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Abstract. The dynamics of molecular motor dimers, consisting of rigidly
bound particles that move along two parallel lattices and interact with
underlying molecular tracks, is investigated theoretically by analyzing discrete-
state stochastic continuous-time burnt-bridge models. In these models the
motion of molecular motors is viewed as a random walk along the lattices
with periodically distributed weak links (bridges). When the particle crosses
the weak link it can be destroyed with a probability p, driving the molecular
motor motion in one direction. Dynamic properties, force–velocity relations and
effective generated forces of dimer molecular motors are calculated exactly as a
function of a concentration of bridges c and burning probability p and compared
with corresponding properties of the monomer motors. It is found that the ratio
of the velocities of the dimer and the monomer can never exceed 2, while the
dispersions of the dimer and the monomer are not very different. The relative
effective generated force of the dimer (as compared to the monomer) also cannot
be larger than 2 for most sets of parameters. However, a very large force can be
produced by the dimer in the special case of c = 1/2 for non-zero shift between
the lattices. Our calculations do not show the significant increase in the force
generated by collagenase motor proteins in real biological systems as predicted
by previous computational studies. The observed behavior of dimer molecular
motors is discussed by considering in detail the particle dynamics near burnt
bridges.
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1. Introduction

Theoretical and experimental investigations of motor proteins, or molecular motors,
have recently become a subject of considerable attention because of importance of these
molecules for fundamental understanding of non-equilibrium processes in chemistry and
biology [1]–[4]. Motor proteins are active enzymatic molecules that consume a chemical
energy and transform it into mechanical work, while moving at the same time along
linear molecular tracks. They play a critical role in many biological processes [1]–[3]. In
contrast to conventional molecular motors powered by the hydrolysis of ATP or related
compounds, a recently discovered molecular motor called collagenase fuels its motion
along collagen fibrils by using a significantly different mechanism that utilizes asymmetric
collagen proteolysis [5, 6]. The biased diffusion of this motor protein along the molecular
track results from the fact that the motor protein molecule after cutting the bond at the
specific site of the collagen fiber is always found on one side of the reaction site, and it is
unable to cross the broken link after the cleavage.

Analysis of collagenase transport suggests that a successful description of this motor
protein’s dynamics can be obtained by utilizing so-called ‘burnt-bridge models’ (BBM) [5]–
[10]. According to BBM, the molecular motor is described as a random walker hopping
along the one-dimensional lattice composed of two kinds of links: strong and weak. The
walker does not affect the strong links when crossing them, while the weak links (‘bridges’)
might be destroyed (‘burnt’) with a probability 0 < p ≤ 1 when crossed by the walker; the
walker cannot pass over the destroyed links again. In [9, 10] we developed a new analytical
approach that allowed us to obtain exact expressions for motor protein velocity V (c, p) and
dispersion D(c, p) for different sets of parameters and for different burnt-bridge models,
and it was shown that the analytical predictions are in full agreement with Monte Carlo
computer simulations.

doi:10.1088/1742-5468/2007/12/P12008 2
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Figure 1. Schematic view of the motion of molecular motor dimer in the burnt-
bridge model. Strong links are represented by thick solid lines, while thin solid
lines depict the weak links which can be destroyed. Dotted lines correspond to
already burnt bridges. The dimer can jump with equal transition rates one step
to the right or to the left provided that the link is not already destroyed. The
bridges on the upper and lower tracks are shifted by l lattice spacings.

Theoretical and experimental investigations of collagenase dynamics [5, 9] conclude
that this motor protein is rather weak: at standard conditions it exerts a stall force of
FS � 0.02 pN, which is 100 times smaller than other conventional motor proteins [4],
and thermodynamic efficiency of this motor protein is between 6 and 15%, although it
has a significantly larger processivity than conventional motor proteins [5, 9]. Meantime,
experimental studies of several collagenases capable of breaking collagen fibers [6, 11, 12]
indicate that in cells these enzymes are probably clustered together. Computer simulations
of the motion of rigidly bound dimers [6] of collagenase molecules produced effective stall
forces of the order of 5 pN, 10–100 times larger than the single motor protein, and it was
suggested that cell surface-anchored clusters of collagenases might play an important role
in cell motility. Coupling of motor proteins can produce very efficient molecular motors
and it can lead to interesting dynamic phenomena [13, 14]. However, the motion of dimer
particles in the context of BBM has not been studied yet. The goal of the present work
is to investigate theoretically the dynamics of dimer molecular motors in BBM using
previously developed exact analytical approaches [9, 10].

Transport of molecular motors in BBM has been investigated before using discrete-
time [8, 9] and continuous-time descriptions [9, 10]. It seems that a continuous-time picture
is more appropriate for the motion of collagenase enzymes on collagen fibers because
it involves chemical transformations. However, the dynamics of motor proteins can be
more complex [4]. In this paper we utilize the continuous-time description, although our
theoretical method can also be easily applied for discrete-time dynamics [9].

2. Model

We consider a molecular motor dimer as two particles connected by a rigid bond that
move along two parallel infinite one-dimensional lattices (a bond between the particles
is perpendicular to the linear molecular tracks), with transition rates in both directions
and the lattice spacing assumed to be equal to one, as shown in figure 1. The links
connecting consecutive binding sites on the lattices fall in two categories. While the
random walkers have no effect on the strong links, each of them destroys the weak ones
with the probability p when passing over them. After the weak link is broken, the particle
is always assumed to be to the right of it, and all weak links are intact at t = 0. Therefore,
the dimer cannot be trapped between two burnt bridges, and it continuously moves to the
right.

doi:10.1088/1742-5468/2007/12/P12008 3
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The bridge can be burnt according to one of the two scenarios. In the first mechanism,
the bridge burns only when the random walker crosses it from left to right, however it
always remains intact if crossed from right to left. We term this model a forward BBM.
According to the second model, the weak link gets broken if crossed in either direction,
although the particle is always found to the right of the broken bond. This is a forward–
backward BBM. The physics of the driven motion is similar for both mechanisms, and
both models are even identical for p = 1, however for p < 1 the walker’s dynamics in
two cases are different [9]. In this paper we will consider only forward BBM because
theoretical analysis is simpler in this case. However, our approach can be easily extended
to more complex forward–backward BBM.

The dynamics of the dimer in BBM depends on two parameters: the burning
probability p and the concentration of bridges c. The properties of the system are also
strongly influenced by the distribution of bridges, periodic or random [8]. In the case of the
periodic distribution, which will be analyzed in detail in the present paper, the bridges on
each of two parallel one-dimensional lattices are positioned equidistantly, with a constant
distance N = 1/c lattice spacings separating them. This distribution is more suited for the
analysis of the transport of collagenases since the sites that can be destroyed by enzymes
on collagen fibers are found to be at equal distances from each other [5]. All the models
presented below will be studied in the continuous-time description that probably better
corresponds to the real biological systems with motor proteins [9]. However, our approach
can also be easily extended to discrete-time dynamics [9]. We also assume that the bridges
on two parallel tracks are shifted by l lattice spacings (0 ≤ l ≤ N − 1): see figure 1.

3. Dynamics of molecular motor dimers

3.1. BBM with p = 1

Let us consider first a special case of BBM with p = 1, i.e., when a bridge burns every
time when crossed by the walker. It can be easily seen that in this case the motion
of a molecular motor dimer along two parallel tracks is equivalent to the motion of a
single random walker on a single track but with increased concentration of bridges [6],
as shown in figure 2. The distribution of bridges on this effective track is again periodic
but generally non-uniform, with two weak links in each period: between the sites l − 1
and l, and between the sites N − 1 and N : see figure 2. The dynamics of this system
can be mapped into a random single-particle hopping model on periodic lattices that was
solved by Derrida [4, 15], in which the explicit expressions for the dynamic properties are
obtained. We define the forward and backward transition rates for the random walker at
site j (j = 0, 1, . . . , N − 1) as uj and wj, correspondingly. The velocity and the diffusion
constant are then given in terms of these transition rates [4, 15],

V =
N(∑N−1

j=0 rj

)
[
1 −

N∏
i=1

(
wi

ui

)]
, (1)

D =
1(∑N−1

j=0 rj

)2

{
V

N−1∑
j=0

sj

N−1∑
i=0

(i + 1)rj+i+1 + N
N−1∑
j=0

ujsjrj

}
− V (N + 2)

2
, (2)
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Figure 2. Schematic picture for the transport of the single particle (equivalent
to the dimer in BBM with p = 1) along the effective single linear track.

with auxiliary functions rj and sj defined as

rj =
1

uj

[
1 +

N−1∑
k=1

j+k∏
i=j+1

(
wi

ui

)]
, (3)

and

sj =
1

uj

[
1 +

N−1∑
k=1

j−k∏
i=j−1

(
wi+1

ui

)]
. (4)

The transition rates for the particle shown in figure 2 are uj = wj = 1 for all j except
w0 = wl = 0 (the burnt bridges cannot be crossed again). Then the explicit expressions
for (3) and (4) are the following,

rj =

{
l − j, for j = 0, 1, . . . , l − 1;

N − j, for j = l, l + 1, . . . , N − 1;
(5)

and

sj =

{
j + 1, for j = 0, 1, . . . , l − 1;

j − l + 1, for j = l, l + 1, . . . , N − 1.
(6)

Substituting these results into equation (1) leads to the expression for the dimer’s velocity,

V (l, N) =
2N

l(l + 1) + (N − l)(N − l + 1)
. (7)

Calculation of the dispersion D according to (2) is more complex, but it can be
performed with the help of the following useful identities:

rj+i+1 =

⎧
⎪⎨
⎪⎩

l − (j + i + 1), for 0 ≤ i ≤ l − j − 2;

N − (j + i + 1), for l − j − 1 ≤ i ≤ N − j − 2;

l + N − (j + i + 1), for N − j − 1 ≤ i ≤ N − 1,

(8)

for j ≤ l − 1, while for j ≥ l we have

rj+i+1 =

⎧⎪⎨
⎪⎩

N − (j + i + 1), for 0 ≤ i ≤ N − j − 2;

l + N − (j + i + 1), for N − j − 1 ≤ i ≤ N + l − j − 2;

2N − (j + i + 1), for N + l − j − 1 ≤ i ≤ N − 1.

(9)

As a result, the dispersion for the dimer is given by the following formula,

D(l, N) =
2N2

3(2l2 + N − 2lN + N2)3
[2l4 − 4l3N − 2lN(2 + 3N + 2N2)

+ 2l2(2 + 3N + 3N2) + N(1 + N)(1 + N + N2)]. (10)
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Figure 3. (a) Ratio of dimer’s and monomer’s velocities as a function of the
concentration of bridges c for the fixed value of the shift l. (b) Ratio of dimer’s
and monomer’s velocities as a function of the shift l for the fixed concentration
of bridges c.

Figure 4. (a) Ratio of dimer’s and monomer’s dispersions as a function of the
concentration of bridges for the fixed value of the shift l. (b) Ratio of dimer’s
and monomer’s dispersions as a function of the shift l for the fixed concentration
of bridges c.

The validity of equations (7) and (10) is confirmed by the fact that for l = 0 and
l = N they reproduce the BBM results obtained for the transport of monomers on the
lattice with the period N [9],

V =
2

N + 1
, D =

2(N2 + N + 1)

3(N + 1)2
; (11)

whereas for N = 2l we recover the results for the monomer’s dynamics on the lattice with
the period l, as expected. Also, equations (7) and (10) are invariant under the change
l → N − l, reflecting the symmetry of the system.

For the purposes of comparison of the dynamic properties of the dimer with those
of the monomer in BBM with p = 1, we plot their ratios in figures 3 and 4 as
functions of the concentration of bridges c = 1/N and the shift l between the parallel

doi:10.1088/1742-5468/2007/12/P12008 6
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tracks. We are interested in integer l values (l = 0, 1, 2, . . .) and inverse integer c values
(c = 1, 1/2, 1/3, . . .). The range of l values (for constant c) is 0 ≤ l ≤ N = 1/c, whereas
that of c values (for constant l) is 0 ≤ c ≤ 1/l. Hence it is convenient to express the
dynamic properties of the dimer as functions of dimensionless parameter lc (with either
fixed l or c), so that 0 ≤ lc ≤ 1 and the curves with different l (or c) values could be
plotted on the same interval. The physical meaning of the parameter lc is a dimensionless
concentration of bridges (for fixed l), or a dimensionless shift distance (for fixed c). The
invariance of dynamic properties (7) and (10) under replacement l → N − l implies that
when plotted as functions of l (for fixed c), their graphs are symmetric with respect to
the middle of the lc interval, i.e. lc = 1

2
: see figures 3(b) and 4(b).

As shown in figure 3(a), the relative velocity of the dimer has a non-monotonic
behavior as a function of the concentration of weak links, and V2/V1 reaches a maximum
at c∗ = 1/(l +

√
l2 + l), at which V2(l, c

∗)/V1(c
∗) = 1 + 2l/(2

√
l2 + l + 1) < 2. For very

large shifts, l � 1, one can easily see that c∗ → 1/2l and V2(l, c
∗)/V1(c

∗) � 2−1/l. Similar
behavior is observed for the relative velocity of the dimer as a function of the shift distance
l, as illustrated in figure 3(b). As discussed above, because of the symmetry the maximum
of V2/V1 is observed at l∗ = N/2 = 1/2c, at which V2(l

∗, c)/V1(c) = 2(N + 1)/(N + 2),
and for very low concentration of bridges (N → ∞) the dimer molecule moves twice as
fast as the monomer molecular motor at these conditions. Thus, we conclude that at
all conditions V2(l, c)/V1(c) ≤ 2. It is also worth mentioning that the dimer’s velocity

itself V2(l, c) reaches the maximum at c̃ = 1/
√

2l (for fixed l) and l̃ = l∗ = N/2 = 1/2c
(for fixed c), as can be deduced from equation (7). The corresponding values of V2 are

V2(l, c̃) = 2/(2(
√

2 − 1)l + 1) and V2(l̃, c) = 4/(N + 2).
The dispersion of the dimer shows a more complex behavior with two maxima and

one minimum, as presented in figure 4. Our calculations show that generally D2/D1 lies
between 0.92 and 1.31. It is interesting to note that for some range of parameters (not
very large shifts and not very small concentration of bridges) the dimer fluctuates less
than the monomer, leading to D2/D1 < 1.

Simultaneous knowledge of velocities and dispersions of the dimer allows us to evaluate
the effective force exerted by the molecular motor [9]. The motion of the dimer in the
system with burnt bridges can be viewed as an effective biased random walk in the system
without bridges. Then its dynamic properties can also be written as

Ṽ = a(ueff − weff), D̃ = 1
2
a2(ueff + weff), (12)

with ueff and weff being the effective transition rates of the biased random walk [9]. The
effective force generated by the dimer is given by [4, 16]

F =
kBT

a
ln

ueff

weff

=
kBT

a
ln

2D̃ + Ṽ a

2D̃ − Ṽ a
, (13)

where a is the size of the discrete steps made by the walker, and it corresponds to the
distance between the consecutive lattice sites. Parameters Ṽ and D̃ are expressed in units
of m s−1 and m2 s−1 correspondingly, and they are related to the dimensionless dynamic
properties V and D (equations (7) and (10)) in the following way:

Ṽ = av0V, D̃ = a2v0D, (14)

doi:10.1088/1742-5468/2007/12/P12008 7
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Figure 5. (a) Ratio of dimer’s and monomer’s effective forces as a function of the
concentration of bridges c for the fixed value of the shift l. Note that for l = 1
there is no branch for lc > 1/2 because there are no possible values of c between
1 and 1/2 (N is integer). (b) Ratio of dimer’s and monomer’s effective forces as
a function of the shift l for the fixed concentration of bridges c.

where v0 is the intrinsic transition rate of the molecular motor. Then

F (l, N) =
kBT

a
ln

2D + V

2D − V
, (15)

with functions V (l, N) and D(l, N) given by equations (7) and (10) respectively.
To investigate the efficiency of the dimer molecular motor we compare the force

generated by the dimer particle in BBM with the force exerted by the monomer at the
same conditions, and results are presented in figure 5. Note that F2(l, c) is given by
equation (15), while the corresponding force for the monomer is equal to F1(c) = F2(l =
0, c). As shown in figure 5(a), for l ≥ 2 the ratio of effective forces is less than 2 for all
concentrations of bridges, although the maximum of the ratio might slightly exceed 2 for
small l (∼ 2.04 for l = 2). The situation is drastically different for l = 1 where F2/F1 → ∞
as c → 1/2 (since limc→1/2 F2 = ∞ for l = 1). For all curves in figure 5(a), the maximum
is reached very close to lc = 0.5, and it approaches lc = 0.5 as l → ∞. For fixed
concentration of bridges (see figure 5(b)), symmetry requires that F2(N − l, c) = F2(l, c),
and F2/F1 reaches its maximum at l� = N/2 = 1/2c. It is clear from figure 5(b) that
except for the case of c = 1/2, where F2/F1 → ∞ as l → 1, the maximum of the ratio
F2/F1 is never larger than 2. It approaches 2 (from below) as N → ∞ (c → 0).

3.2. BBM with p ≤ 1: a special case

Although the general situation when the burning probability is p < 1 requires a separate
consideration that leads to extensive calculations (see next section), there is a special case
of BBM for which the dynamics of the dimer molecular motor can be expressed in terms
of the properties of the effective monomer in BBM, for which analytical expressions are
already known [9, 10]. When bridges on the parallel tracks are shifted by the distance
l = N/2, i.e., half of the period, the motion of the dimer is identical to hopping of the
effective particle on the single lattice with the distance of N/2 between neighboring weak

doi:10.1088/1742-5468/2007/12/P12008 8
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links. Then, using results from [9, 10], the relations between the dynamic properties of
the dimer and the corresponding monomer are the following for l = N/2,

V2(c, p) = V1(2c, p), D2(c, p) = D1(2c, p). (16)

To simplify calculations we only consider forward BBM, in which bridges burn only
when crossed from left to right, but remain unaffected if crossed in the opposite direction.
For this model, analytical expressions for V1(c, p) and D1(c, p) are already obtained [9, 10].
The velocity of the monomer is

V1(c, p) =
2pc√

p2(1 − c)2 + 4pc
, (17)

while the dispersion has more complex form [10],

D1 =
1

2

[
−2Δ + 2 − R0 − 2R0

{
Ax

2(1 − x)2
[N + 1 + (N − 1)x] − N(N2 − 1)

6(1 − x)
Γ

− (N − 2)(N2 − 1)

24
R2

0 −
N

1 − x
Δ

}]
, (18)

where parameters A and Δ are given by

A =
N(1 − x)[αpx + R0(1 − x)(−1 + p + x)]

p[1 + (N − 1)x](−1 + p + x2)
, (19)

Δ =
(1 − p)[αp + R0(1 − x)2]

p(−1 + p + x2)
, (20)

with

α =
N(N − 1)

2
Γ +

(N − 1)(N − 2)

6
(1 − x)R2

0, (21)

and

Γ =
2R0

N
(1 − x) − R2

0. (22)

Thus equation (18) is expressed in terms of the parameters R0 and x which are also
functions of N = 1/c and p,

R0 =
2p√

p2(N − 1)2 + 4pN
=

2pc√
p2(1 − c)2 + 4pc

, (23)

x = 1 + 1
2
p(N − 1) − 1

2

√
p2(N − 1)2 + 4pN. (24)

Therefore, equation (18) combined with equations (19)–(24) provides the explicit
expression for D1(c, p) as a function of the concentration of bridges and the bridge burning
probability.

In this case the dynamic properties of dimer and monomer molecular motors can be
compared for the entire range of burning probabilities, 0 < p ≤ 1, as presented in figure 6.
Since the shift l assumes only integer values (l = 1, 2, . . .), the relation lc = 1/2 implies
that we only need to consider the set of discrete c values, c = 1/2, 1/4, 1/6, . . ., i.e., only
the interval 0 < c ≤ 1/2 is relevant. As seen from figure 6(a), decreasing the burning

doi:10.1088/1742-5468/2007/12/P12008 9
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Figure 6. (a) Ratio of dimer’s and monomer’s velocities as a function of
concentration of bridges for l = 1/(2c). (b) Ratio of dimer’s and monomer’s
dispersions as a function of concentration of bridges for l = 1/(2c).

probability for any fixed concentration of bridges lowers the relative velocity of the dimer.
Increasing the number of weak links (for fixed p) also lowers the relative velocity of the
dimer, and the ratio of velocities lies within the interval,

√
2 < V2/V1 ≤ 2. This result

can be explained using the asymptotic expressions for the velocity obtained earlier [10],

V1(c, p) �
{

2c, for c 
 p;
√

pc, for p 
 c.
(25)

Then for c → 0 the ratio V2/V1 approaches 2 for any finite value of the burning probability,
while for p 
 1 (for finite c) we have V2/V1 �

√
2. As shown in figure 6(b), the

dispersion of the dimer is similar to the dispersion of the monomer, 0.92 ≤ D2/D1 ≤ 1 for
0 < c ≤ 1/2. Lowering the burning probability increases the relative diffusion constant of
the dimer particle, while the effect of the bridge concentration is non-monotonic. Because
in the limiting cases the dispersion is independent of the concentration of bridges [9]
[D1(c, p) � 2/3 for c 
 p and D1(c, p) � 1/2 for p 
 c], the ratio of dispersion is
D2/D1 → 1 in these cases.

The effective forces exerted by dimer and monomer molecular motors for p ≤ 1 and
lc = 1/2 can be obtained using the approach described in the previous section for the
case of p = 1, and the results are plotted in figure 7. The force exerted by a single
particle F1(c, p) is found from equation (15) with D = D1(c, p) and V = V1(c, p) given
by equations (18) and (17). Similarly, the force generated by a dimer F2(c, p) is found
from equation (15) with D = D2(c, p) and V = V2(c, p), and thus F2(c, p) = F1(2c, p).
Making use of asymptotic relations for the velocity and dispersion [10] yields the following
expressions for F1 in the limiting cases,

F1(c, p) �
{

3c, for c 
 p;

2
√

pc, for p 
 c.
(26)

It follows that F2/F1 → 2 if c → 0 for any finite value of p, and F2/F1 →
√

2 for small
burning probabilities (with fixed value of c). For p = 1, the ratio F2/F1 strongly increases
as c → 1/2. For p < 1, each curve shows a non-monotonic behavior with a minimum.

doi:10.1088/1742-5468/2007/12/P12008 10

http://dx.doi.org/10.1088/1742-5468/2007/12/P12008


J.S
tat.M

ech.
(2007)

P
12008

Transport of molecular motor dimers in burnt-bridge models

Figure 7. Ratio of the force exerted by dimer and that exerted by monomer as
a function of concentration of bridges c with shift l = 1/(2c).

The position of the minimum moves to the right with decreasing p, and it moves beyond
the interval 0 < c ≤ 1/2 for p ≤ 0.2. The minimal value of F2/F1 decreases with
decreasing burning probability. The ratio F2/F1 exceeds 2 within the interval 0 < c ≤ 1/2
if p ≥ 0.74, this occurs in the vicinity of c = 1/2. In particular, for p close to 1 the ratio
F2/F1 at c = 1/2 is substantially larger than 2 (e.g. at c = 1/2, F2/F1 ≈ 2.52 for p = 0.9,
F2/F1 ≈ 3.94 for p = 0.99, F2/F1 ≈ 5.44 for p = 0.999). Our analysis indicates that the
relative force exerted by the dimer could substantially exceed 2 only at c = 1/2 if the
burning probability p is close to 1.

Given that in the p = 1 case with fixed c the ratios V2/V1 and F2/F1 reach their
maximal values at l = N/2 (as can be seen from figures 3(b) and 5(b)), it is reasonable
to suggest that the same holds for p < 1. Thus the special case of lc = 1

2
considered in

the present section provides the maximal values for ratios V2/V1 and F2/F1 for any given
c, i.e. for l values other than l = 1/2c these ratios would be smaller.

3.3. BBM with p ≤ 1: general case

Now let us consider the general case of the transport of the dimer molecular motors along
two parallel tracks shifted by l lattice spacings with l = 0, 1, 2, . . . , N − 1 and with the
burning probability p ≤ 1 (see figure 1). Again, we analyze the continuous-time forward
BBM when the bridges are destroyed only when crossed from left to right. For burning
probability p < 1 the Derrida’s method is not applicable since we do not know how the
transition rates uj and wj are expressed in terms of p [9]. Instead, we will apply a method
developed in [9] to investigate BBM with p < 1 for the monomer random walkers. It
should be pointed out, however, that this approach allows us to calculate only velocities.
To determine the diffusion constants one should utilize a more complex approach outlined
in [10], but in this case the calculations become very involved and we will not discuss
them here.

Let us define Rj(t) [Uj(t)] as the probability that a random walker is located j sites
apart from the last burnt bridge at time t given that the last burnt bridge lies on the upper
(lower) of the two tracks (see figure 1). The probabilities Rj(t) and Uj(t) are conveniently
described in a reduced kinetic scheme presented in figure 8. The description of the dimer’s
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– – – – –

– – – –

N– l N– l

Figure 8. Reduced kinetic scheme for the motion of the dimer in continuous-time
forward BBM with bridges on the parallel tracks shifted by l lattice spacings.
Only transition rates not equal to one are shown. Two origins correspond to the
right end of the last burnt bridge at each track.

dynamics in terms of the functions Rj(t) and Uj(t) corresponds to considering the system
in the moving coordinate frame with the last burnt bridge always at the origin of the upper
or lower linear track. The kinetic scheme in figure 8 describes correctly the dynamics for
l = 1, 2, . . . , N − 1. However, the case of zero shift, l = 0, requires a slightly different
analysis, which will be given below.

The time evolution of the system is determined by a set of Master equations. For the
sites on the upper track the equations are

dRkN+i(t)

dt
= RkN+i−1(t) + RkN+i+1(t) − 2RkN+i(t), (27)

for k = 0, 1, 2, . . . and 1 ≤ i ≤ N − 1 (but with i �= l). For the sites with i = l we have

dRkN+l(t)

dt
= (1 − p)RkN+l−1(t) + RkN+l+1(t) − 2RkN+l(t); (28)

while for i = 0 and k ≥ 1

dRkN(t)

dt
= (1 − p)RkN−1(t) + RkN+1(t) − 2RkN(t). (29)

For the origin site the dynamics is more complex,

dR0(t)

dt
= p

[ ∞∑
k=1

RkN−1(t) +
∞∑

k=1

UkN−l−1(t)

]
+ R1(t) − R0(t). (30)

The Master equations for Uj(t) are obtained from (27)–(30) by changing R(t) → U(t) and
l → N − l. Specifically, at the origin site of the lower track we obtain

dU0(t)

dt
= p

[ ∞∑
k=1

UkN−1(t) +

∞∑
k=0

RkN+l−1(t)

]
+ U1(t) − U0(t). (31)
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The probabilities Rj(t) and Uj(t) should also satisfy a normalization condition,

∞∑
k=0

N−1∑
i=0

[RkN+i(t) + UkN+i(t)] = 1. (32)

In the stationary-state limit equations (27)–(30) yield

Ri = R0 − ipΣ1, Σ1 =

∞∑
k=1

RkN−1 +

∞∑
k=1

UkN−l−1, for 0 ≤ i ≤ l; (33)

RkN+l+i = (i + 1)RkN+l − i(1 − p)RkN+l−1, for 0 ≤ i ≤ N − l; k ≥ 0; (34)

RkN+i = (i + 1)RkN − i(1 − p)RkN−1, for 0 ≤ i ≤ l; k ≥ 1. (35)

Similar results can be obtained for the functions Uj from equations (33)–(35) by changing
R → U , l → N − l, and Σ1 → Σ2,

Ui = U0 − ipΣ2, Σ2 =

∞∑
k=1

UkN−1 +

∞∑
k=0

RkN+l−1, for 0 ≤ i ≤ N − l; (36)

UkN+N−l+i = (i + 1)UkN+N−l − i(1 − p)UkN+N−l−1, for 0 ≤ i ≤ l; k ≥ 0; (37)

UkN+i = (i + 1)UkN − i(1 − p)UkN−1, for 0 ≤ i ≤ N − l; k ≥ 1. (38)

The systems of equations (33)–(35) and (36)–(38) are coupled via the auxiliary functions
Σ1 and Σ2.

Following the approach of [9], we seek the solutions of equations (33) and (35) in the
form

RkN+i = R0e
ak − iB(k), for 0 ≤ i ≤ l, (39)

where unknown parameters a and B(k) are to be determined. Expressing functions RkN+l

and RkN+l−1 with the help of equation (39) and substituting them into equation (34), one
finds:

RkN+l+i = R0e
ak − lB(k) + i

[
pR0e

ak + B(k){−1 + p − pl}
]
, (40)

for 0 ≤ i ≤ N − l. It is important to note that utilizing equation (39) to express RkN+l−1

implies that l − 1 ≥ 0, i.e. l ≥ 1. Next, we use the fact that equation (40) with i = N − l
should coincide with equation (39) for i = 0, and the unknown function B(k) is eliminated,
leading to

B(k) = R0e
ak{1 − ea + p(N − l)}/{l + (N − l)[1 − p + pl]}. (41)

Hence the system of equations (33)–(35) is transformed into equations (39) and (40)
with the function B(k) given by equation (41). Similarly, the solutions of the system of
equations (36)–(38) are sought in the following form,

UkN+i = U0e
ak − iB̃(k), for 0 ≤ i ≤ N − l. (42)

Then we obtain

UkN+N−l+i = U0e
ak − (N − l)B̃(k) + i

[
pU0e

ak + B̃(k){−1 + p − p(N − l)}
]
, (43)
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for 0 ≤ i ≤ l, with

B̃(k) = U0e
ak{1 − ea + pl}/{N − l + l[1 − p + p(N − l)]}. (44)

To find the unknown parameter a, we utilize the recurrent formula (35) with the
functions RkN+i and RkN expressed via equation (39) and the function RkN−1 found from
equation (40),

R0e
ak − iB(k) = (i + 1)R0e

ak − i(1 − p)
{
R0e

a(k−1) − lB(k − 1)

+ [N − l − 1]
(
pR0e

a(k−1) + B(k − 1)[−1 + p − pl]
)}

. (45)

Expressing B(k) from equation (41) and introducing the parameter x ≡ ea, one can reduce
equation (45) into

x2 − [2 + 2p(N − 1) + p2(l − 1)(N − l − 1)]x + (1 − p)2 = 0. (46)

The physically reasonable solution of equation (46) is x ≤ 1, that corresponds to
decreasing probability of finding the particle with the distance from the last burnt bridge.
Then we obtain

x = 1 + p(N − 1) + 1
2
p2(l − 1)(N − l − 1) − 1

2

√
S, (47)

with

S =
[
2 + 2p(N − 1) + p2(l − 1)(N − l − 1)

]2 − 4(1 − p)2. (48)

According to equation (47), x lies within the unit interval [0, 1] with x = 0 for p = 1
and x = 1 for p = 0. We observe that equation (46) and its solution equation (47) are
invariant under the change l → N − l, which implies that equation (47) works not only for
functions Rj (equations (39) and (40)), but also for functions Uj (equations (42) and (43)).
It should also be pointed out that equation (46) cannot be obtained from the recurrent
formula (34) as it leads to a trivial identity.

In order to find the function R0 from the renormalization condition (32), we need to
eliminate the function U0. This is done with the help of equation (33) (or alternatively
using equation (36)), reflecting the fact that recurrent relations for Rj and those for Uj

are coupled through Σ1 and Σ2. Comparing equation (33) with (39) for k = 0, it follows
that

B(0) = pΣ1 = p

[ ∞∑
k=1

RkN−1 +
∞∑

k=1

UkN−l−1

]
. (49)

While (49) can be used directly to express U0 in terms of R0, it is convenient to combine
it with another equation,

B(0) = p

[ ∞∑
k=1

RkN−1 +

∞∑
k=0

RkN+l−1

]
, (50)

to obtain a simpler expression connecting U0 and R0. To prove the equation (50), one has
to express RkN−1 and RkN+l−1 with the help of equations (40) and (39), correspondingly,
and with the function B(k) given by (41). This leads to proving the following
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expression,

R0C =
pR0

1 − x
{1 − lC + (N − l − 1)[p + C(−1 + p − pl)] + 1 − (l − 1)C}, (51)

where we define a new parameter C

B(k) = R0e
akC, (52)

which can be written using equation (41),

C =
1 − x + p(N − l)

l + (N − l)[1 − p + pl]
. (53)

It can be shown that equation (51) is equivalent to equation (46) for x, and therefore (51)
is correct, and so is (50). Then comparing equations (49) and (50) it follows that

∞∑
k=1

UkN−l−1 =

∞∑
k=0

RkN+l−1. (54)

Expressing UkN−l−1 and RkN+l−1 according to equations (42) and (39), we obtain

UkN−l−1 = U0x
k−1[1 − (N − l − 1)C̃], (55)

where we defined another parameter C̃,

B̃(k) = U0e
akC̃, (56)

which is equal to (see equation (44))

C̃ =
1 − x + pl

N − l + l[1 − p + p(N − l)]
. (57)

Combining these results with

RkN+l−1 = R0x
k[1 − (l − 1)C] (58)

and summing over the index k in (54) yields

U0 =
1 − (l − 1)C

1 − (N − l − 1)C̃
R0. (59)

Equation (59) is the relation between U0 and R0 that is needed in order to determine
the function R0. It should be noted that the same result can be obtained by using
equation (36), i.e. B̃(0) = pΣ2.

Now we can find R0 from the normalization condition (32), which can be rewritten
as

∞∑
k=0

[
l−1∑
i=0

RkN+i +

N−l−1∑
i=0

RkN+l+i +

N−l−1∑
i=0

UkN+i +

l−1∑
i=0

UkN+N−l+i

]
= 1. (60)

We also rewrite functions RkN+i, RkN+l+i and UkN+i, UkN+N−l+i according to
equations (39), (40), (42) and (43), with functions B(k) and B̃(k) given by expressions (41)
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and (44),

RkN+i = R0x
k[1 − iC]; (61)

RkN+l+i = R0x
k[1 − lC + i{p + C(−1 + p − pl)}]; (62)

UkN+i = U0x
k[1 − iC̃]; (63)

UkN+N−l+i = U0x
k[1 − (N − l)C̃ + i{p + C̃(−1 + p − p[N − l])}], (64)

where C and C̃ are provided by (53) and (57). We note that equations (63) and (64)
correspond to equations (61) and (62) with l → N − l change (since the same
correspondence exists between C and C̃). The normalization (60) implies that

R0

1 − x

{
l − 1

2
l(l − 1)C + (N − l)(1 − lC) +

1

2
(N − l)(N − l − 1)[p + C(−1 + p − pl)]

}

+
U0

1 − x

{
N − l − 1

2
(N − l)(N − l − 1)C̃ + l(1 − (N − l)C̃)

+ 1
2
l(l − 1)[p + C̃(−1 + p − p[N − l])]

}
= 1 (65)

and, introducing parameter B such that U0 = BR0, we obtain from equation (59)

B =
1 − (l − 1)C

1 − (N − l − 1)C̃
. (66)

Then from (65) the expression for R0 can be derived,

R0 = 2(1 − x)/{2l − l(l − 1)C + 2(N − l)(1 − lC)

+ (N − l)(N − l − 1)[p + C(−1 + p − pl)]

+ B{2(N − l) − (N − l)(N − l − 1)C̃ + 2l(1 − (N − l)C̃)

+ l(l − 1)[p + C̃(−1 + p − p(N − l))]}}. (67)

To find the mean velocity of the dimer molecular motor we utilize the formula
discussed in [9],

V =

∞∑
j=0

(uj − wj)Rj +

∞∑
m=0

(ũm − w̃m)Um. (68)

The physical meaning of this expression is the fact that the velocity can be viewed as a
sum of the terms for each possible state of the system as shown in figure 8. Due to the
cancellation of forward and backward rates on all sites except the origin, we obtain the
expression,

V = R0 + U0 = (1 + B)R0, (69)

with functions R0 and B given by (67) and (66). Equation (69) provides the exact formula
for the dimer’s velocity V (l, N, p) (or V (l, c, p)) in the continuous-time forward BBM.

It can be shown that the derived expression for the velocity agrees with previously
obtained exact formula in the special cases. First, for p = 1 the parameters needed to
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calculate V are the following,

x = 0, C =
1

l
, C̃ =

1

N − l
, B =

N − l

l
, (70)

and equation (69) yields

V (l, N, p = 1) =
2N

l(l + 1) + (N − l)(N − l + 1)
, (71)

which reproduces the result (7) obtained for p = 1 by using Derrida’s method. Another
special case is when the bridges are shifted by l = N/2 lattice spacings with 0 < p ≤ 1
(discussed in the preceding section). We checked numerically for complete ranges of c
and p (with various fixed p and c values correspondingly) and in this way verified that
equation (69) produces the correct results.

The formula (69) is derived for non-zero shifts, l = 1, 2, . . . , N−1, as discussed above.
We now consider the case of l = 0, when a dimer crosses pairs of bridges on the upper
and lower tracks at once. Instead of trying to apply the kinetic scheme in figure 8 to this
case, we observe that a pair of bridges on parallel lattices crossed simultaneously by a
dimer is equivalent to a single ‘effective’ bridge on the single track but with a different
burning probability peff . Thus the motion of the dimer along two parallel tracks can be
viewed as hopping of a new effective particle in single-lattice BBM with effective burning
probability. The velocity for a single random walker in the continuous-time forward BBM
was found in [9],

V (N, peff) =
2peff√

p2
eff(N − 1)2 + 4peffN

. (72)

The effective burning probability can be found from the following arguments. Both bridges
can be burnt simultaneously with the probability of p2, or only one bridge can be destroyed
at each lattice, producing

peff = 2p(1 − p) + p2 = 2p − p2, (73)

and equation (72) leads to the following expression,

V (l = 0, N, p) =
2(2p − p2)√

(2p − p2)2(N − 1)2 + 4(2p − p2)N
. (74)

We note that, as expected, peff > p for 0 < p < 1, and peff = p if p = 0 or 1. Thus for
0 < p < 1, the dimer’s velocity V (l = 0, N, p) always exceeds that of the monomer at
the same conditions. It is also interesting to note that equation (74) can be obtained by
direct substituting l = 0 into expression (69) that was obtained for l ≥ 1 cases.

The result (69) allows us to compare velocities of the dimer and the monomer
molecular motors in BBM for the entire range of burning probabilities. The ratio of
velocities at different conditions is plotted in figures 9–11. In these graphs, we are
interested in the sets of discrete l and c values (l = 0, 1, 2, . . . and c = 1, 1/2, 1/3, . . .).
The dimer’s velocity V2(l, c, p) is calculated from equation (69), while the velocity of the
monomer V1(c, p) is given by equation (17). As shown in figure 9(a), the ratio V2/V1 shows
a non-monotonic behavior as a function of the bridge concentration with a maximum that
approaches 2 (from below) in the limit of very large shift distances as long as the burning
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Figure 9. (a) Ratio of dimer’s and monomer’s velocities as a function of the
concentration of bridges c for the fixed value of the shift l for p = 0.4. (b) Ratio
of dimer’s and monomer’s velocities as a function of the shift l for the fixed
concentration of bridges c for p = 0.5.

Figure 10. (a) Ratio of dimer’s and monomer’s velocities as a function of the
concentration of bridges c for the fixed value of the shift l = 5 at different burning
probabilities. (b) Ratio of dimer’s and monomer’s velocities as a function of
the shift l for the fixed concentration of bridges c = 0.1 at different burning
probabilities.

probability p is not too small. Also the ratio of velocities as a function of the shift distance
l (for fixed c) has a maximum at lc = 1/2: see figure 9(b). This behavior is similar to the
case of p = 1: compare figures 3 and 9. The effect of the burning probability on velocities
is illustrated in figure 10. Increasing the burning probability leads to the increase in the
ratio of the dimer’s and the monomer’s velocities for the intermediate values of c and l,
while for very large and very small concentrations, as well as very small and very large
shifts, the trend is reversed. As seen from figure 10, V2/V1 →

√
2 if p 
 c, regardless of

the l value. A special case of l = 0 is illustrated in figure 11. In this case the maximum
value of V2/V1 is reached at c = 1 (when every site is a potential bridge), and for all
concentrations V2/V1 increases as p decreases. The ratio V2/V1 varies from 1 for p = 1 to√

2 in the p → 0 limit (provided that p 
 c).
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Figure 11. Ratio of dimer’s and monomer’s velocities as a function of the
concentration of bridges c for the fixed value of the shift l = 0 at different burning
probabilities.

3.4. Force–velocity relations

A fundamental view of the coupling between biophysical and biochemical properties
of motor proteins is given by force–velocity relations [2, 4]. The presented theoretical
approach allows us to obtain these important mechanochemical properties of molecular
motors. To simplify calculations we analyze here only p = 1 case. Consider first the dimer
particle. Under the effect of external forces the forward and backward transition rates
from the state j can be written as

uj = ue−θf , wj = we(1−θ)f , (75)

for all j = 0, 1, . . . , N − 1 except w0 = wl = 0 since there is always a burning at weak
links: see figure 2. In equation (75) we take f = Fa/(kBT ) as a reduced external force,
and a is the lattice step size. The parameter θ is a load-distribution factor that specifies
how the work done by external forces is distributed between the forward and backward
transitions [4]. The rates u and w correspond to the situation without external forces
(F = 0). Then using the general expression (1) it can be shown that the dimer velocity
is equal to

V2 =
e−θf(u − wef)2

(u − wef) − cwef [2 − ((w/u)ef)l − ((w/u)ef)1/c−l]
. (76)

The corresponding expression for the monomer can be easily obtained from equation (76)
by setting l = 0 or l = N = 1/c, which results in

V1 =
e−θf(u − wef)2

(u − wef) − cwef [1 − ((w/u)ef)1/c]
. (77)

For simplicity we assume that u = w = 1. Then equations (76) and (77) yield

V2 =
e−θf (1 − ef )2

(1 − ef ) − cef [2 − efl − ef(1/c−l)]
, (78)
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Figure 12. Force–velocity curves for dimer and monomer molecular motors in
BBM. For all curves θ = 0.5, and u = w = 1 is assumed. For dimer molecular
motors the shift is l = 1.

and

V1 =
e−θf(1 − ef )2

(1 − ef ) − cef [1 − ef/c]
. (79)

In the limit of very low external forces (f → 0) these expressions reduce to equations (7)
and (11) as expected.

The force–velocity relations for dimer and monomer molecular motors in BBM
are presented in figure 12. We observe that in all cases the velocities are decaying
exponentially and the thermodynamic stall force fS, defined as V (fS) = 0, is infinite. This
is due to irreversible nature of burning of the bridges. However, for practical purposes
one might define an effective stall force at which the velocity reaches some low threshold
value [6]. From figure 12 it can be seen that dimer molecular motors always have larger
effective stall forces. As expected, for both monomers and dimers the increase in the
concentration of bridges also leads to larger effective stall forces, and the effect is especially
strong in the case of c = 1/2 and l = 1.

4. Discussions

Our theoretical calculations show that the rigid dimer molecular motor always moves
faster than the monomer in continuous-time BBM. However, the ratio of velocities never
exceeds 2 (see figures 3, 6(a), 9–11). The behavior of the diffusion constant is more
complex, as indicated in figures 4 and 6(b), although the ratio D2/D1 is always between
0.9 and 1.31. It is interesting to note that for some sets of parameters fluctuations of the
dimer are smaller than fluctuations of the monomer particle at the same conditions. This
observation can be understood using the following arguments. The fluctuations of the
particle in BBM are reduced near the already burned bridges because the particle cannot
cross them. In the case of the dimer the effective concentration of weak links is larger
than for the monomer, and the dimer molecular motor more frequently encounters hard
wall from the left, leading to decrease in the dispersion for some range of parameters.
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More interesting is the behavior of effective forces exerted by the dimer particles in
BBM presented in figures 5, 7 and 12. The thermodynamic stall force for all particles in
BBM is always equal to infinity because of irreversible burning of bridges. To compare
monomer and dimer molecular motors we analyze effective forces. The dimer always
generates larger force than the monomer particle, but in most cases the ratio F2/F1 is less
than 2. The situation is different for the special case of l = 1 and c = 1/2 with the burning
probability p close or equal to 1. Here the effective force exerted by the dimer becomes
very large. This behavior can be easily understood for p = 1 burnt-bridge models. In
this case the motion of the dimer on two parallel lattices can be viewed as the motion
of the effective particle on a single lattice with larger concentration of bridges—as shown
in figure 2. Because N = 1/c = 2 and l = 1 every link in the effective single lattice
is a potential bridge. Then the random walker always move forward, and the backward
transition rate is zero, leading to infinite effective exerted forces for the dimer molecular
motor (see equation (13)).

Computer simulations of the dynamics of clusters of collagenase proteins [6] predict
that a rigid dimer can generate large forces. In collagen fibers the cleavage sites are
separated by the distance Δ = 300 nm, and fibers are shifted by approximately 60 nm
from each other [1, 5]. Although the step size for the collagen motor protein is unknown,
one can reasonably take it as �10 nm, the value typical for most known motor proteins and
consistent with the sizes of these enzymes [1, 4]. Then it would correspond to N � 30 (or
c � 1/30), and l � 6. Experimental and theoretical estimates of the burning probability
are between 10 and 30% [5, 9]. However, even if one assumes that p = 1 at these conditions
our analytical calculations (from equation (15)) produce F2 � 0.045 pN, which is still
significantly smaller than predicted from Monte Carlo computer simulations for dimers [6].
Thus our analysis suggests that the dimer collagenases, in contrast with earlier claims [6],
probably cannot produce stall forces comparable to ATP-driven motor proteins. It should
be noted, however, that in [6] BBM with active pumping was considered. It corresponds
to the situation when after the burning the molecular motor moves as a biased random
walk, and it is then related to our special case when all sites are potential bridges. Thus
in the system discussed in [6] probably large forces could be produced by dimer molecular
motors in some cases, but more careful theoretical analysis is required.

5. Summary and conclusions

The dynamics of rigid dimer particles moving along parallel molecular tracks in BBM
is investigated theoretically using several analytical methods. When the probability of
burning is equal to 1, we utilized Derrida’s method [15] for calculating explicitly dynamic
properties of the system, and it allowed us to compute the effective forces exerted by the
dimer molecular motor. For p < 1 the situation when the bridges on the parallel tracks
are shifted by half of the period, i.e., l = N/2, is also investigated in detail by mapping the
system with two tracks into the motion along the single lattice with the distance between
bridges being N/2. More generally, for p ≤ 1 and arbitrary shifts between the tracks, our
analysis produced exact analytical expressions for the velocity of the dimer.

The dynamic properties and the force generated by the dimer are compared with
corresponding properties for the monomer molecular motor. In all cases it was found that
the ratio of the dimer’s and the monomer’s velocities can never exceed 2 (which is the limit
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in case of small concentration of bridges c or large values of the shift l). Force–velocity
relations for monomer and dimer molecular motors in BBM are computed. We found that
the effective force generated by the dimer is substantially larger than that generated by
the monomer only for a special case of c = 1/2 and l = 1. For other sets of parameters the
force exerted by the dimer is at most only slightly more than twice as large as that exerted
by the monomer. This occurs for both p = 1 and p < 1 (with l = N/2), in the latter case
the significant difference between the forces generated by the dimer and the monomer at
c = 1/2 is present only if the burning probability p is close to 1. This result contradicts
earlier theoretical claims based on Monte Carlo computer simulations [6]. Theoretical
predictions are explained by the increase in the effective concentration of bridges.

Although our theoretical approach provides exact and explicit expressions for dynamic
properties of dimer molecular motors in BBM, there are several features of the system
that should be included in order to obtain more realistic description of dynamics of motor
proteins that interact with their tracks. It was assumed that two motor proteins are tightly
bound in the dimer, while in the cell the enzymes must have some flexibility. In addition,
the interaction between motor proteins in the cluster was neglected, although it might lead
to the increased dynamic efficiency, as was discussed earlier for different motor protein
systems [13]. Also, it is not clear what effect on the dynamics of molecular motors will
have random or non-uniform distributions of bridges. It is important to investigate further
these features theoretically and experimentally to uncover the fundamental mechanisms
of motor protein transport.
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