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Understanding the molecular mechanisms
of transcriptional bursting

Alena Klindziuka and Anatoly B. Kolomeisky *b

In recent years, it has been experimentally established that transcription, a fundamental biological process that

involves the synthesis of messenger RNA molecules from DNA templates, does not proceed continuously as was

expected. Rather, it exhibits a distinct dynamic behavior of alternating between productive phases when RNA

molecules are actively synthesized and inactive phases when there is no RNA production at all. The bimodal

transcriptional dynamics is now confirmed to be present in most living systems. This phenomenon is known as

transcriptional bursting and it attracts significant amounts of attention from researchers in different fields.

However, despite multiple experimental and theoretical investigations, the microscopic origin and biological

functions of the transcriptional bursting remain unclear. Here we discuss the recent developments in uncovering

the underlying molecular mechanisms of transcriptional bursting and our current understanding of them. Our

analysis presents a physicochemical view of the processes that govern transcriptional bursting in living cells.

1 Introduction

It is well known that biological cells store their genetic material in
DNA molecules and that the information contained in the DNA is
transferred via a process called transcription.1–3 From the chemical
point of view, this process involves special enzymatic molecules,
known as RNA polymerases (RNAPs), that catalyze the synthesis of
messenger RNA molecules.4 An RNAP sequentially translocates
along the specific DNA segment, known as a gene, producing
RNA copies complementary to this DNA segment. Several other
types of protein molecules also participate in this process to ensure
that the RNAPs start on time from the correct position on the DNA
strand (beginning of the to-be-transcribed gene) and that the
transcription process terminates at the right position (end of the
transcribed gene).1,2,4–6 Because of the fundamental importance of
transcription in the functioning of all living systems, it has been
intensively investigated for many years using a wide spectrum of
experimental and theoretical methods.5–10 However, there are still
many unanswered questions about themolecularmechanisms that
govern transcription and related processes.8

Messenger RNA molecules produced during transcription
are utilized in the synthesis of corresponding proteins that are
needed to maintain the operation of the living organisms. How-
ever, there are cellular processes that actively degrade RNA,

requiring a constant supply of newly synthesized species.11 Based
on these arguments, it was generally assumed that transcription is
more or less a continuous process of RNA synthesis. Surprisingly,
recent experimental studies that measured with high temporal
and spatial resolutions single-cell transcription dynamics revealed
that this process is very noisy and discontinuous: periods with
active RNA synthesis alternate with the periods of no RNA
production.7,12–14 Importantly, in these experiments, the tran-
scription dynamics was monitored at the single-cell level, avoiding
problems with ensemble-averaging measurements.15 This
observed phenomenon of discontinuous transcription dynamics
is called the transcriptional bursting. It attracted the attention of
researchers from different fields and prompted them to try to
uncover the microscopic origin and biological relevance of these
observations.6,9,10,15,16 Some progress has been achieved in recent
years, allowing for a better understanding of molecular mechan-
isms and regulation of the transcription process.9,10 However,
many questions remain unanswered.

In this article, we discuss the underlying processes that lead to
bursting dynamics in transcription. We do not aim to present a
comprehensive description of transcriptional bursting accounting
for all results and observations in this field since there are already
several recent excellent reviews that cover most biological, biochem-
ical and biophysical aspects of this fascinating phenomenon.9,10,15

Rather, we would like to present a slightly different, physicochem-
ical, view of the microscopic mechanisms behind transcriptional
bursting focusing on several of its most important features and
discussing the physics underlying the observations. Our goal is to
stimulate more discussions and studies on the microscopic
origin of transcriptional bursting that would better clarify its
biological role.
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2 Experimental observations

A significant advance in our understanding of the transcrip-
tional process occurred after the developments in the single-
molecule fluorescent microscopy methods enabled researchers
to monitor and count the produced RNA molecules with
unprecedented temporal and spatial resolutions.7,12,14,17–21 In
these experiments, the newly synthesized messenger RNA
molecules were labeled by chemically associating them to
fluorescent proteins. Then, measuring the fluorescence signal,
which is proportional to the number of messenger RNAs in the
system, allowed researchers to directly observe the appearance
and disappearance of the RNA molecules as a function of time.
An example of such investigation on mammalian cells is
presented in Fig. 1.19 One can see that, although all these cells
are genetically identical, they exhibit a very heterogeneous
behavior in the production of RNA molecules. This leads to a
broad distribution in the number of RNA transcripts per cell.
The analysis of these experimental results suggested that this is
a result of the transcriptional bursting, i.e., the production of
RNA was not a continuous process. Similar observations have
also been reported for various bacterial and yeast systems,
suggesting that transcriptional bursting is a universal common
phenomenon in living cells.6,7,12–14,21,22

Furthermore, the fluorescent measurements of transcription
dynamics provided a direct way to visualize its bursting
behavior.23 This is because the fluorescence signal from the
produced RNA is proportional to its amount in the system and
as soon as the RNA is degraded its signal disappears. Fig. 2
shows the very noisy real-time dynamics of the production of
messenger RNA molecules in a in vitro single-molecule assay.23

Interestingly, the times when the transcription is ON
(B100 seconds) are significantly smaller than the times when
the transcription is OFF (B1000 seconds). Although these
measurements were made in vitro, similar results have been
also found in vivo.7 These observations raised questions on the
efficiency of the transcriptional process and the purpose of
such stochastic behavior in biological systems. One would
expect that to maintain the cellular processes the production
of RNA molecules should always be active. But these experi-
mental results do not agree with such arguments.

3 Theoretical analysis

Experimental observations of transcriptional bursting at the
single-cell level stimulated extensive theoretical efforts to clarify
its underlying mechanisms.9,15,16,23–33 Many aspects of transcrip-
tional dynamics have been discussed and are much better under-
stood now.7,9,10 But at the same time, some features of the
transcriptional bursting remain unexplained. In this article, we
would like to concentrate on two topics that, as we subjectively
believe, should help better understand the molecular mechan-
isms and biological relevance of transcriptional bursting.

The first topic that we discuss is related to the question of how
many states are needed to properly describe transcriptional
bursting.9 It is unclear how to define a state in a system where
multiple biochemical reactions are taking place. In addition, we
address the problem of how to determine the optimal set of states
to describe this complex process. The second discussed topic
focuses on the molecular origins of transcriptional bursting. In
other words, we try to answer the questions of what microscopic
processes lead to the appearance of these states, what specifically
determines the number of states, and what is the biological
relevance of these occurrences.

3.1 Multi-state theoretical models

The production of messenger RNA molecules involves multiple
chemical reactions such as the binding and dissociation of
various proteins to and from DNA chains, the addition of
nucleotides to growing RNA molecules, RNA degradation and
many others.1,2 Because of the stochastic nature of the under-
lying chemical processes, it is expected that the overall synth-
esis of RNA should be quite a noisy process. But why do the
experimental observations of transcriptional bursting imply
that a ‘‘multi-state’’ description is needed? And how many
states of transcription are there?

To begin answering these questions, let us start with the simplest
minimal theoretical model of RNA production presented in Fig. 3a.34

In thismodel, the RNA is continuously synthesizedwith a rate a and it

Fig. 1 Observation of variations in the produced messenger RNA number
in genetically identical mammalian cells from the fluorescence signal of
labeled RNA molecules. (A) A view of cells with different levels of fluores-
cence due to different numbers of synthesized RNA. (B) Distribution of
produced RNA molecules per cell. (C) Mean (top) and normalized standard
deviation (bottom) of the distribution at different experimental conditions.
The figure is reproduced with permission from ref. 19.

Fig. 2 Observation of fluctuations in the fluorescence signal that mea-
sures the amount of the produced RNA transcripts in single-molecule
experiments in vitro. The figure is adopted with permission from ref. 23.
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is also degraded with a first-order rate constant b. Each chemical state
n = 0, 1, 2,. . . corresponds to having exactly nRNA molecules in the
system.We are interested in the stationary state dynamics that can be
reached at large times (t - N). It can be shown that in this limit
most dynamical properties of the system depend only on the para-
meter x = a/b, which can be viewed as an equilibrium constant for
RNA synthesis/degradation.24,34 Defining the stationary probability to
find the system in the state n as Pn, the calculations yield

Pn ¼
xne�x

n!
; (1)

which is a well-known Poisson distribution.12,24 One can now evaluate
the average number of RNA transcripts, hni,24

hni ¼
X1

n¼0

nPn ¼ x: (2)

In a similar way, higher moments of the distribution can be
easily calculated. For example, the second moment is given by24

hn2i ¼
X1

n¼0

n2Pn ¼ x2 þ x: (3)

A dimensionless parameter F, known as the Fano factor, has
been widely utilized for clarifying the mechanisms of transcrip-
tional bursting. It is defined as the normalized variance in the
number of produced RNA transcripts, and it is a convenient

measure of noise and stochastic fluctuations in the system. It
can be shown that for the one-state model in Fig. 3a

F ¼ hn2i � hni2
hni ¼ 1; (4)

which is a signature of the Poisson process. This is an impor-
tant result because the Fano factors obtained from experi-
mental measurements of transcriptional processes in various
living organisms deviate significantly from unity (F 4 1),12,14,22

suggesting that the one-state kinetic model from Fig. 3a cannot
describe the appearance of transcriptional bursting. This was
the main reason for researchers to explore more complex multi-
state kinetic models illustrated in Fig. 3b–e.24,29,35

At this point, it is important to explain the confusing
terminology that exists in this field. The model presented in
Fig. 3a is called a ‘‘one-state’’ model even though the system
can be found in one of an infinite number of chemical states n
(n= 0,1,2,. . .). All these states are chemically different because
they contain a different number of RNA transcripts. The label
‘‘one-state’’ is associated then with a single mode of production
of the RNA molecules and with a single specific set of synthesis
and degradation rates {a, b}. In other words, the stationary
distribution of the produced RNA transcripts has only a single
peak: see eqn (1). Then the multi-state models, shown in
Fig. 3b–e, would correspond to systems with multiple modes
or channels of RNA transcript production, i.e., multiple sets of
synthesis/degradation rates {ai, bi} for i = 1, 2,. . .,m: see Fig. 3d.
To distinguish these macro-states from real individual
chemical states of the system, we sometimes call them ‘‘bio-
chemical states’’, emphasizing that the biochemical products
(RNA molecules) are made in different ways for each set of the
synthesis/degradation rates.24 Thus, the multi-state models of
transcription reflect the multiple modes of RNA production and
degradation, and this is exhibited by the multiple peaks in the
stationary distributions of RNA transcripts.

The deviations of experimentally measured Fano factors
from unity not only demanded the development of multi-state
kinetic models, but it also raised a question of what is the
appropriate model to fully describe the transcriptional bursting
phenomenon. The majority of theoretical and experimental
studies utilized for their studies the two-state model presented
in Fig. 3b.16,34,36 In this model, one state (ON) involves both the
production and degradation of RNA molecules while the other
state (OFF) only involves the degradation of RNA transcripts.
However, no reasons have been given for using the two-state
model in transcriptional bursting analysis beyond it being the
simplest non-trivial extension of the unsuccessful one-state
model. At the same time, several experimental studies found
that more than two biochemical states might be involved in
transcription.9,37–41 These observations stimulated the study of
more complex multi-state kinetic models; some examples of
them are presented in Fig. 3.24,29,35

While the multi-state kinetic models have existed for a
while,9,29,35 a comprehensive theoretical framework to analyze
transcription processes has been developed only recently.24 In
this framework, it was assumed that the system can follow one

Fig. 3 Various multi-state kinetic models used to describe transcriptional
bursting. (a) one-state model, (b) two-state model, (c) ‘‘Poisson with zero
spike’’ model,23 d) general multi-state model, and (e) three-state model.
Reprinted with permission from the J. Phys. Chem. B, 2018, 122, 11969–
11977. Copyright 2018 American Chemical Society.
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of m possible biochemical pathways of RNA production and
degradation, as presented in Fig. 3d. The synthesis of RNA was
assumed to be state-dependent with a rate aj ( j = 1, 2,. . .,m),
while the degradation rate constant b was assumed to be state-
independent. The transitions between different biochemical
states via state-dependent transition rates k( j)on ( j - j � 1) and k
( j)
off ( j - j + 1) are also allowed: see Fig. 3d. Using a master
equations approach together with a generating functions
method,42 it was shown explicitly how to evaluate all stationary
dynamic properties of the system, including the most relevant
mean number of produced RNA transcripts and the Fano factor
for a given system.24 This general theoretical framework
became a convenient tool for understanding the mechanisms
of transcriptional bursting.

Several interesting results have been obtained by analyzing
the general theoretical framework for multi-state kinetic
models of transcription.24 First of all, it was shown that in
the system with originally m biochemical states, the actual
number of observed states, which corresponds to the number
of peaks in the stationary distribution of produced RNA mole-
cules, surprisingly might be less than m. This can be clearly
seen in Fig. 4 for the system with m = 3 states (the kinetic
scheme for this three-state system is shown in Fig. 3e). Depend-
ing on the choice of kinetic parameters, the stationary distribu-
tions of the produced RNA molecules exhibit one, two or three
peaks that correspond to the one, two or three channels for
RNA synthesis and degradation. The key factor that determines
the specific outcome is the choice of values of the state-
switching transition rates k( j)on and k( j)off in comparison with the
synthesis and degradation rates.

To understand these observations better, let us consider two
limiting cases. If the switching rates are much smaller than
synthesis and degradation rates aj and b, then the system has
enough time to fully explore each biochemical state (each
pathway in Fig. 3e) individually and the number of observed
states (as well as the number of peaks in the stationary
distribution) will be equal to m. In the opposite limit, if the
state transition rates are much faster than the synthesis/degra-
dation rates, the system will not have time to explore each state
individually, so it will exhibit a single equilibrated biochemical
state with synthesis and degradation rates averaged over all the
states. This would lead to a single-peak stationary distribution
of produced RNA transcripts. For all other ranges of para-
meters, the number of observed states will vary from 2 to m
� 1 depending on how fast are the local switching rates in
comparison with the local synthesis and degradation rates. In
this range, some local equilibria might be reached lowering the
number of observed biochemical states. These arguments
suggest that the question of what kinetic models should be
used to describe the transcriptional bursting is quite complex
since the number of experimentally realized biochemical states
might differ significantly from the number of actual states that
participate in transcription.9

Theoretical calculations24 also found an interesting correla-
tion. Increasing the number of observed biochemical states
increases the degree of stochastic fluctuations as measured by

the Fano factor (Fig. 4f). In other words, the system exhibits
more noise if it is capable of exploring all different modes of
the RNA production and degradation during transcription.

Another important result from the analysis of the multi-state
kinetic models is the proposed procedure to estimate the
minimal number of biochemical states. It can explain the
experimental observations of various multi-state transcription
dynamics.24 Since the number of experimentally observed
states might deviate from the actual number of biochemical
states, it seems reasonable to study the optimal multi-state
models with a minimal number of parameters. It was shown
that the parameter m (minimal number of biochemical states)
can be found from the simultaneous knowledge of both the
mean hni and the Fano factor F of the produced RNA tran-
scripts. For realistic cellular conditions, the following approx-
imate relation was proposed,

m ’ 1þ F � 1

hni : (5)

This result was used to analyze the minimal number of
states in many genes of E. coli bacteria, illustrated in Fig. 5.14

The two-state kinetic model (m = 2) provides an adequate
description for the majority of genes and more complex
multi-state kinetic models typically are not needed.24 However,
some genes require as many as m C 10 states to properly
describe the transcription process. These results suggest that
the two-state kinetic models are not the universal descriptions
of the transcriptional bursting, but that the proper minimal
model can be selected using experimentally measured mean
and Fano factor of the stationary RNA number distribution.

At the same time, we have to emphasize that the theoretical
predictions of the dynamic phase diagrams (Fig. 4f) and of the
number of minimal biochemical states (Fig. 5) should be

Fig. 4 Transcription dynamics of the three-state kinetic model. (a)–(e)
Examples of five different stationary distributions of produced RNA mole-
cules. (f) A dynamic phase diagram that using a contour plot shows how
the Fano factor varies as a function of the normalized switching rates. Solid
lines give qualitative boundaries between different dynamic regimes of
RNA production presented in parts (a)–(e). Reprinted with permission from
the J.Phys. Chem. B, 2018, 122, 11969–11977. Copyright 2018 American
Chemical Society.
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considered very cautiously. Such characterizations of transcrip-
tional system’s dynamics might change depending on the exis-
tence of additional genetic regulation mechanisms like feedback
loops.30,31 In terms of the multi-state kinetic model shown in
Fig. 3, this would correspond to a situation where transition rates
would also depend on the number of the produced RNA mole-
cules n. Furthermore, there are experimental observations indicat-
ing that the transcriptional burst frequency and the burst sizemay
be time-dependent, at least for some genes.43,44 For the multi-
state kinetic scheme in Fig. 3 this would mean that the transition
rates would also depend on time.

3.2 Origins of transcriptional bursting

Clearly, one of the most important questions is what causes the
transcriptional bursting at the microscopic level.9,10 Since
major biochemical events taking place during transcription
are reasonably well known,1,2 it has been suggested that the
rate-limiting step of the binding of transcriptional factors to the
promoter region on DNA is the main event involved in starting
the transcriptional burst.9,10 There are multiple experimental
observations from biochemical and single-molecule studies of
various organisms that support this claim.10

However, a more complex question is what ends the transcrip-
tional burst. It was proposed that the duration of the burst is
determined by the lifetime of the RNAP bound to the DNA
chain.10 But the fact that there are typically several simultaneously
transcribing RNAP enzymes puts this argument in doubt. Adding
only a few more polymerases can significantly increase the overall
time of active transcription as shown by the following simple
arguments. If we assume that the probability of one RNAP to
dissociate during the time of transcription is p then for n
independently operating polymerases, the probability to dissoci-
ate simultaneously from the DNA decreases exponentially to pn.
An alternative suggestion was that chromatin remodeling is
somehow responsible for regulating the dynamics of transcrip-
tion. However, a detailed mechanism of how this might lead to
the transcriptional bursting remains unclear.9,10

Several bulk45–47 as well as single-molecule23,48 studies
pointed out to the importance of topological and mechanical
properties of DNA during transcription. When the RNAP
enzyme is engaged in transcription, it rotationally moves along
the DNA double helix. It is known that DNA molecules are

frequently topologically constrained in living cells (possibly via
binding to other components of the cell’s nucleus), and this
leads to the buildup of positive supercoiling in front and
negative supercoiling behind the RNAP. The supercoiling slows
transcription down, but this buildup of mechanical stress on
the DNA can be released by the action of several classes of
topoisomerase enzymes. These observations led to the devel-
opment of multiple theoretical models which propose that
transcriptional bursting is a result of coupling between
mechanical and chemical processes that are taking place at
the microscopic level in the system.23,25–28,49–51

To better understand the interplay between chemical and
mechanical forces involved in transcription, let us consider a
discrete-state stochastic mechanochemical model illustrated in
Fig. 6.25 This model takes into account the most relevant
physicochemical processes using a thermodynamically consis-
tent approach. It considers transcription by a single RNAP
molecule in the presence or absence of the topoisomerase
gyrase that can relieve the supercoiling stress. When the gyrase
is bound to DNA, the stress buildup is not taking place due to
its enzyme action. This is labeled as the ON state in Fig. 6. In

Fig. 5 Estimates of the minimal number of biochemical states m from
experimental measurements of transcription dynamics (mean and Fano
factor) in different genes of E. coli bacteria. Data are taken from ref. 14
Reprinted with permission from the J. Phys. Chem. B, 2018, 122,
11969–11977. Copyright 2018 American Chemical Society.

Fig. 6 A schematic overview of the discrete-state mechanochemical
model of transcriptional bursting. (a) A pictorial view of different states;
(b) a corresponding chemical-kinetic scheme for the model. Reprinted
from A. Klindziuk, B. Meadowcroft and A. B. Kolomeisky, A Mechano-
chemical Model of Transcriptional Bursting, Biophys. J., 118, 1213–1220,
Copyright 2020, with permission from Elsevier.
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this case, RNA transcripts are produced with a rate a and
destroyed with a rate constant b. However, after the gyrase
dissociates from the DNA chain with a rate koff, the supercoiling
starts to increase with every new produced RNA molecule and
this slows down the transcription: see Fig. 6. The synthesis rate
is now given by the rate a/y j+ 1, where j is the number of
produced RNA transcripts after the last dissociation of the
gyrase molecule. The parameter y = exp(e/kBT) is called
the mechanochemical parameter and it plays a crucial role in
the dynamics of the system. It quantifies how the mechanical
forces created by supercoiling are resisting the chemical reac-
tion of RNA synthesis.

Note that the parameter j can be viewed as a quantitative
measure of the degree of supercoiling on the DNA strand. The
synthesis of every new RNA molecule (in the absence of the
gyrase) increases the mechanical stress on DNA. Therefore, j
can also be thought of as the number of transcripts produced
after gyrase detached. Additionally, j along with the parameter
y, help describe the mechanochemical coupling in the system
in a thermodynamically consistent way. This is because the
parameter y is associated with an additional energy e that is
needed for RNAP to transcribe the supercoiled DNA. The
stronger is the degree of supercoiling, the slower is the rate
of the RNA synthesis. Then, following Kramer’s description of
chemical rates, the decrease in the RNA production rates will be
exponential, a/y j+ 1.25

The discrete-state mechanochemical model can be solved
explicitly by two complementary theoretical methods: the for-
ward and backward master equations.25 This provides a full
dynamic description of the system that allows to clarify the
molecular mechanisms of transcription. Fig. 7a presents a
stationary distribution of produced RNA molecules for different
mechanochemical coupling strengths. If supercoiling does not
affect the RNA production (y = 1 and e = 0), a single-peak
distribution is obtained (orange symbols) because, in this case,
the system has a single biochemical state with one set of
synthesis/degradation rates. However, the situation changes if
the mechanochemical coupling is strong (large y). Then, the
system exhibits two peaks in the distribution (blue symbols)
and, therefore, has two biochemical states. This bimodal dis-
tribution has one peak at n = 0, where the gyrase is unbound so
the synthesis rate approaches zero, and a peak at n 4 0, where
the gyrase is bound and normal synthesis and degradation
processes are taking place. In agreement with these arguments,
increasing the strength of the mechanochemical coupling low-
ers the average number of produced RNA molecules, as indi-
cated in Fig. 7b. Importantly, the bimodal distribution of
mechanochemical model explains the appearance of multiple
states of transcriptional bursting from a more microscopic
point of view.25

Another advantage of the mechanochemical model is its
ability to quantify the degree of supercoiling and explain how
that influences transcription dynamics, which is illustrated in
Fig. 8. The bimodal distribution of the mechanical stress in the
system is predicted for all ranges of parameters. This reflects
the fact that there are two types of states in the system at all

times. The first type corresponds to the states where gyrase is
bound to DNA and no stress is present (ON), while another type
describes the states where the gyrase is unbound and the
supercoiling is taking place ( j 4 0). Increasing the rate of
gyrase association kon lowers the overall degree of the mechan-
ical stress and shifts the equilibrium between two peaks in
favor of the stress-free states: see Fig. 8a. The degree of
mechanochemical coupling also influences the distribution of
stress in the system (Fig. 8b). For a small energy expenditure in
supercoiling (y B 1 and e B 0kBT), a broad distribution is

Fig. 7 (a) Stationary-state distributions for the production of RNA mole-
cules for different mechanochemical coupling streangths. (b) The mean
number of synthesized RNA molecules as a function of the energetic cost
of supercoiling. The symbols are from computer simulations and solid lines
are analytical results. Reprinted from A. Klindziuk, B. Meadowcroft and A. B.
Kolomeisky, A Mechanochemical Model of Transcriptional Bursting, Bio-
phys. J., 118, 1213–1220, Copyright 2020, with permission from Elsevier.

Fig. 8 Stationary-state distributions of mechanical stress on DNA. The
symbols are from computer simulations and solid lines between numerical
values of j are theoretical predictions. (a) The effect of varying the
association rates of gyrase. (b) The effect of varying the energetic cost
of supercoiling. Reprinted from A. Klindziuk, B. Meadowcroft and A. B.
Kolomeisky, A Mechanochemical Model of Transcriptional Bursting, Bio-
phys. J., 118, 1213–1220, Copyright 2020, with permission from Elsevier.
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observed because the state with any level of supercoiling j can
be reached (blue symbols). Making the mechanochemical
coupling stronger (y c 1 and e c 0kBT) narrows the distribu-
tion and lowers the overall level of the mechanical stress (red
symbols). In this case, the states with a large j cannot be
reached due to the fast decrease in the synthesis rates after
the gyrase detaches.

The mechanochemical model has been applied for analyzing
in vitromeasurements of transcriptional bursting in T7 and E. coli
bacteria.23 Using the experimental data of the decrease in elonga-
tion speeds in the presence of supercoiling, the values of mechan-
ochemical coupling were quantitatively estimated for both
bacterial systems.25 It was found that for T7, y = 1.61 and the
energetic cost of supercoiling is e = 0.48kBT, while for E. coli
bacteria the analysis predicts y = 1.89 and e = 0.64kBT. These
results suggest the supercoiling has a relatively modest slowing
effect on RNA production. But at the same time, it was argued that
this leads to the most optimal regulation of transcription.25 If the
supercoiling would have a very strong effect, this would lead to
very little RNA production, which is not good for transcription. In
the opposite limit of very weak mechanochemical coupling
between RNA production and supercoiling, the ability to tune
the number of produced RNAs would be lost, which is apparently
also not beneficiary for the cell.

The mechanochemical model proposes the following micro-
scopic picture of the appearance of the transcriptional burst-
ing. After the gyrase molecule binds to DNA, the RNAP begins
to actively transcribe the gene with a constant RNA production
rate. This is the beginning of the transcriptional burst. After
some time, the gyrase will dissociate from the DNA strand and
the mechanical stress will start to build up quickly slowing the
RNA production. Soon after the dissociation event, the RNA
synthesis rate becomes negligibly small and the burst ends.
Thus, transcriptional bursting results from the balance
between the chemical properties of gyrase and RNA synthesis,
and the mechanical properties of DNA double helix that resist
the RNA production.

Although we explained the transcriptional bursting mainly
by multi-state model and the origin of the bursting phenom-
enon using the mechanochemical model, it is important to
emphasize that these models should be still viewed as hypothe-
tical. Available experimental observations can be reasonably
well explained using these theoretical approaches, but this does
not exclude the possibility that other microscopic pictures
might be the origin of transcriptional bursting. More experi-
mental studies are needed to test the validity of these theore-
tical models.

4 Future directions and open
questions

In recent years, big experimental and theoretical advances
helped researchers to better clarify the mechanisms of tran-
scription. While many aspects of this process are now under-
stood, it is important to note that our knowledge of the

underlying microscopic picture is still very limited. Multiple
questions need to be addressed in future studies of transcrip-
tional bursting. Let us briefly discuss several of them.

First of all, experiments show that the frequency and the size
of transcriptional bursts are not constant and change with
time.43,44,52 Moreover, it looks like each gene has its own
transcriptional signature. These observations suggest that
new theoretical tools for the analysis of transcriptional busting
need to be developed since the current multi-state models can
only have constant transitions rates. Another important ques-
tion is what causes the modulation of transcriptional burst
frequency and size. Is it a mechanochemical coupling issue due
to sequence-dependent supercoiling or is it another biochem-
ical regulation pathway that we still do not know?

Another interesting future direction is to understand the
collective behavior of RNA polymerases in transcription. The
relevant questions are: Why does transcription sometimes
involve multiple RNAPs transcribing simultaneously? How does
this influence the transcriptional bursting? And what are the
benefits of these collective dynamics for the cellular systems?
There are some indications that multiple polymerases simulta-
neously engaged in transcription might cooperate to achieve
faster elongation rates, decrease the transcriptional noise and
avoid the buildup of the mechanical stress.33,49,53–56 However,
the molecular mechanisms of such cooperativity largely remain
unexplained.

Finally, a fundamentally important problem is to under-
stand how the transcriptional bursting relates to subsequent
cellular development. More specifically, it will be interesting to
clarify how the spatial modulation of transcriptional dyna-
mics leads to complex gene expression patterns in living
embryos.57–59 The recent advances in single-molecule experi-
mental methods already allowed researchers to collect a sig-
nificant amount of quantitative information on gene pattern
formation and its relation to transcriptional bursting.59 This
should stimulate the development of new theoretical methods
to investigate these important questions.

Transcriptional bursting is a fascinating biological phenom-
enon that has been at the center of recent research activities.
Many microscopic features of this phenomenon have been
uncovered due to the outstanding work of scientists in different
fields. But, in our opinion, this is only the beginning of the road to
a full understanding of transcriptional bursting. The future looks
promising as the close collaboration between experimental and
theoretical studies should help us uncover the mysteries of the
fundamental biological process of transcription.
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