

)

=

(
x

ρ
+

z

(1− ρ)

) ∑
τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 1)

+

(
y2

x(1− ρ)
− z

(1− ρ)

) ∑
τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 1, 1).

�

(A.4)

Using equation (A.2), we get

tn =

(
x

ρ
+

z

(1− ρ)

) ∑
τ1,τ2,··· ,τn−2

P (1, τ1, τ2, · · · , τn−2, 1)

+
x

ρ

(
y2

x(1− ρ)
− z

(1− ρ)

) ∑
τ1,τ2,··· ,τn−3

P (1, τ1, τ2, · · · , τn−3, 1),

�

(A.5)

which further gives

tn =

(
x

ρ
+

z

(1− ρ)

)
tn−1 +

x

ρ

(
y2

x(1− ρ)
− z

(1− ρ)

)
tn−2.� (A.6)
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