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ABSTRACT Cancer starts after initially healthy tissue cells accumulate several specific mutations or other genetic alterations.
The dynamics of tumor formation is a very complex phenomenon due to multiple involved biochemical and biophysical pro-
cesses. It leads to a very large number of possible pathways on the road to final fixation of all mutations that marks the beginning
of the cancer, complicating the understanding of microscopic mechanisms of tumor formation. We present a new theoretical
framework of analyzing the cancer initiation dynamics by exploring the properties of effective free-energy landscape of the pro-
cess. It is argued that although there are many possible pathways for the fixation of all mutations in the system, there are only a
few dominating pathways on the road to tumor formation. The theoretical approach is explicitly tested in the system with only two
mutations using analytical calculations and Monte Carlo computer simulations. Excellent agreement with theoretical predictions
is found for a large range of parameters, supporting our hypothesis and allowing us to better understand the mechanisms of
cancer initiation. Our theoretical approach clarifies some important aspects of microscopic processes that lead to tumor
formation.
SIGNIFICANCE Cancer results from accumulation of several unfavorable mutations in tissues over the course of human
lifetimes. Understanding how such mutations fixate during a lifetime is critically important for clarifying the underlying
mechanisms of tumor formation. Inspired by the analysis of stochastic processes in chemistry and physics, we developed a
new theoretical framework to investigate the dynamics of cancer initiation. Our analysis reveals that despite a large number
of possible dynamic pathways, there are only a few optimal pathways that govern the formation of the tumor. This approach
should help in analyzing the mechanisms of cancer initiation as well as in the development of new medical anticancer
methods.
INTRODUCTION

Cancer is a collection of genetically related diseases that
exhibit uncontrolled cellular growth in specific tissues that
strongly affects the normal functioning of living organisms
and might even lead to a death (1,2). It is now well estab-
lished that the cause of cancer is the accumulation of
several specific genetic or epigenetic alterations in the
genome (1–4). The genetic errors frequently appear during
cell replications, but a huge majority of them are quickly re-
paired by specific biochemical DNA repair pathways
(2,5,6). Due to the stochastic nature of these chemical pro-
cesses, a very small fraction of these mutations might escape
the repair mechanisms, and the accumulation of several such
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mutations eventually can lead to a cancer. However, the
microscopic details of how the tumors develop still remain
not well understood despite significant efforts in multiple
research areas (7,8).

It is clear that tumor formation is the result of a complex
network of chemical, biological, and physical processes
(1,9). Each type of the cancer is initiated by acquisition of
a relatively small number of specific mutations or other ge-
netic alterations (typically between two and eight).

In recent years, several theoretical approaches to
analyze the dynamics of cancer initiation have been pro-
posed (10–15). Many of them specifically addressed the ef-
fect of stochastic tunneling (12,16–18), showing the
importance of this phenomenon. For example, it was found
that stochastic tunneling is a leading process in adaptation
dynamics of asexual populations across fitness valleys
(19–21). However, despite significant advances in our
understanding of the cancer initiation dynamics, the main
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FIGURE 1 (a) A schematic description for cancer initiation dynamics in

the ‘‘two-hit’’ model. First and second mutations can appear with rates u1
and u2, respectively. The fitness parameters for normal, one-mutation and
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difficulty is that the overall process of multiple mutations
fixation has a very large number of possible pathways.
This leads to the use of several approximations that are
not always able to realistically describe the processes that
stimulate tumor formation.

In this paper, we present a new theoretical approach of
analyzing the cancer initiation dynamics. It is based on anal-
ogy with the analysis of complex processes in physics and
chemistry, suggesting exploring the effective free-energy
description of the fixation dynamics for several mutations.
The method is explicitly applied for the system with two mu-
tations where it is tested with analytical calculations and
Monte Carlo computer simulations. It is found that there
are only a few pathways that dominate the fixation process.
This significantly simplifies the overall analysis, and it allows
to understand better the underlying microscopic mechanisms
of tumor formation. The extension of these theoretical
method to systems with multiple mutations is also discussed.
It is interesting to note that our idea is related to a recently
proposed method of analyzing stochastic systems that takes
into account their topological properties (22).
two-mutation cells are 1, r1, and r2, respectively. (b) A schematic view

for the process of inactivation of tumor suppressor genes that might follow

the ‘‘two-hit’’ model. In this case, introducing first mutation does not affect

the fitness parameter (r1 ¼ 1), whereas acquiring the second mutation

would increase the cell proliferation rate (r2 > 1). (c) A schematic view

of the chromosomal instability (CIN) process that also might follow the

‘‘two-hit’’ model (28). Here, the first mutation by itself is known to be

disadvantageous (r1 < 1), whereas introducing the second mutation would

make their combination advantageous (r2 > 1). To see this figure in color,

go online.
METHODS

The cancer initiation involves various processes such as the appearance of

mutations, multiple cell divisions, and cell deaths (23). Although the system

starts with one of the normal cells becoming mutated, the tumor formation

is associated with the situation when all cells in the tissue acquire all mu-

tations, which is known as a mutation fixation. The important critical

constraint for all processes in the system is that due to homeostasis the total

number of cells in the tissue is always fixed. The main idea of our method is

to look at the cancer initiation process at steady-state conditions as a motion

of a ‘‘particle’’ in an effective free-energy landscape created by transitions

between different stochastic states. The ‘‘particle’’ corresponds to a current

state of the system, which is determined by the number of cells with

different degrees of mutations. The effective free-energy landscape is built

in the following way. Since all transition rates out of the given state can be

specified, one can evaluate the residence times in each state. We are consid-

ering the systems in the stationary state, i.e., as soon as the total fixation is

achieved, the process immediately starts from the beginning. This elimi-

nates any free-energy bias between the initial and final states of the system.

Then the inverse of the residence time correlates with effective free-energy

for this state. This is because the longer the system is occupying the given

state, the lower is the corresponding ‘‘free energy.’’ Finally, the cancer initi-

ation process is viewed as a motion in this effective potential between initial

and end states. The initial state has one mutated cell with only one mutation,

and the final state has all cells with all possible mutations. The analysis of

stochastic dynamics in free-energy landscapes has been widely explored for

understanding the mechanisms of various complex processes in chemistry,

physics, and biology (24,25).

Let us explain in more detail the hypothesis by concentrating on a simplest

nontrivial ‘‘two-hit’’ model of cancer initiation dynamics (26,27). In this

model, which is schematically shown in Fig. 1 a, the systemmight be without

any mutations in the tissue cells (indicated by the green circle), or it might

sequentially acquire one mutation in some of the cells (indicated by the yel-

low circle), and it might finally get two mutations in all tissue cells (indicated

by red circle). Two specific examples of the processes that might follow the

‘‘two-hit’’ model, inactivation of tumor suppressor genes and chromosomal

instability, are presented in Fig. 1 b and c (3).

The total number of cells in the tissue is assumed to be equal to N, and it

is constant during the cancer initiation process (3). This is one of the fea-
tures of homeostasis that keeps the number of cells in healthy adult tissues

to be constant (3). As illustrated in Fig. 1 a, there are three types of tissue

cells that can be found in the system: normal cells without mutations (type

0), cells with one mutation (type 1), and cells with two mutations (type 2).

We define n0, n1, and n2 as the number of type 0, type 1, and type 2 cells,

respectively, which means that

n0 þ n1 þ n2 ¼ N: (1)

At some time (assumed to be t ¼ 0), one of the tissue cells gets a first

mutation with a rate u1. Sometime later, a second mutation appears in one

of the single-mutated cells with a rate u2. Note that this might happen

before all the tissue cells will have the single mutation, i.e., before the fix-

ation of the first mutation. It is realistic also to assume that the system is in a

so-called strong-selection and weak-mutation regime with u1; u2 � 1=N

(3,29–31). This is because the mutations are rare events due to a very

low probability of escaping the DNA repair mechanisms. This also means

that the dominating processes that evolve the system are cell divisions and

removals that at the same time must also keep the total number of cells in

the tissue fixed. We define cell division rates for the normal, single-mutated,

and double-mutated cells as b, br1, and br2, respectively. The parameter r1
is known as a fitness parameter, and it describes how much faster the single-

mutated cells replicate in comparison with the normal cells. It reflects the

overall physiological impact of this mutation on cellular metabolism: if

r1 < 1, the mutation is disadvantageous, r1 ¼ 1 corresponds to a neutral ef-

fect, whereas for r1 > 1 the mutation is advantageous. Similarly, the param-

eter r2 is a fitness parameter for double-mutated cells that reflects the

cumulative effect of both mutations influencing the cellar metabolic pro-

cesses (15).
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Because the total number of cells in the tissue is constant and equal to N,

there are ðNþ1ÞðNþ2Þ=2 possible discrete states in the system, as shown

in Fig. 2 a. Each state can be characterized by just two integer numbers

ðn1; n2Þ with 1% n1; n2 %N, which corresponds to the system having n1
cells with one mutation, n2 cells with two mutations, and N� n1 � n2 cells
without mutations. For example, the state ð1; 0Þ describes the state with one
single-mutated cell, zero cells with two mutations, and N� 1 normal cells

without mutations. The state ðN; 0Þ describes the situation when all cells

have the single mutation, i.e., this is the fixation of the first mutation. In

the state ð0;NÞ all cells are double-mutated, and this is the fixation of

both mutations, which is also assumed to be the beginning of cancer. In

our model, the cancer initiation process starts in the state ð1; 0Þ and ends

in the state ð0;NÞ: see Fig. 2. This is because we are interested in under-

standing the mutation dynamics in the tissue, and for this purpose one

should have at least one cell already mutated. It is also important to note

that the transition from the state ðN � 1; 0Þ to the state ðN; 0Þ is irreversible.
The reason is that in the state ðN; 0Þ there are no wild-type cells left, and it is
now not possible to have processes that would decrease the number of

mutated cells in the tissue.

To construct the effective free-energy landscape for the cancer initia-

tion process in the two-hit model, we need to specify the rates of all

possible transitions between different states. As shown in Fig. 2 a, there

are two types of discrete states in the system depending on the location

in the discrete-state stochastic scheme that we might label as bulk and

boundary states. It can be shown that the number of bulk states is equal

to ðN � 1ÞðN � 2Þ=2, and there are six possible stochastic transitions
FIGURE 2 (a) A schematic view of the two-dimensional state space associat

blue dashed lines, and a possible stochastic tunneling is shown with a red dashe

n1; n2 corresponds to a population with n1 cells of type 1 and n2 cells of type 2
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out of each of them (see Fig. 2 b). The horizontal forward transition rate

from the state ðn1; n2Þ to the state ðn1 þ1; n2Þ is given by the rate

ðN � n1 � n2Þu1 þ r1cn1 ;n2 (Fig 2 b). The first term in this rate reflects

the possibility of acquiring the first mutation by any of the normal cells

(N � n1 � n2 of those), whereas the second term reflects the cell repli-

cation by the mutated cell and the removal of the normal cell. The hor-

izontal backward transition rate from the state ðn1; n2Þ to the state

ðn1 � 1; n2Þ is given by cn1 ;n2, reflecting the cell replication of the normal

cell and the removal of the single-mutated cell. Similarly, as shown in

Fig. 2 b, the forward vertical transition rate from the state ðn1; n2Þ to

the state ðn1; n2 þ1Þ is given by r2an1 ;n2, and the vertical backward tran-

sition rate is an1 ;n2 . In these cases, the changes in the number of double-

mutated cells are taking place only via the cell divisions of the double-

mutated cells and removal of the normal cells. More complex processes

are taking place in diagonal transitions (see Fig. 2 b). The forward diag-

onal transition rate to go from the state ðn1; n2Þ to the state

ðn1 � 1; n2 þ1Þ is equal to n1u2 þ r2dn1 ;n2 . Again, the first term reflects

the possibility of the single-mutated cells to acquire the second mutation

(n1 single-mutated cells in the system in the starting state), and the sec-

ond term is due to the cell replication of the double-mutated cell and the

removal of the single-mutated cell. Then the backward diagonal transi-

tion from the state ðn1; n2Þ to the state ðn1 þ1; n2 � 1Þ is given by

r1dn1 ;n2 , which corresponds to the cell replication of the single-mutated

cell and the removal of the double-mutated cell. In the supporting mate-

rial, we explicitly show how to evaluate the transition rates an1 ;n2 , cn1 ;n2 ,

and dn1 ;n2 , yielding the following expressions
ed to fixation of two mutations. Sequential fixation pathway is shown with

d line. (b) The corresponding stochastic transition in the system. Each state

. To see this figure in color, go online.
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an1;n2 ¼ bn2ðN � n1 � n2Þ
N � n1 þ 1

;

dn1;n2 ¼ bn1n2
n1 þ n2 þ 1

; cn1;n2 ¼ bn1ðN � n1 � n2Þ
N � n2 þ 1

:

(2)

Asone can see fromFig. 2a, there are also3N boundary states that lie on the

horizontal, vertical, and diagonal axes. They correspond to the situation with

n0 ¼ 0 (only single- or double-mutated cells, diagonal line) or n1 ¼ 0 (only

normal or double-mutated cells, vertical line) or n2 ¼ 0 (only normal or sin-

gle-mutated cells, horizontal line). The number of stochastic transitions out of

these states varies between 1 and 3, which is less than 6 due to the boundary

location, but the specific rates follow the same rules as for the bulk states.

Knowing all the transition rates between different states allows us to eval-

uate the average residence times in each state. For any bulk state ðn1;n2Þ, we
have and similar expressions can be also obtained for the boundary states.
Tn1;n2 ¼ 1

ð1þ r2Þan1;n2 þ ð1þ r1Þcn1;n2 þ ðr1 þ r2Þdn1;n2 þ n1u1 þ u1ðN � n1 � n2Þ; (3)
This is closely related to our recent study on temporal order of mutations in

cancer where we also utilized a free-energy landscape picture to clarify the

underlying microscopic processes (15). Then the effective free-energy po-

tential for the system can be estimated via the inverse residence times as

Geff ðn1; n2Þxln
1

Tðn1; n2Þ: (4)

This can be justified by noting that the residence times in each state might

be viewed as proportional to the probability for the system to be found in the

given state, exp½ � Geff =kBT�. The results of our estimates for the effective

free-energy landscape are presented in Fig. 3 a. One can see that there is a

broad effective free-energy mountain that correspond to the most bulk states

surrounded by free-energy valleys that correspond to the boundary states.

The cancer initiation dynamics in the two-hit model can be investigated by

analyzing stochastic transitions in the effective discrete-state scheme pre-

sented in Fig. 2 a. There are several ways it can be done. In this work, we

employ the method of first-passage probabilities that was already successfully

applied in earlier studies of cancer initiation dynamics (14,15). In this

approach, one could define functions Fðn1; n2; tÞ as the probability to reach

the final fixation state ð0;NÞ at time t given that system starts at state

ðn1; n2Þ at time t ¼ 0. The temporal evolution of these functions is described

by a set of following backward master equations,
dFðn1; n2; tÞ
dt

¼ r2an1;n2Fðn1; n2 þ 1; tÞþ an1;n2Fðn1; n2 �
þcn1;n2Fðn1 � 1; n2; tÞþ dn1;n2Fðn1 þ 1; n2 þ
� ½ð1þ r2Þan1;n2 þð1þ r1Þcn1;n2 þðr1 þ r2Þdn1
for the bulk states. Similar, but simpler expressions can be obtained for the

boundary states. In addition, we have an initial condition Fð0; N; tÞ ¼
dðtÞ, which means that the fixation is instantaneous if the system already

starts in the final state. The first-passage probability functions should provide

a full description of cancer initiation process.We are particularly interested in

the mean fixation probabilitiesPn1 ;n2 ¼ RN
0

Fðn1; n2; tÞdt and the mean fix-

ation times Tn1;n2 ¼ RN
0

tFðn1;n2; tÞdt=Pn1 ;n2 , starting from the state ð1; 0Þ.
This first-passage approach allows us to obtain exact results but only

small values of N. In the supporting material, we provide detailed deriva-

tions (supported by Monte Carlo computer simulations) for N ¼ 2 and

N ¼ 3 systems. However, the typical number of tissues cells is much

larger, and it ranges from Nx105 to Nx109, but at these conditions, it is

not feasible to get explicit solutions. It is possible, however, to investigate

the cancer initiation dynamics in the system using Monte Carlo computer

simulations, but even this approach is challenging because the total number

of states is of the order of xN2.

The analysis of the free-energy landscape presented in Fig. 3 a suggests

another strategy to investigate the cancer initiation dynamics. Because the
bulk states correspond to an effective maximum, it is reasonable to assume

that the number of pathways going via these states will not be large. This

suggests that the dominating pathways on the route to the two-mutations

fixation must be those that follow only the boundary states. There are

two such pathways, as illustrated in Fig. 3 b. Then, instead of trying to ac-

count for all possible pathways in the system, the realistic description of the

cancer initiation process can be obtained by considering only these two

pathways. This significantly simplifies theoretical analysis, and it also al-

lows to understand better the underlying microscopic picture. The main

reason for the boundary pathways dominating the fixation dynamics is

that there are few transitions out of each of those states, leading to longer

residence times on them. This would translate then to the lower effective

free energies, which corresponds to boundary pathways being the preferred

routes in the mutation fixation in these systems.

The dynamics of cancer initiation in the stochastic model that accounts

only for the boundary states (see Fig. 3 b) can be explicitly analyzed as

shown in detail in the supporting material. More specifically, the expression

for the two-mutations fixation probability starting from the state ð1; 0Þ is
given by

P1;0 ¼
1þ u2

Q1
G1

h
1þPN� 1

k ¼ 1

Qk
j ¼ 2

cj;0
Qj

i
PN� 1

k ¼ 1

Qk
j ¼ 1

cj;0
Qj
þ u2

Q1

h
1þPN� 1

k ¼ 1

Qk
j ¼ 2

cj;0
Qj

i; (6)
1; tÞþ ðr1cn1;n2 þðN � n1 � n2Þu1ÞFðn1 þ 1; n2; tÞ
1; tÞþ ðn1u2 þ dn1;n2ÞFðn1 � 1; n2 þ 1; tÞ
;n2 þ n1u1 þ u1ðN � n1 � n2Þ�Fðn1; n2; tÞ;

(5)
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FIGURE 3 (a) Effective free-energy potential in the space of all possible states (n1;n2), which is proportional to inverse residence times in each state,

Geff ðn1;n2Þx1=Tðn1;n2Þ. In calculations N ¼ 50, r1 ¼ 1:1, r2 ¼ 1:2, u1 ¼ 0:1
N , and u2 ¼ 0:2

N were utilized. (b) Schematic view of the optimal pathways

that include only the boundary states. To see this figure in color, go online.
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where

Qn ¼ ðN � nÞu1 þ r1cn;o (7)

is the forward transition rate (Fig. 3 b) for the states on the horizontal axis

(n2 ¼ 0); and

G1 ¼ 1 � 1=r2
1 � 1=rN2

(8)

is the fixation probability starting from the state ð0; 1Þ (one double-mutated

cell).

The results of theoretical calculations are presented in Fig. 4 for various

sets of parameters. It is found that in the weak mutation limit (u1;u2 � 1=

N), the fixation probability depends strongly on the fitness parameter r1 and

weakly on the fitness parameter r2. This is because in this limit Eq. (6) sim-

plifies into

P1;0x
1 � 1=r1
1 � 1=rN1

; (9)

which is essentially the expression for the fixation of the first mutation. One

can easily understand this from the scheme in Fig. 3 b. In the weak mutation

limit, the dominating pathway is the horizontal-diagonal path, whereas the

vertical path has a very low contribution. In addition, it is enough to reach

the state ðN; 0Þ for evaluating the overall fixation probability because the

transition to this state is irreversible. These arguments suggest that the over-

all fixation of two mutations in the model with only boundary states can be

well approximated by the fixation of the first mutation.

The mean fixation times can also be derived using the same method of

calculations as for the fixation probabilities as explained in the supporting

material. But it is more instructive to use the following arguments to derive

the approximate expression, which also explains better the microscopic pro-

cesses in the system. Utilizing the previous theoretical analysis (14,15), the

mean fixation time for two mutations can be approximated as

TðboundaryÞ x T1 þ T2 þ T3 þ T4 þ T5; (10)
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where

T1 ¼ N þ 1

b

XN� 1

n ¼ 1

1

nðN � nÞ
�
rn1 � 1

r1 � 1

��
rN� n
1 � 1

rN1 � 1

�
;

(11)

"
N
#

T2 ¼ 1

Nu2

1 � ðr1=r2Þ
1 � r1=r2

; (12)

XN� 1
 

N� n
!

T3 ¼ N þ 1

br2 n ¼ 1

1

nðN � nÞ
1 � ðr1=r2Þ

1 � r1=r2
; (13)

1

T4 ¼

u2 þ c1;0 þ ðN � 1Þu1 þ r1c1;0
; (14)

N þ 1 XN� 1 1
�
rn � 1

��
rN� n � 1

�

T5 ¼

b
n ¼ 1

nðN � nÞ
2

r2 � 1
2

rN2 � 1
:

(15)

We also have from Eq. (2) that c1;0 ¼ bðN� 1Þ
ðNþ1Þ . This expression implies

that there are five contributions to the mean fixation time. The first term,

T1, describes the time it takes to move along the horizontal pathway to reach

the state ðN;0Þ, and it corresponds to the mean fixation time of only the first

mutation. The second term, T2, evaluates the average time to move from the

horizontal path to the diagonal path. It reflects possible multiple reversible

transitions between the state ðN; 0Þ and ðN � 1; 1Þ. The third term, T3, de-
scribes the average time to be on the diagonal path before reaching the full

fixation. The fourth term, T4, is the time to jump from the horizontal path to

the vertical path, and it is given by the residence time in the state ð1; 0Þ.
Finally, the fifth term, T5, describes the average time on the vertical path

before reaching the fixation. Our approximate expression for the mean



FIGURE 4 (a) Fixation probability for the

model with only boundary states as a function of

the fitness parameter r1 for different values of the

fitness parameter r2. Note that several curves are

on the top of each other, i.e., no dependence on

r2 is observed. (b) Mean fixation times for the

model with only boundary states as a function of

the fitness parameter r1 for different values of the

fitness parameter r2. In calculations, the parameters

N ¼ 100, u1 ¼ 0:1
N , and u2 ¼ 0:2

N were utilized.

To see this figure in color, go online.
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fixation times has been tested with Monte Carlo computer simulations (not

shown here), and good agreement is found, especially in the most biologi-

cally relevant regions of r1 > 1 and r2 > 1.

The results of calculations for the mean fixation times in the model with

only boundary states are presented in Fig. 4 b. Two different behaviors are

observed depending on the value of the fitness parameter r2. If r2 is close to

1, then the monotonic increase in the overall fixation time as a function of

the fitness parameter r1 is predicted (Fig. 4 b). One can understand this by

looking into the scheme in Fig. 3 b. The system spends most of the time on

the diagonal path. Increasing r1 significantly slows down the motion on this

path in the direction of the fixation since the single-mutated cells can repli-

cate faster than the double-mutated cells for r1 > r2. In addition, the motion

on the vertical path is also not fast due to r2x1. More interesting behavior

with a nonmonotonic dependence on r1 is observed for larger values of r2:

see Fig. 4 b. This can be again explained by exploring the stochastic scheme

in Fig. 3 b. Although r2 > r1, the slowest step in the overall fixation is a

translocation along the horizontal path. Clearly, increasing r1 will decrease

this term and accelerate the overall dynamics. However, for r2 < r1 the mo-

tion along the diagonal path will become slow. These two factors lead to the

overall nonmonotonic behavior in the system.

We hypothesize that the cancer initiation process can be well described

by analyzing only those pathways that follow the boundary states. Our

idea is supported by constructing an effective free-energy landscape

(Fig. 3 a). To fully test this proposal, we analyze the dynamics of fixation

of two mutations in the full model (with all possible discrete states) and in

the model with only boundary states using Monte Carlo computer simula-

tions for realistic sets of parameters. The results are presented in Fig. 5. In

order to fairly compare the dynamics of cancer initiation, both models (all

states and only boundary states) have been studied only with the computer

simulations, although our analytical calculations, as explained above, agree

with the computer simulations predictions for the model with only bound-

ary states.

The comparison of fixation probabilities is presented in Fig. 5 a, showing

a very good agreement for all ranges of parameters. Slight deviations be-

tween the model with optimal pathways and the full model are observed

only near r1x1. The advantage of our theoretical picture is that these ob-

servations can be explained using the schemes in Figs. 2 a and 3 b. Due

to weak mutations rates (u1;u2 � 1=N), for r1x1 the system spends a sig-

nificant amount of time in the horizontal axis of states with n2 ¼ 0. This

opens the possibility of stochastic tunneling, i.e., moving to the bulk states

and crossing them on the road to the overall fixation. Increasing the fitness

parameter r1 moves the system faster to the diagonal axis of states, from

which the stochastic tunneling is not possible: see Fig. 3 b.

The mean fixation times for the full model and for the model with only

boundary states are presented in Fig. 5 b. Although the deviations in the fix-

ation times are larger than the differences in the fixation probabilities in

some regions, the overall agreement is quite satisfactory. The model with

the optimal pathways correctly describes the overall trends and quantita-

tively agrees with the full model for r1 < 1 and for large values of this fitness

parameter. The difference found at the region around r1x1 can be ex-

plained using the same arguments as above. In this region, the system is
originally found mostly on the horizontal axis (see Fig. 3 b), opening the

possibilities for exploring the side pathways via the bulk states (stochastic

tunneling). But from these pathways the system can escape to the vertical

and diagonal axis faster than in the optimal-pathway model. This explains

why the mean fixation times in the model with the boundary states in the

region around r1x1 are larger than the mean fixation times in the full

model.
DISCUSSION

Although there are some deviations between the predictions
of the optimal-pathway model and the full model of two-
mutations fixation, it can be argued that a very simple theo-
retical picture based on utilizing the effective free-energy
landscape is capturing many features in the cancer initiation
dynamics. Importantly, it allows to significantly simplify the
analysis of the complex processes associated with the tumor
formation. Instead of looking at a very large number of
possible pathways on the road to fixation (visiting �N2

states), one might concentrate on the processes that are
going via very few pathways (visiting �N states). This al-
lows us to obtain analytical estimates that significantly
improve our understanding of the microscopic mechanisms
of underlying processes. For example, the order of muta-
tions (15) and the role of the fitness parameters now can
be explained much better.

This theoretical approach can be easily generalized to the
system with more than two mutations. If the tumor appears
after the fixation ofMmutations, then the overall number of
states in the system will be�NM, and it will be prohibitively
difficult to analyze such systems even with the most
advanced computational tools. Our method suggests that,
instead, one could mostly account only for �NM� 1 bound-
ary states. One could visualize these processes by noting
that the overall space of discrete states is occupying the
diagonally cut half of the M-dimensional cube, and the
boundary states correspond to the M þ 1 surfaces surround-
ing this figure. Furthermore, our theoretical results suggest
that in the cancer initiation processes, the dominating path-
ways are those that are less heterogeneous from the point of
view of different types of cells. In other words, in the system
with M mutations, there are M þ 1 types of cells that might
exist simultaneously (where the number of mutations range
Biophysical Journal 121, 3698–3705, October 4, 2022 3703



FIGURE 5 (a) Fixation probability for the full

model versus the model with only boundary states.

(b) Mean fixation times for the full model versus

the model with only boundary states. Solid lines

correspond to the model with only boundary states,

and dashed curves describe the full model. In cal-

culations, the parameters N ¼ 100, u1 ¼ 0:1
N ,

and u2 ¼ 0:2
N were utilized. To see this figure in co-

lor, go online.
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from zero toM), and we predict that the road to fixation fol-
lows mostly via the states with the smaller number of types
of cells. From a microscopic point of view, from the more
heterogeneous states there are more ways of escaping to
less heterogeneous states. This is another way of looking
at the effective free-energy landscape of the cancer initiation
process.

Another advantage of the proposed theoretical method is
that it can be sequentially improved by again using the
effective free-energy landscape in Fig. 3 a. To make the
description of the dynamic properties of the fixation process
more precise, one might add a few more states to the bound-
ary states. These additional states lie near the corners of the
stochastic scheme in Fig. 3 a. It is expected that this will
make the predictions for the fixation probabilities and
mean fixation times much closer to the exact values. But
importantly, this should not significantly complicate the cal-
culations of dynamic properties.

Although our theoretical approach successfully captures
the main physical features of the cancer initiation process
with multiple mutations, it is important to discuss its limita-
tions and future directions. Because before the formation of
the tumor the total number of tissue cells is constant, the cell
replications must be accompanied by cell deaths. Following
the typical procedure adopted in the field (3), we utilized the
Moran process, which is a mathematical procedure that al-
lows to keep the total number of cells in the system fixed
by following specific rules. This procedure assumes that af-
ter one cell divides, any other cell in the system can be
instantly removed with the same probability, which effec-
tively neglects the spatial structure of the tissue. But taking
into account the tissue structure, for example, by utilizing
the Moran process on graphs (32), might lead to very com-
plex dynamic phenomena. This direction will be interesting
to explore. However, there might be a more general problem
since the exact biochemical mechanisms of how the normal
tissue is regulating cell replications and deaths are still not
well understood (2). In other words, the use of the Moran
process might not be a reasonable approach, potentially
leading to some artifacts in the theoretical analysis of the
cancer initiation dynamics. One of the possible future direc-
tions is also to explore more mechanical approaches that uti-
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lize various ideas from chemistry and physics in clarifying
the cell replications and cell deaths processes (33). In addi-
tion, our theoretical approach did not distinguish the cells
with the same number of mutations but different types of
mutations. However, it is known that interactions between
different subclones might be crucial during the cancer pro-
gression. At the same time, the proposed theoretical method
can be extended in this direction. It will be important to
explore various theoretical and experimental tools for
more quantitative investigations of cancer initiation
processes.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.05.011.
AUTHOR CONTRIBUTIONS

H.T. and A.B.K. designed the research. H.T. and C.S carried out the

research. H.T. and A.B.K. wrote the article.
ACKNOWLEDGMENTS

We acknowledge the support from the Welch Foundation (C-1559), from

the NSF (CHE-1953453 and MCB-1941106), and from the Center for

Theoretical Biological Physics sponsored by the NSF (PHY-2019745).
DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

1. Weinberg, R. A. 2013. The Biology of Cancer. Garland Science.

2. Lodish, H., A. Berk, ., P. Matsudaira. 2008. Molecular Cell Biology.
Macmillan.

3. Nowak, M. A. 2006. Evolutionary Dynamics: Exploring the Equations
of Life. Harvard University Press.

4. Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell.
100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

https://doi.org/10.1016/j.bpj.2022.05.011
https://doi.org/10.1016/j.bpj.2022.05.011
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref1
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref2
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref2
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref3
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref3
https://doi.org/10.1016/s0092-8674(00)81683-9


Optimal pathways in cancer initiation
5. Tomasetti, C., and B. Vogelstein. 2015. Cancer etiology. Variation in
cancer risk among tissues can be explained by the number of stem
cell divisions. Science. 347:78–81. https://doi.org/10.1126/science.
1260825.

6. Tomasetti, C., L. Li, and B. Vogelstein. 2017. Stem cell divisions, so-
matic mutations, cancer etiology, and cancer prevention. Science.
355:1330–1334. https://doi.org/10.1126/science.aaf9011.

7. Hanahan, D., and R. A. Weinberg. 2011. Hallmarks of cancer: the next
generation. Cell. 144:646–674. https://doi.org/10.1016/j.cell.2011.02.
013.

8. Dominik, W., and K. Natalia. 2014. Dynamics of Cancer: Mathemat-
ical Foundations of Oncology. World Scientific.

9. Lahouel, K., L. Younes, ., C. Tomasetti. 2020. Revisiting the tumor-
igenesis timeline with a data-driven generative model. Proc. Natl.
Acad. Sci. U S A. 117:857–864. https://doi.org/10.1073/pnas.
1914589117.

10. Komarova, N. L., A. Sengupta, and M. A. Nowak. 2003. Mutation–se-
lection networks of cancer initiation: tumor suppressor genes and chro-
mosomal instability. J. Theor. Biol. 223:433–450. https://doi.org/10.
1016/s0022-5193(03)00120-6.

11. Iwasa, Y., F. Michor, and M. A. Nowak. 2004. Stochastic tunnels in
evolutionary dynamics. Genetics. 166:1571–1579. https://doi.org/10.
1534/genetics.166.3.1571.

12. Foo, J., K. Leder, and F. Michor. 2011. Stochastic dynamics of cancer
initiation. Phys. Biol. 8:015002. https://doi.org/10.1088/1478-3975/8/
1/015002.

13. Paterson, C., H. Clevers, and I. Bozic. 2020. Mathematical model of
colorectal cancer initiation. Proc. Natl. Acad. Sci. U S A. 117:20681–
20688. https://doi.org/10.1073/pnas.2003771117.

14. Teimouri, H., M. P. Kochugaeva, and A. B. Kolomeisky. 2019. Eluci-
dating the correlations between cancer initiation times and lifetime
cancer risks. Sci. Rep. 9:18940–18948. https://doi.org/10.1038/
s41598-019-55300-w.

15. Teimouri, H., and A. B. Kolomeisky. 2021. Temporal order of muta-
tions influences cancer initiation dynamics. Phys. Biol. 18. https://
doi.org/10.1088/1478-3975/ac0b7e.

16. Haeno, H., Y. E. Maruvka,., F. Michor. 2013. Stochastic tunneling of
two mutations in a population of cancer cells. PLoS One. 8:e65724.
https://doi.org/10.1371/journal.pone.0065724.

17. Ashcroft, P., F. Michor, and T. Galla. 2015. Stochastic tunneling and
metastable states during the somatic evolution of cancer. Genetics.
199:1213–1228. https://doi.org/10.1534/genetics.114.171553.

18. Proulx, S. R. 2011. The rate of multi-step evolution in Moran and
Wright–Fisher populations. Theor. Popul. Biol. 80:197–207. https://
doi.org/10.1016/j.tpb.2011.07.003.
19. Weinreich, D. M., and L. Chao. 2005. Rapid evolutionary escape by
large populations from local fitness peaks is likely in nature. Evolution.
59:1175–1182.

20. Weissman, D. B., M. M. Desai, ., M. W. Feldman. 2009. The rate at
which asexual populations cross fitness valleys. Theor. Popul. Biol.
75:286–300. https://doi.org/10.1016/j.tpb.2009.02.006.

21. Guo, Y., M. Vucelja, and A. Amir. 2019. Stochastic tunneling across
fitness valleys can give rise to a logarithmic long-term fitness trajectory.
Sci. Adv. 5:eaav3842. https://doi.org/10.1126/sciadv.aav3842.

22. Tang, E., J. Agudo-Canalejo, and R. Golestanian. 2021. Topology pro-
tects chiral edge currents in stochastic systems. Phys. Rev. X.
11:031015.

23. Sherr, C. J. 2004. Principles of tumor suppression. Cell. 116:235–246.
https://doi.org/10.1016/s0092-8674(03)01075-4.

24. Kolomeisky, A. B. 2015. Motor Proteins and Molecular Motors. CRC
Press.

25. Phillips, R., J. Kondev, ., N. Orme. 2012. Physical Biology of the
Cell. Garland Science.

26. Knudson, A. G. 1971. Mutation and cancer: statistical study of retino-
blastoma. Proc. Natl. Acad. Sci. U S A. 68:820–823. https://doi.org/10.
1073/pnas.68.4.820.

27. Knudson, A. G. 2001. Two genetic hits (more or less) to cancer. Nat.
Rev. Cancer. 1:157–162. https://doi.org/10.1038/35101031.

28. Nowak, M. A., N. L. Komarova, ., C. Lengauer. 2002. The role of
chromosomal instability in tumor initiation. Proc. Natl. Acad. Sci.
U S A. 99:16226–16231. https://doi.org/10.1073/pnas.202617399.

29. Lynch, M. 2010. Rate, molecular spectrum, and consequences of hu-
man mutation. Proc. Natl. Acad. Sci. U S A. 107:961–968. https://
doi.org/10.1073/pnas.0912629107.

30. Orr, H. A. 2005. The genetic theory of adaptation: a brief history. Nat.
Rev. Genet. 6:119–127. https://doi.org/10.1038/nrg1523.

31. Gillespie, J. H. 1984. Molecular evolution over the mutational land-
scape. Evolution. 38:1116–1129. https://doi.org/10.1111/j.1558-5646.
1984.tb00380.x.

32. Lieberman, E., C. Hauert, and M. A. Nowak. 2005. Evolutionary dy-
namics on graphs. Nature. 433:312–316. https://doi.org/10.1038/na-
ture03204.

33. Sinha, S., A. N. Malmi-Kakkada, ., D. Thirumalai. 2020. Spatially
heterogeneous dynamics of cells in a growing tumor spheroid: compar-
ison between theory and experiments. Soft Matter. 16:5294–5304.
https://doi.org/10.1039/c9sm02277e.
Biophysical Journal 121, 3698–3705, October 4, 2022 3705

https://doi.org/10.1126/science.1260825
https://doi.org/10.1126/science.1260825
https://doi.org/10.1126/science.aaf9011
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref8
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref8
https://doi.org/10.1073/pnas.1914589117
https://doi.org/10.1073/pnas.1914589117
https://doi.org/10.1016/s0022-5193(03)00120-6
https://doi.org/10.1016/s0022-5193(03)00120-6
https://doi.org/10.1534/genetics.166.3.1571
https://doi.org/10.1534/genetics.166.3.1571
https://doi.org/10.1088/1478-3975/8/1/015002
https://doi.org/10.1088/1478-3975/8/1/015002
https://doi.org/10.1073/pnas.2003771117
https://doi.org/10.1038/s41598-019-55300-w
https://doi.org/10.1038/s41598-019-55300-w
https://doi.org/10.1088/1478-3975/ac0b7e
https://doi.org/10.1088/1478-3975/ac0b7e
https://doi.org/10.1371/journal.pone.0065724
https://doi.org/10.1534/genetics.114.171553
https://doi.org/10.1016/j.tpb.2011.07.003
https://doi.org/10.1016/j.tpb.2011.07.003
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref19
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref19
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref19
https://doi.org/10.1016/j.tpb.2009.02.006
https://doi.org/10.1126/sciadv.aav3842
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref22
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref22
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref22
https://doi.org/10.1016/s0092-8674(03)01075-4
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref24
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref24
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref25
http://refhub.elsevier.com/S0006-3495(22)00404-0/sref25
https://doi.org/10.1073/pnas.68.4.820
https://doi.org/10.1073/pnas.68.4.820
https://doi.org/10.1038/35101031
https://doi.org/10.1073/pnas.202617399
https://doi.org/10.1073/pnas.0912629107
https://doi.org/10.1073/pnas.0912629107
https://doi.org/10.1038/nrg1523
https://doi.org/10.1111/j.1558-5646.1984.tb00380.x
https://doi.org/10.1111/j.1558-5646.1984.tb00380.x
https://doi.org/10.1038/nature03204
https://doi.org/10.1038/nature03204
https://doi.org/10.1039/c9sm02277e

	Optimal pathways control fixation of multiple mutations during cancer initiation
	Introduction
	Methods
	Discussion
	Supporting material
	Author contributions
	Acknowledgments
	Declaration of interests
	References


