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Localization of shocks in driven diffusive systems without particle number conservation
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We study the formation of localized shocks in one-dimensional driven diffusive systems with spatially
homogeneous creation and annihilation of particles~Langmuir kinetics!. We show how to obtain hydrodynamic
equations that describe the density profile in systems with uncorrelated steady state as well as in those
exhibiting correlations. As a special example of the latter case, the Katz-Lebowitz-Spohn model is considered.
The existence of a localized double density shock is demonstrated in one-dimensional driven diffusive systems.
This corresponds to phase separation into regimes of three distinct densities, separated by localized domain
walls. Our analytical approach is supported by Monte Carlo simulations.
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I. INTRODUCTION

One-dimensional driven diffusive systems proved to b
rewarding research topic in the past years@1#. They were
shown to exhibit boundary induced phase transitions@2#,
spontaneous symmetry breaking@3,4# and phase separatio
@5,6#. Recently, the case of systems without particle cons
vation in the bulk attracted attention. In Ref.@7#, the effect of
a single detachment site in the bulk of an asymmetric sim
exclusion process~ASEP! was studied. In Refs.@8,13#, the
interplay of the simplest one-dimensional driven model,
totally asymmetric exclusion process~TASEP! with local
absorption/desorption kinetics of single particles acting at
sites, termed ‘‘Langmuir kinetics’’~LK ! was considered
These models were inspired by the dynamics of motor p
teins@22#, which move along cytoskeletal filaments in a ce
tain preferred direction while detachment and attachment
also occur between the cytoplasm and the filament, and,
very different setting, by dynamics of limit orders in a sto
exchange market. Being an equilibrium process, LK is w
understood, while the combined process of TASEP and
showed the new feature of a localized shock in the den
profile of the stationary state@8#.

The TASEP is defined on a one-dimensional lattice of s
L. Each site can either be empty or occupied by one part
In the bulk, particles can hop from sitei to sitei 11 with unit
rate, provided the target site is empty. At site 1, particles
enter the lattice from a reservoir with densityr2 , provided
the site is empty. They can leave the system from siteL into
a reservoir of densityr1 with rate 12r1 . Thus in the inte-
rior of the lattice, the particle number is a conserved quan
The phase diagram and steady states of the TASEP as a
tion of the boundary rates are known exactly@9–11#. Fur-
thermore, a theory of boundary induced phase transitions
ists, which explains the phase diagram quantitatively
terms of the dynamics of shocks@12#. In the stationary state
these shocks exist as an upward density shock along the
existence line between the high- and the low-density pha
i.e., they connect a region with low density to the left of t
shock position with a high-density region to its right. Th
shock performs a symmetric random walk between
boundaries of the system.

One may equip the system with the additional feature
1063-651X/2003/67~6!/066117~6!/$20.00 67 0661
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local particle creation at empty sites with rateva and anni-
hilation with ratevd ~see Fig. 1! @8,13#. In the thermody-
namic limit L→`, there are three regimes to be disti
guished. Ifva and vd are of an order larger than 1/L, the
steady state of the system will be that of Langmuir kineti
i.e., there will be a uniform density ofK5va /(va1vd) in
the system. In case ofva andvd being of smaller order than
1/L, the local kinetics is negligible and the system will b
have as the TASEP. The case of the local rates being of
order of 1/L is the most interesting one, and will be inves
gated further on. Writing

va5Va /L, vd5Vd /L, ~1!

the phase diagram can be formulated in terms ofVa , Vd ,
r2 , andr1 . In Ref. @8#, it was shown that forVa andVd
fixed, the phase diagram as a function ofr2 andr1 does not
only exhibit the low-density and high-density phases kno
from the TASEP, but also a high-low coexistence phase
this phase, the shock does not move in the system bu
position is a function of the ratesr2 andr1 ~see Fig. 2!.

Parmeggianiet al. presented not only Monte Carlo simu
lations, but derived also a mean field equation for the den
profile which was shown to coincide with the simulatio
profiles. We argue here that the mean field approximat
cannot be used in general. The coincidence with the Mo
Carlo ~MC! simulations in Ref.@8# is due to lack of correla-
tions in true steady state of the TASEP. We claim that
stationary density profile can be derived, in general, usin
hydrodynamic equation and taking correlations into acco
~in case of the TASEP, this equation is equal to that obtai
with a mean field approach!. For the Katz-Lebowitz-Spohn
~KLS! model, which is a generic model of interacting drive
diffusive systems@14,15#, we show that this hydrodynami
equation correctly describes the density profiles on a qua
tative level, while a mean field approach would fail to repr

FIG. 1. Possible processes and their rates in the model of
ASEP with Langmuir kinetics.
©2003 The American Physical Society17-1
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duce even the basic qualitative features of the system,
phase separation into three distinct density regimes.

II. HYDRODYNAMIC EQUATION

In the following, we are interested in theL→` limit in
which we rescale lattice spacinga51/L→0 and time t
5t lattice/L ~Eulerian scaling! to get the continuous~hydrody-
namic! limit of the model. In this framework,Va,d are the
attachment/detachment rates per unit length. We claim
the hydrodynamic equation describing the time depende
of the local densityr(x) for a general driven diffusive sys
tem with Langmuir kinetics takes the form

]

]t
r1

]

]x
j ~r!5L~r!, ~2!

where j (r) is theexactcurrent in a driven diffusive system
with homogeneous densityr without LK and L(r) is the
source term describing the Langmuir kinetics. Here, we c
sider only that choice ofL(r) which corresponds to the pro
cess depicted in Fig. 1:

L~r!5Va„12r~x,t !…2Vdr~x,t !. ~3!

Other choices ofL(r), which might, e.g., describe the loca
annihilation of particle pairs, are to be discussed in a for
coming publication@16#.

As is usually done in the rigorous derivation of the hydr
dynamic limit of conservative systems@17#, our nonconser-
vative Eq.~2! implicitly assumes that the system is local
stationary because the exact form of the stationary flux
used. We argue that this assumption is justified since
nonconservative part of the dynamics of the system at m
roscopic scale is so slow that locally the system reaches
tionarity with respect to the conservative part of the dyna
ics. Any finite perturbation caused by the nonconserva
dynamics would travel a macroscopic distance and he
dissipate before interacting with another perturbation. He

FIG. 2. Plot of an average density of particlesr versus rescaled
coordinatex ~site number/L! of a localized density shock in th
ASEP with Langmuir kinetics. Parameters arer250.2, r150.6,
Va50.3, andVd50.1. We show the results of both Monte Car
simulations forL51000 and the mean field approach.
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the hydrodynamic description~after time rescalingt→et) is
adequate for describing the full dynamics. For physical
sight in the formation of shocks, one needs other tools wh
are discussed below.

Rewriting Eq.~2! by using] tr(x,t)50 in the stationary
state, and]xj 5] j /]r•]r/]x yields for the stationary density
profile r(x):

vc~r!
]r~x!

]x
5L~r!. ~4!

Here,vc5] j /]r is the collective velocity, i.e., the drift ve
locity of the center of mass of a local density perturbation
a homogeneous stationary background with densityr ~for
system with the Langmuir kinetics switched off! @1,12#. The
stationary density profile has to satisfy Eq.~4! as well as the
boundary conditionsr(0)5r2 andr(1)5r1 . As Eq.~4! is
of first order there will be, in general, no smooth soluti
fitting both boundary conditions. In the original lattic
model, this discrepancy is resolved by the appearance
shocks and/or boundary layers. To regularize the probl
one can add to Eq.~2! and correspondingly to Eq.~4! a
vanishing viscosity term

vc~r!
]r~x!

]x
5L~r!1n

]2r~x!

]x2
, ~5!

where n.0 is of the order of 1/L. This term makes the
hydrodynamic equation of second order, and ensure
smooth solution fitting both boundary conditions. The sho
has then a width of the order of 1/L ~see Ref.@8#!, i.e., in the
thermodynamic limit the rescaled solution becomes disc
tinuous. We claim that Eq.~5! gives the same result in th
L→` limit as the Monte Carlo simulations, therefore it ca
be used as a tool to compute the stationary density pro
The main difference between Eq.~5! and the MC simulations
is that the former does not take fluctuations into accou
which leads to a shock width of the order of 1/L, while in a
MC simulations after averaging it is of the order of 1/AL due
to the fluctuation of the shock position.

The stationary density profile for a givenj (r) and param-
etersVa , Vd , r2 , and r1 can be derived from the flow
field of the differential equation~4! by using the rules for-
mulated and explained below.

~a! In the interior of the lattice, the stationary densi
profile either follows a line of the flow field of the differen
tial equation~4! or makes a jump. Jumps can only occ
between densities yielding the same current, i.e.,the current
is continuous in the interior of the lattice.

~b! Let r68 be defined as limiting left and right densitie
with the boundary layers cut away:

r28 5 lim
x→10

r~x!, r18 5 lim
x→120

r~x!,

where r(x) is the stationary profile in the hydrodynam
limit. The boundary layer atx50 ~ i.e., if r2Þr28 ) has to
satisfy the following condition:
7-2
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if r2,r28 then j ~r!. j ~r28 ! for any rP~r2 ,r28 !,
~6!

if r2.r28 then j ~r!, j ~r28 ! for any rP~r28 ,r2!.
~7!

The condition for the stability of the boundary layer atx
51 ~if there is! is similar:

if r18 ,r1 then j ~r18 !, j ~r! for any rP~r18 ,r1!,
~8!

if r18 .r1 then j ~r18 !. j ~r! for any rP~r1 ,r18 !.
~9!

~c! Shocks between a densityr l to the left of the shock
and r r to the right of the shock are stable only if they a
stable in the absence of Langmuir kinetics@1,18#.

Following are a few remarks pertaining to the rules p
sented above.

~i! Although LK does not conserve locally the number
particles, Eq.~2! with the vanishing viscosity added~5! can
be rewritten formally in the form

]r~x,t !

]t
1

]

]x
j̃ ~x,t !50,

j̃ ~x,t !5 j ~r!2E
A

x

L~r!dx2n
]r

]x
2F~ t !, ~10!

whereF(t) is some time-dependent function. Let us suppo
that there is a shock at the positionX0 connecting the densi
ties r l andr r . The mass transfer across the shock is

]

]tEX020

X010

r~x,t !dx5 j̃ ~X010,t !2 j̃ ~X020,t !5 j ~r r !2 j ~r l !,

~11!

since the Langmuir term and the viscosity term change o
infinitesimally across the shock. In the stationary state,
right hand side of Eq.~11! vanishes which explains rule~a!.

~ii ! Rule~b! is due to the fact that in the boundary layer
vanishing lengthd l→0, the LK term in Eq.~10! can be
neglected. Consequently, for the stationary current at
boundaries, we havej̃ (x)5 j „r(x)…2n(]r/]x)5J, which
yields the known maximization/minimization principl
@1,21# and is equivalent to rule~b!. Indeed at the left bound
ary, J5 j (r28 ) @see Eq.~6! for notations#, and if, e.g.,r2

,r28 , then (]r/]x).0. Consequently, we obtainj (r2)
5J1n(]r/]x).J, which is exactly Eq.~6!. Analogously
one obtains Eqs.~7!–~9!.

~iii ! Rule ~c! is explained by the marginal role th
Langmuir kinetics plays locally in both space and tim
The first, LK is very slow locally for largeL @see Eq.~1!#,
and the second, it acts ‘‘orthogonally’’ on the particle dist
bution, not affecting directly the particle motion. Hence, t
local perturbations will still spread with the velocit
06611
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corresponding to the local density levelr, thus rendering the
same stability conditions for a shock as for the diffusi
system without LK.

Condition ~c! is easy to check geometrically through th
current-density relation. An upward~downward! shock is
stable if the straight line connecting the points„r l , j (r l)… and
„r r , j (r r)… stays below~above! the j (r) curve @18,21#. Be-
cause of criterion~a! these lines are always horizontal in th
case, which gives zero mean velocity~but not localization!
for the shock in absence of Langmuir kinetics.

~iv! In the cases we have considered~ASEP, KLS model!,
rules~a!–~c! define a unique stable solution~see the Appen-
dix!, and we believe that this is true also in general case,
for arbitrary j (r) dependence and for the given choice~3! of
Langmuir kinetics.

In the following, we apply the general theory to speci
models.

III. REVISITING THE ASEP WITH LANGMUIR KINETICS

Using the differential equation~4! and the rules given
above, we reconsider the ASEP with Langmuir kinet
@8,13#. Here, the current-density relation is given byj (r)
5r(12r), which yieldsvc(r)5122r. Thus Eq.~4! be-
comes

„122r~x!…]xr~x!5Va2~Va1Vd!r~x!, ~12!

which is identical with the mean field equation in Ref.@8# in
the thermodynamic limit. We would like to stress that th
coincidence is caused by the fact that the mean field curr
density relation for the TASEP is exact. As is demonstra
below, Eq.~4! also holds when this is not the case, i.e., f
the one-dimensional KLS model.

Due to rule~a! as stated above~continuity of the current
in the interior of the lattice!, shocks in the interior can only
occur in the case wherer l512r r , as j (r) is symmetric to
r51/2. Rule~c! ~stability of the shock! furthermore requires
thatr r.r l . These observations coincide with the findings
Ref. @8#.

We also applied our rules tok-hop exclusion models@19#
~with LK added!, which are a generalization of the TASE
with stationary product measures and asymmetric curr
density relations. Due to this fact shocks appear, which
nonsymmetric with respect tor51/2. MC simulations are in
full accord with our predictions@20#.

IV. KLS MODEL WITH LANGMUIR KINETICS

A much studied one-dimensional driven diffusive syste
with interactions between the particles is the following va
ant of the KLS model@6,18,21#. In the interior, particles at
site i move to sitei 11, provided it is empty, with a rate tha
depends on the state of sitesi 21 andi 12:

0100→0010 with rate 11d,

1100→1010 with rate 11e,

0101→0011 with rate 12e,
7-3
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1101→1011 with rate 12d.

At site 1, particles can enter the lattice provided the tar
site is empty. The rate depends on the state of site 2. S
larly, particles can leave the system at siteL with a rate
depending on the state of siteL21. The boundaries mimic
the action of reservoirs with densitiesr2 and r1 . For r2

5r1 , the stationary state is that of an one-dimensional Is
model with boundary fields. The current-density relation c
be calculated exactly using transfer matrix techniques@18#. It
turns out that for strong enough repulsion between the
ticles (e*0.9), a current-density relation with two maxim
arises~see Fig. 3!. The parameterd determines the skewnes
of j (r) with respect to the vertical liner51/2. For d50,
the system has particle-hole symmetry resulting inj (r) be-
ing symmetric with respect to 1/2. For simplicity, we co
sider this case in the rest of the paper.

The phase diagram of this family of models with stro
particle repulsion is known to exhibit seven different phas
among them are two maximal-current phases and
minimal-current phase. The phase diagram is determined
the interplay of diffusion, branching, and coalescence
shocks@21#.

When equipping these models with Langmuir kinetic
one expects that a very rich phase diagram with many m
than the original seven phases will appear. We will not
tempt to give this full phase diagram here, but inste
present two distinct features, which cannot be observe
systems without a concave region in the current-density
lation: localized downward shocks and double shocks.

A. Localized downward shocks

In the regime where the current-density relation of t
KLS model exhibits two maxima at densitiesr1* and r2* ,
wherer1* ,r2* and a minimum atr51/2 ~at d50), there is
a region where downward shocks are stable according
Refs. @18,21# @and rule~c!#. These are characterized byr l

P(0.5,r2* ) and r rP(r1* ,0.5). This suggests that localize
downwards shocks may appear when introducing the kin

FIG. 3. Current-density relation for the one-dimensional K
model for variouse.
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rates. Indeed, in the KLS model with Langmuir kinetics f
certain values of the boundary densitiesr2 andr1 , which
strongly depend on the kinetic ratesVa andVb , one gets a
stable downward shock according to rules~a!–~c!. We give
an example for this case in Fig. 4~also refer to Fig. 5!.

One can see that employing the general theory descr
above yields a stationary profile with a localized downwa
shock, which coincides with the MC results up to finite si
effects, while a simple mean field approach would fail as
would not be able to capture the difference between the K
model withe.0 and the TASEP~KLS with e50).

B. Localized double shocks

Let r1,28 be defined as the inflection points of the curre
density relation (r18,r28). As is known from the studies o
the KLS model@18,21#, if we start an infinite system from a
steplike initial density profile withr2P( r̃1 ,r18) on the left

FIG. 5. Path in the current-density relation for the profile sho
in Fig. 4.

FIG. 4. Density of particlesr versus rescaled coordinatex ~site
number/L! in a localized downward shock in the KLS model wit
Langmuir kinetics. Parameters arer250.64, r150.35, andVa

5Vd50.05. We show the results of both hydrodynamic equat
and Monte Carlo simulation forL51000. The smoothness of th
MC result is due to the fluctuation of the shock position@16#.
7-4
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LOCALIZATION OF SHOCKS IN DRIVEN DIFFUSIVE . . . PHYSICAL REVIEW E 67, 066117 ~2003!
andr1P(r28 ,r̃2) on the right, we get a time-dependent s
lution having two shocks. One of these shocks has nega
mean velocity, while the other has positive, and in the mid
there is an expanding region withr51/2 ~for d50) which
corresponds to the minimal-current phase in a system w
open boundaries@18,21#.

This leads us to the conjecture that introducing the kine
rates for certain values ofr2 ,r1 ,Va , and Vd , one may
achieve a stable double shock structure. In Fig. 6~see also
Fig. 7!, we present an example for such a case. Applica
of rules~a!–~c!, which is presented in detail in the Appendi
yields the same double shock structure as the MC sim
tions up to finite size effects. Note, that a simple mean fi
approach could not predict a double shock.

V. CONCLUSIONS

In this work, we present a hydrodynamic equation whi
together with some rules treating the discontinuities, c
rectly describes the stationary states of one-dimensio
driven diffusive systems with Langmuir kinetics and op
boundaries. It captures both systems without correlations
steady state~ as the TASEP and thek-hop exclusion models!
and systems with correlations as the KLS model. For
latter, the two phenomena of a stationary localized dow
ward shock and a localized double shock~corresponding to
phase separation to three distinct regions! were presented
which a mean field approach would not reproduce. The ex
current of driven diffusive systems without LK enters t
hydrodynamic description since the bulk has sufficient ti
to relax between subsequent annihilation/creation events
interesting paradoxical feature of these phenomena is tha
fluctuating shocks get localized due to extra noise~LK !,
which is highly unexpected.
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APPENDIX: DOUBLE SHOCK DENSITY PROFILE
FROM RULES „A…–„C…

Here, we demonstrate how one determines the station
density profile using rules~a!–~c! from Sec. II. As an ex-
ample, we take the parameters that yield a dou

FIG. 7. Path in the current-density relation for the profile sho
in Fig. 6.

FIG. 8. The flow field of the hydrodynamic equation in the KL
model with Langmuir kinetics. Parameters ared50,e50.9,Va

50.03, andVd50.01. The thick lines show the stationary dens
profile for r250.23,r150.745 given by rules~a!–~c!. The dotted

lines arer5 r̃1'0.248 21,r5 r̃2'0.751 78~see Sec. IV B for no-
tations!. Axes:x is a rescaled coordinate~site number/L!, r(x) is an
average density of particles at pointx.
7-5
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~localized! shock structure in the KLS model (r250.23,
r150.745,Va50.03, andVd50.01). The KLS-model pa-
rameters ared50,e50.9 ~see Sec. IV!.

First assume that there is a boundary layer atx50. Ac-
cording to rule~b!, it is stable only ifr28 .12r250.77. If
this is the case then in the bulk there is no allowed ju
since these trajectories of the flow field~see Fig. 8! stay
always abover50.75 @rules ~a! and ~c!#, which yieldsr18
.0.75. But then the boundary layer atx51 does not satisfy
rule ~b!. This contradiction shows that there is no bounda
layer atx50. One can use the same argument to show
there is no boundary layer atx51 either.

Now one can see that the stationary density profile cl
to the left boundary follows the line of the flow field fo
which r(x50)5r250.23. Since there is no boundary lay
at the right end, it is clear that somewhere in the bulk it h
a

s.

.

. A
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to make a jump.

Note that this trajectory crosses the liner5 r̃1 at x5x1.
Suppose that the jump takes place before atx,x1. In this

case, according to rule~a!, it would jump overr̃2512 r̃1

which would result in a boundary layer atx51, which is not
allowed. If the jump takes place atx.x1, then r1* ,r r

,0.5 and since from this region there is no allowed jump
would end up atr1* ,r18 ,0.5, resulting again in an unstab
boundary layer on the right side. This shows that the jump
located atx5x1, and from here the density profile follow
the trajectory that starts atx5x1 with the valuer50.510.

One can easily see that we need another jump to con
this trajectory with the one that ends atx51 with r5r1 .
Applying rule ~a! ~continuity of the current!, we can get the
point x2 where the second jump is located.
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