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Abstract
The adsorption of polymers to surfaces is crucial for understanding many fundamental
processes in nature. Recent experimental studies indicate that the adsorption dynamics is
dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of
length N to a planar solid surface in the absence of hydrodynamic interactions. We find that for
weak adsorption energies the adsorption timescales ∼N (1+2ν)/(1+ν) , where ν is the Flory
exponent for the polymer. We argue that in this regime the single chain adsorption is closely
related to a field-driven polymer translocation through narrow pores. Surprisingly, for high
adsorption energies the adsorption time becomes longer, as it scales as ∼N1+ν , which is
explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing
surface. These two dynamic regimes are separated by an energy scale that is characterized by
non-equilibrium contributions during the adsorption process.

(Some figures in this article are in colour only in the electronic version)

Polymer adsorption is a fundamental phenomenon that controls
many natural processes [1]. The adsorption of the polymeric
molecules to different surfaces and interfaces is important for
adhesion, colloidal stabilization, development of composite
materials and coatings, for cell adhesion and communication
and for protein–DNA interactions [1, 2]. The importance
of polymer adsorption has motivated extensive experimental
and theoretical investigations to try and understand the
underlying mechanisms. As a result, the equilibrium
properties of adsorbed polymers are now well-understood [3].
However, many experimental studies [4], supported by
theoretical ones [5–7], indicate that non-equilibrium behaviour
is increasingly important in polymer adsorption dynamics.

One key parameter in polymeric adsorption is the height
of the free energy barrier that monomers have to overcome
in order to bind to the surface. If the barrier is high, one
commonly calls the adsorption process chemisorption, while in
the absence of a significant barrier it is called physisorption. A

further characterization of physisorption involves the strength
of the binding interaction between each monomer and the
surface. If this interaction is of the order of kBT , the
process is called weak physisorption, while one speaks of
strong physisorption in the case of interactions of about 10kBT
or more, as for instance typically encountered for hydrogen
bonding.

In chemisorption, the high barrier faced by monomers
attaching to the surface slows down the adsorption process;
this allows the adsorbed part of the polymer chain to
partially relax in effectively equilibrium conformations, giving
rise to the formation of large loops via the accelerated
zipping mechanism [7, 8]. The absence of a significant
barrier makes non-equilibrium effects even more important in
physisorption [4, 7]. It is not clear what mechanisms drive the
polymer adsorption away from equilibrium in this regime [7].
One of the possible contributions is the interaction between
neighbouring polymer molecules that can significantly slow
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down the overall dynamics. This source of deviation
from equilibrium is commonly eliminated by considering the
adsorption dynamics of single polymers [7, 9–12].

The adsorption of single macromolecules for weak
polymer–surface interactions has been investigated by a com-
bination of analytical and computational methods [7, 9–14].
Monte Carlo simulations with the bond fluctuation model
revealed significant deviations from equilibrium dynam-
ics [9, 10]. The adsorption time was reported to scale as
∼N1.57±0.07 for self-avoiding polymers, while the exponent is
equal to 1.50±0.04 when the excluded volume interactions are
neglected. Computer simulations and an approximate theory
were also used to investigate irreversible adsorption of tethered
chains [13, 14]. These investigations assumed that during the
adsorption the polymer molecule has three parts: a segment
of already bound monomers, a stretched linear part (‘stem’)
and the remaining part (‘flower’) which is not affected by the
force of adsorption. This theoretical model yields an adsorp-
tion time scaling as ∼Nα with α = 1 + ν ≈ 1.59. Here ν

is the Flory exponent for the polymer, and ν ≈ 0.588 in three
dimensions. Simultaneously, in the Monte Carlo simulations a
smaller value of α, namely ≈1.51, has been observed [14], but
it was argued that finite-size effects were responsible for this
discrepancy. The stem–flower model was originally proposed
by Brochard-Wyart [15] for polymer chains under strong flows
(under constant and very large flow velocity). It has a clear
physical picture that allows one to obtain specific predictions
for the dynamical properties. However, the growth velocity of
the adsorbed polymer has been shown to be not large [13, 14],
not constant, and in time it even decays to zero; hence the va-
lidity of the stem–flower model to adsorption in all situations is
questionable. Thus, despite many attempts, mechanisms of sin-
gle polymer binding to surfaces are still not well-understood.
In this paper we present theoretical arguments supported by
simulation data that clarify several non-equilibrium features of
single polymer adsorption.

During binding to the surface the polymer molecule can be
viewed as consisting of two segments: the adsorbed monomers
and the block of free monomers not on the surface. Theoretical
studies argue that adsorption (for weak interactions) can be
viewed as a sequential zipping process [13, 14] in which
the size of the adsorbed block increases by one monomer
a time. This sequential mechanism suggests that the single
polymer adsorption process is closely related to field-driven
polymer translocation (detailed later in the text), which has
been intensively studied in recent years [16, 22]. During field-
driven translocation, the polymer molecule moves through a
pore sequentially, decreasing the number of monomers on the
cis side of the pore and sequentially increasing the number of
monomers on the trans side of the pore. Theoretical studies
of translocation based on the microscopic dynamics of the
polymer [16, 17] showed that memory effects are crucial for
understanding this process. The memory effects appear to be
due to the finite time to dissipate away or replenish the local
enhancement in the density of monomers at the pore. From
these works on translocation, it is reasonable to expect that the
same memory effects in the polymer should also play a role in
the adsorption of single polymers to a surface.

Figure 1. Schematic view of single polymer adsorption to a planar
surface. Unfilled circles correspond to binding sites available for
adsorption by monomers. Red filled circles describe the surface sites
already occupied by the polymer. Black filled circles represent
monomers that are not adsorbed on the surface yet.

Consider a single polymer molecule that is near a solid
surface, which starts to adsorb to the surface as shown in
figure 1. We assume that there are uniformly distributed
binding sites on the surface, that the energy of adsorption per
site is equal to ε, and that the distance between binding sites is
the same as the size of each monomer. We then use a Monte
Carlo based FCC-lattice polymer code in three dimensions for
self-avoiding polymers, with the rigid flat surface placed at
z = 0, and study the adsorption dynamics for a variety of
polymer lengths and for different strengths of the adsorption
energy, in the absence of hydrodynamic interactions. In
this polymer model the individual monomers perform both
reptation and ‘sideways’ movements [18] with each kind of
movement attempted with frequency unity, which provides
us with the definition of time. This model has been used
before to simulate the diffusion and exchange of polymers in
an equilibrated layer of adsorbed polymers [19]. Recently, we
have used this code extensively to study polymer translocation
under a variety of circumstances [16, 17, 20].

The process of adsorption involves a change in the free
energy �F for the polymer: the polymer loses energy due
to the attractive interaction between the surface and the
monomers, and loses entropy as adsorption makes the polymer
collapse into two dimensions from three. The value of the
adsorption energy ε dictates the sign of �F , and thereby
determines the fate of a partially adsorbed polymer. At
high adsorption energies, the polymer will nearly completely
adsorb since adsorption is energetically favoured, while at
low adsorption energies it will desorb since desorption is
entropically favoured. In between, there is a critical value ε∗
at which a partially adsorbed polymer will both adsorb and
desorb with equal probability, for which the entropy gain for
desorption is exactly compensated by the energetic gain for
adsorption.

Consider a partially adsorbed polymer of length N , with
m monomers (counting from one end) completely adsorbed
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Table 1. The critical desorption rate v∗ = exp[−ε∗/(kBT )] as a
function of polymer length N .

N v∗

100 0.405
120 0.395
140 0.392
160 0.38
200 0.365
400 0.36
800 0.342

on the surface while the rest (N − m) of the monomers
are moving freely (off the surface). If one assumes that
the adsorbed part of the polymer takes the form of a self-
avoiding random walk on the two-dimensional adsorbing
plane, then the partition function of this polymer is given
by Z = [A2μ

m
2 mγ (2D)−1][A3μ

(N−m)
3 (N − m)γ

(3D)
1 −1]. Here,

γ (2D) = 49/32 and γ
(3D)
1 ≈ 1.16 are two universal scaling

exponents [21], and A2, A3, μ2 and μ3 are model-dependent
quantities. For this partially adsorbed polymer ∂�F(ε)

∂m can be

estimated as ∂�F(ε)

∂m � −ε+kBT ln(μ3/μ2)+1/N corrections.

Equating ∂�F(ε)

∂m to zero then yields the critical adsorption
energy ε∗ � kBT ln(μ3/μ2) in the limit of N → ∞. Note
that this expression is only an estimate, since in the adsorbed
state not all monomers of the polymer adhere to the surface;
moreover, as has been demonstrated in [13], the adsorbed part
of the polymer takes a very compact conformation—much
more compact than a self-avoiding walk in two dimensions.
Nevertheless, ∂�F(ε∗)

∂m = 0 shows that ε∗ is of the order of kBT .
For our model we determine ε∗ in the following manner.

We start with a polymer of length N with N/2 monomers
from one end constrained to the surface (i.e. constrained to
z = 1) without an adsorption energy, while the remaining
N/2 monomers are free, and equilibrate the polymer under
this constraint (the free N/2 monomers encounter the surface
only as a planar obstacle). At time t = 0, an adsorption
energy ε is introduced, and simultaneously the constraint is
lifted. We repeat this exercise for polymer lengths ranging
from N = 100 to 800, while tuning the suppression of the
desorption rate by a factor of v ≡ exp[−ε/(kBT )], until,
on average, the adsorbed part of the polymer neither grows
nor shrinks. The results for the critical values v∗ for several
polymer lengths are summarized in table 1; from this table
we conclude that v∗ ≈ 0.34 ± 0.01 for our model, and thus
that ε∗/(kBT ) = 1.08 ± 0.03. Since we use ε � 2kBT ,
our polymers always adsorb, and any reference to high or low
adsorption energies will henceforth refer to ε > ε∗.

The specific manner in which we simulate surface
adsorption is as follows. We take a polymer of length (N +n∗)
with n∗ monomers from one end constrained to z = 1 without
an adsorption energy (a process we term ‘grafting’ for later
reference), and equilibrate the rest of the polymer in z > 0,
i.e. during the equilibration process the N free monomers
encounter the surface only as a planar obstacle. We index the
monomers consecutively along the chain, starting with i =
−n∗ for the grafted end. The free end is thus indexed by i = N ,
and the last grafted monomer corresponds to i = 0. At t = 0

we switch on the attractive interaction between the monomers
and the surface, and simultaneously lift the constraint. The
dynamics of the polymer for t > 0 is then governed by,
in addition to self-avoiding polymer dynamics, the fact that
the ratio of probability of a monomer (including the grafted
monomers) jumping from z = 1 to 2 and that of a monomer
jumping from z = 2 to 1 is given by the Boltzmann ratio
exp[−ε/(kBT )]. Throughout this paper we choose n∗ = 30;
since we use adsorption energies higher than or equal to 2kBT ,
this implies that the probability for the entire polymer to detach
from the surface is practically zero. It should be noted also that
the specific value of n∗ does not affect the adsorption dynamics
as long as n∗ 	 N .

Given this setup, on average we expect the monomers to
be adsorbed on the surface in a sequential zipping manner:
on average monomer n1(>0) will be adsorbed on the surface
(i.e. attain z = 1) for the first time earlier than monomer n2 >

n1. For future reference, at any time t for any configuration
of the adsorbing polymer we can identify the monomer with
the highest index n(t), which has z = 1, to be called the
‘active monomer’. This definition divides the entire polymer
into two segments: (i) a part consisting of monomers i � n(t),
largely adsorbed to the surface, and (ii) another part consisting
of monomers i > n(t) that behave as a polymer of length
[N − n(t)] tethered on the surface at the location of the active
monomer.

In light of n(t) as defined in the above paragraph, it is
important to note that our setup involving the initial grafting
of the polymer—albeit simplified—does capture the adsorption
dynamics in a real situation. In reality, a long polymer does not
adsorb starting from one end; almost always it starts to adsorb
somewhere in the middle. Imagine, for a polymer of length
N , a situation when the monomer with index n0 (somewhere
in the middle of the polymer), is the first one to adsorb. By
definition, this monomer immediately divides the polymer into
two separate ‘sub-polymers’—of lengths n0 and (N − n0),
respectively. If ε > ε∗, then (on average) these two sub-
polymers will start being adsorbed independently (in stating
this, we disregard the steric interactions between them) from
their common end: one from monomer n0 towards monomer 1,
and the other from monomer n0 towards N . The adsorption
dynamics for a polymer in a real situation—at least in the
scaling sense, which is the main focus of this paper—is the
same as that of the polymer in our setup (which starts to
adsorb from one end). Our setup—similar to the existing
ones [13, 14]—therefore is purely a choice of convenience to
study the adsorption dynamics in a real situation.

Returning to our setup, if adsorption were a sequential
zipping process for every single realization, then the adsorption
dynamics can be described solely by the active monomer index
n(t) as a function of time, and the dynamics of adsorption
can be mapped exactly on to that of field-driven translocation.
More precisely, in polymer translocation driven by a potential
difference �V across the pore, when a monomer crosses from
the cis (trans) to the trans (cis) side, the length of the polymer
segment on the cis side reduces (increases) by one monomer
with an energy gain (penalty) of magnitude q�V , where q
is the charge of one monomer. Similarly, (a) if the active
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monomer happens to detach from the surface (with an energetic
penalty ε) then the length of part (ii) of the polymer increases
by roughly one monomer; (b) alternatively, if the index of
the active monomer increases by one (with an energy gain of
ε), then the length of part (ii) of the polymer decreases by
one monomer. In reference [16], based on memory effects
in polymer dynamics, two of us showed that the total number
of translocated monomers at time t increases as a power-law
∼t (1+ν)/(1+2ν) at weak fields; recently, this has been confirmed
by different polymer models [22, 23]. This implies that if the
adsorption process were a sequential zipping process for every
single realization for our setup, n(t) would scale ∼t (1+ν)/(1+2ν).
Based on this result—although in a real situation adsorption
is a sequential zipping only on average, and not for every
single realization—on average we expect n(t) to increase in
time t also as ∼t (1+ν)/(1+2ν) for our setup, i.e. the adsorption
timescales as ∼N (1+2ν)/(1+ν) , when the adsorption energies are
not very high. We demonstrate this in the paragraphs below.

It is important to note that during adsorption for our
setup, a monomer with index [n(t) + n1] may get adsorbed
by the surface before any of the in between monomers (with
indices n(t) + 1, . . . , n(t) + n1 − 1) do. For such an
event, the adsorbed part of the polymer is said to form a
‘loop’ of length n1 between monomers with indices n(t) and
[n(t) + n1]; in fact, it is precisely such ‘loop formations’
that prevent adsorption—unlike translocation, for which the
first passage of the monomers through the pore takes place
strictly sequentially—from being a sequential zipping process
for every single realization. Consequently, the traditional
way to follow the progress of adsorption for our setup is to
track the average total number of adsorbed monomers s(t)
at time t , so that s(τad) ∼ N would define the adsorption
time τad. However, since s(t) for any single realization will
saturate at a value ∼O(N), care needs to be taken in measuring
s(t), otherwise saturation effects might affect the numerical
determination of the true exponent. In order to avoid saturation
effects, we define tn as the average time, and sn as the average
number of adsorbed monomers when the nth monomer attains
z = 1 for the first time, with the condition that no monomer
with index >n has ever attained z = 1. Since tn is defined only
until n = N , this method ensures that sn never saturates.

Indeed, we find that adsorption of the individual
monomers is not a sequential process for every single
realization precisely because of the loop formations as
discussed above paragraph; however, as shown in figure 2,
sn does scale linearly with n, confirming that adsorption on
average is indeed a sequential zipping process. This property
ensures that the exponent we get for sn as a function of tn is
the same as the one that one would get from tracking s(t) as a
function of t . A remarkable feature of figure 2 is the collapse
of all sn versus n curves on a single master curve: it shows that
the proportion of monomers in the loops within the adsorbed
part of the polymer, given by (n − sn), is independent of ε, a
feature that we will return to shortly.

In figure 3(a) we present the data for weak interactions
with the surface, i.e. when the adsorption energy is not too high
(ε � 5), for which we do obtain the exponent (1+ν)/(1+2ν),
corresponding to τad ∼ N (1+2ν)/(1+ν) . Additionally, the data

Figure 2. Scaling of sn as a function of n, for several values of N
and ε; all curves collapse on a single master curve, corresponding to
the scaling sn ∼ n, represented by the solid black line.

exhibit energy-dependence (see the inset, and also figure 3(c)),
demonstrating that for ε � 5 the higher adsorption energy also
yields faster adsorption, like higher field means shorter (field-
driven) translocation time at weak fields [16]. The situation
changes for stronger interactions (ε > 5): in figure 3(b), we
register a slowly decreasing slope in the tn–sn log–log plot
with increasing adhesion energy; eventually for the virtually
irreversible adhesion process ε = 25, we recover an exponent
1/(1 + ν), i.e. τad∼N1+ν , in agreement with [9, 10, 13, 14].
For these values of ε, τad is independent of ε.

The surprising aspect of two different scaling regimes for
sn versus tn , as shown in figures 3(a) and (b), is that for long
enough polymers adsorption is faster for low ε-values than
for high ε-values. This is demonstrated in figure 3(c). In
fact, figure 3(c) leaves one wondering whether the slowdown
of adsorption is due to phenomena at the adsorbing surface
that are different for strong adsorption energies and weak
adsorption energies. For example, for high ε-values it has been
shown in [13] that the adsorbed part of the polymer takes a
very compact form. Based on the result of [13], it may be
argued that since for high ε-values the individual monomers
are essentially irreversibly adsorbed, the polymer needs to form
systematically bigger loops to access available surface sites for
adsorption, a phenomenology that is absent for low ε-values;
and as a result adsorption is slower for high ε-values than for
low ε-values. Such a possibility is, however, ruled out by the
collapse of the data over a very wide range of ε values in
figure 2: it shows that on average the fraction of monomers in
the loops (given by (n−sn)) has no dependence on ε; i.e. steric
hindrance due to the adsorbed part of the polymer does not
cause the slowdown of adsorption at high ε-values. Instead, as
explained quantitatively below, the physics of the slowdown
of adsorption at larger ε-values is explained by the lack of
availability of not-yet-adsorbed monomers near the surface.

For high adsorption energies the monomers that were
close to the surface at t = 0 initially get quickly and effectively
irreversibly adsorbed, while the monomers that are far away
from the surface at t = 0 cannot respond to this fast change
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Figure 3. (a) Weak adsorption data for N = 1000 (from left to right) ε = 2 (black), ε = 3 (blue), ε = 4 (magenta) and ε = 5 (orange): the
data are progressively separated by a factor of 2 along the x-axis for clarity. The original data are shown in the inset in the same colour
scheme. The solid (black) line corresponds to an exponent (1 + ν)/(1 + 2ν) � 0.73. (b) Strong adsorption data for N = 1000 (from left to
right) ε = 6 (red), ε = 7 (blue), ε = 8 (magenta), ε = 9 (orange), ε = 10 (brown) and ε = 25 (green): the data are progressively separated by
a factor of 1.5 along the x-axis for clarity. The original data are shown in the inset in the same colour scheme. The solid (black) line
corresponds to an exponent 1/(1 + ν) � 0.63. Data correspond to an average over �400 000 realizations for each value of N and ε.
(c) Comparison of adsorption speed at several energies and N-values: N = 1000, ε = 2 (red), N = 1000, ε = 3 (blue), N = 500, ε = 3
(cyan), N = 200, ε = 3 (magenta), and N = 1000, ε = 10 (black). Note that adsorption is slower for ε = 10 than for ε = 3.

in the polymer’s configuration near the surface. As a result,
during the adsorption process the polymer adopts a stretched
configuration close to the surface, while far away from the
surface the polymer remains largely in its t = 0 coiled shape:
this is the stem–flower picture of Brochard-Wyart [15]. (It is
precisely this stem–flower shape that invalidates the physics
behind the exponent (1 + ν)/(1 + 2ν), seen at low adsorption
energies. The number (1 + 2ν) in the denominator is derived
from the Rouse exponent, and the number (1 + ν) in the
numerator assumes that during adsorption the polymer’s size
scales as ∼[N−n(t)]ν ; both fail at the stem (of the stem–flower
model), which is highly stretched.) In fact, the occurrence
of ν in the exponent 1/(1 + ν) at high adhesion energies
stems from the polymer’s size-scaling Nν at t = 0, as we
argue next. Let us denote, by z(t), the distance that the stem
extends in real space from the surface at time t . The total
number of monomers in the flower at time t—still largely in
the same coil shape as at t = 0—is Q(t) ∼ N − z(t)1/ν . In
such a configuration, the flower would lose monomers through
the stem to the surface, and the rate of loss of monomers
is proportional to the gradient of monomeric density along
the stem, ∼1/z(t). The solution of the differential equation
Q̇(t) ∼ 1/z(t) yields z(t) ∼ tν/(1+ν). Since all the monomers
that were present within a distance z(t) at t = 0—apart from
the few within the stem at z(t)—are adsorbed by time t , the
total number of adsorbed monomers at time t scales as s(t) ∼
z(t)1/ν ∼ t1/(1+ν). Note that in this qualitative derivation there
is no dependence on the adsorption energy (except that it needs
to be high!), as observed in the inset of figure 3(b). When
hydrodynamic interactions are included, following the physics
of field-driven translocation [16] we expect the adsorption
time to scale ∼N (1+ν)/(3ν) for not too high adhesion energies;
however, at present we do not understand how cooperative
motions of the monomers in the presence of hydrodynamics
would affect the exponent at high adhesion energies.

An increase in the energy of adsorption allows one to
cross-over from weak to strong regimes of physisorption, both
characterized by different exponents. The remaining question
is what determines the energy scale εc that separates these
two regimes. This can be understood if we return to �F �
−ε + kBT ln (μ3/μ2), wherein the first term lowers the free
energy due to favourable adsorption to the attractive surface,
while the second term increases the free energy because of
entropy reduction by going from three dimensions to a more
constrained two-dimensional surface. It is reasonable to
suggest that two dynamic regimes of adsorption are separated
when the free energy gain per monomer is comparable with
thermal energy, i.e. |�F | � kBT . Our estimates for critical
adsorption yield μ3/μ2 ≈ 3, which leads to εc � 2.
Our simulations show that εc ≈ 5, suggesting deviations
from (equilibrium) free energy concepts in (non-equilibrium)
surface adhesion process. As shown in figure 3(c), the
adsorption proceeds faster for lower adsorption energies, with
the most optimal adsorption speed at ε close to εc. Since these
types of energies are typical for protein–DNA interactions [2],
one can suggest that this might be a mechanism by which
biological adhesion processes are controlled.

To conclude, using computer simulations and theoretical
arguments we studied single polymer adsorption to solid
surfaces in the absence of hydrodynamic interactions. Our
analysis shows that the adhesion process is non-equilibrium.
Details of the adsorption process depend on the strength of
adsorption energies: for weak (polymer–surface) interactions
the dynamics is determined by memory effects as in field-
driven polymer translocation, while for strong interactions
adsorption is limited by stretching of the unadsorbed part of
the polymer. It is argued that the adsorption process is most
optimal at low interaction energies, and this might be the
mechanism by which biological surface adhesion processes are
controlled.

5



J. Phys.: Condens. Matter 21 (2009) 242101 Fast Track Communication

DP gratefully acknowledges ample computer time on the
Dutch national supercomputer facility SARA. ABK would like
to acknowledge support from the Welch Foundation (grant C-
1559) and the US National Science Foundation (grant NIRT
ECCS-0708765).

References

[1] Fleer C J et al 1993 Polymers at Interfaces (London: Chapman
and Hall)

[2] Lodish H et al 2002 Molecular Cell Biology 4th edn
(New York: Freeman)

[3] de Gennes P G 1987 Adv. Colloids Sci. 27 189
[4] Johnson H E and Granick S 1992 Science 255 966

Douglas J F et al 1997 J. Phys.: Condens. Matter 9 7699
Minko S, Voronov A and Pefferkorn E 2000 Langmuir 16 7878

[5] Shaffer J S and Chakraborty A K 1993 Macromolecules
26 1120

[6] Raviv U, Klein J and Witten T A 2002 Eur. Phys. J. E 9 405
[7] O’Shaughnessy B and Vavylonis D 2005 J. Phys.: Condens.

Matter 17 R63
[8] O’Shaughnessy B and Vavylonis D 2003 Eur. Phys. J. E

11 213
[9] Shaffer J S 1994 Macromolecules 27 2987

[10] Ponomarev A L, Sewell T D and Durning C J 2000
Macromolecules 33 2662

[11] O’Shaughnessy B and Vavylonis D 2003 Phys. Rev. Lett.
90 056103

[12] Van Eijk M C P et al 1998 Eur. Phys. J. B 1 233
[13] Descas R, Sommer J U and Blumen A 2006 J. Chem. Phys.

124 094701
[14] Bhattacharya S et al 2008 Phys. Rev. E 77 061603
[15] Brochard-Wyart F 1995 Europhys. Lett. 30 387
[16] Vocks H et al 2008 J. Phys.: Condens. Matter 20 095224
[17] Panja D, Barkema G T and Ball R C 2007 J. Phys.: Condens.

Matter 19 432202
Panja D, Barkema G T and Ball R C 2008 J. Phys.: Condens.

Matter 20 095224
Panja D and Barkema G T 2008 Biophys. J. 94 1630

[18] van Heukelum A and Barkema G T 2003 J. Chem. Phys.
119 8197

van Heukelum A et al 2003 Macromolecules 36 6662
Klein Wolterink J et al 2005 Macromolecules 38 2009

[19] Klein Wolterink J, Barkema G T and Cohen Stuart M A 2005
Macromolecules 38 2009

[20] Wolterink J K, Barkema G T and Panja D 2006 Phys. Rev. Lett.
96 208301

[21] Diehla H W and Shpot B 1998 Nucl. Phys. B 528 595
[22] Bhattacharya A et al 2008 arXiv:0808.1868
[23] Fyta M et al 2008 Phys. Rev. E 78 036704

6

http://dx.doi.org/10.1016/0001-8686(87)85003-0
http://dx.doi.org/10.1126/science.255.5047.966
http://dx.doi.org/10.1088/0953-8984/9/37/005
http://dx.doi.org/10.1021/la000714n
http://dx.doi.org/10.1021/ma00057a036
http://dx.doi.org/10.1140/epje/i2002-10053-9
http://dx.doi.org/10.1088/0953-8984/17/2/R01
http://dx.doi.org/10.1140/epje/i2003-10015-9
http://dx.doi.org/10.1021/ma00089a014
http://dx.doi.org/10.1021/ma9808732
http://dx.doi.org/10.1103/PhysRevLett.90.056103
http://dx.doi.org/10.1007/s100510050177
http://dx.doi.org/10.1063/1.2159479
http://dx.doi.org/10.1103/PhysRevE.77.061603
http://dx.doi.org/10.1209/0295-5075/30/7/002
http://dx.doi.org/10.1088/0953-8984/20/9/095224
http://dx.doi.org/10.1088/0953-8984/19/43/432202
http://dx.doi.org/10.1088/0953-8984/20/7/075101
http://dx.doi.org/10.1529/biophysj.107.116434
http://dx.doi.org/10.1063/1.1609196
http://dx.doi.org/10.1021/ma025736q
http://dx.doi.org/10.1021/ma0488865
http://dx.doi.org/10.1021/ma0488865
http://dx.doi.org/10.1103/PhysRevLett.96.208301
http://dx.doi.org/10.1016/S0550-3213(98)00489-1
http://arxiv.org/abs/0808.1868
http://dx.doi.org/10.1103/PhysRevE.78.036704

	References

