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We study the steady-state behavior of totally asymmetric simple exclusion processessTASEPsd that contain
periodically varying movement rates. In this model, particles move to the right at one of two rates:p2 if the
particle occupies one of a periodically arranged set of lattice sites;p1 otherwise. Approximate mean field
approaches are used to study the steady-state currents and bulk densities of this model. These mean field
methods are found to provide results in good agreement with data derived from Monte Carlo simulations.
Finally, the condition for particle-hole symmetry in the TASEP with periodically varying movement rates is
specified, and the changes in the locations of the boundary-limited to maximal-current transition lines due to
symmetry violation are investigated.
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I. INTRODUCTION

As a canonical model of one-dimensional transport, the
totally asymmetric simple exclusion processsTASEPd is a
topic of significant interest. One of the few solvable non-
equilibrium models, the TASEP and its solutions have been
extensively investigatedf1–6,24g as a model for numerous
one-dimensional transport processes including ribosome mo-
tion f2,7,8g, pore transportf10g, and traffic flowf11,12g. The
traditional TASEP model consists of a finite lattice with open
boundaries. Particles are inserted into an empty site at the
leftmost end of the lattice at a ratea, while particles in the
lattice move to the right at a ratep. Each motion of a particle
within the lattice moves that particle exactly one lattice site
to the right, and particles can move only if the site immedi-
ately to the right is not occupied by another particle. Upon
reaching the last lattice site on the right, particles are re-
moved from the lattice at a rateb. Exact solutions for the
steady-state particle currentssJd, and densitiesssd, are avail-
able through mean field approachesf1,2g, and matrix product
methodsf3g. The latter approach solves the model com-
pletely, providing exact expressions for density correlation
functions of arbitrary order. The TASEP solution itself yields
a phase diagram with three phases. At large values of the
injection sad and extractionsbd rates the system is domi-
nated by the rate of particle hopping and is in a maximal
current phase. At small values ofa and b, the system is
found in a low-density entry limited phase, and a high-
density exit-limited phase, respectively. The fundamental
form of this phase diagram has been found to be very robust
and extending the TASEP to include particles that occlude
more than one lattice sitef7,8g, or backwards particle mo-
tions f9g, has not altered the phase diagram significantly.
Nonetheless, these extensions have facilitated the use of the
TASEP in modeling a wide variety of physical processes.

In many phenomena of interest however, the assumption
of a single internal hopping ratep implicit in the normal
TASEP does not adequately capture the full character of the
transport behavior. Examples include multistep models for
molecular motor motion, as well as models of ion transport
through transmembrane channels with selectivity filters and
solvation zones. Additionally, previous studies of TASEPs
with multiple movement rates focused on systems with peri-
odic boundary conditionsf13–16g, isolated defectsf6g, or
particle associated hopping ratesf17g, rather than spatially
and periodically varying hopping rates with open boundaries.

II. MODEL AND METHODS

To improve the utility of the TASEP in modeling a wider
range of systems, we generalize the TASEP to include two
internal hopping rates,p1 andp2. Numbering the lattice sites
starting from 1 at the far left, we assume thep2 sites are
arranged periodically with a periodT scf. Fig. 1d. We apply
and compare three mean field approximations to the steady-
state current and density of the dual-rate TASEP in the maxi-
mal current, entry limited, and exit limited regimes. We also
conjecture that the phase diagram of the dual-rate TASEP
retains the three phase character of the standard TASEP’s
phase diagram. The accuracy of our mean field methods are
verified through Monte Carlo simulations.

III. MEAN FIELD THEORIES

A. Simple mean field methods

We begin by considering the dual-rate TASEP in the limit
of largea andb, where the dynamics of the system will be
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FIG. 1. The periodic dual-rate totally asymmetric exclusion
model. At everyT lattice site, the particle movement rate isp2. At
all intervening sites, the movement rate isp1. All other aspects of
the model are identical to those of the standard TASEP.
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determined entirely by the internal movement ratesp1 and
p2. Ensuring continuity of the current in a lattice with peri-
odicity T we find

J = p2sTs1 − s1d = p1s1s1 − s2d = ¯ = p1sT−1s1 − sTd.

s1d

In writing Eq. s1d we have assumed that the densitiesssid in
the lattice have the same periodT as the hopping rates in the
lattice.1 Solving Eq.s1d for J in terms of one of the densities
si, then maximizingJ, yields an approximation to the maxi-
mal currents and densities in terms ofp1 and p2. Unfortu-
nately, Eq.s1d yields increasingly unwieldy expressions for
the current and the densities asT increases. As a result we
only show the expressions for theT=2 case:

J =
p1p2

sÎp1 + Îp2d2
,

s1 =
Îp2

Îp1 + Îp2

, s2d

s2 =
Îp1

Îp1 + Îp2

.

These relations show the expected invariance under the
interchange ofp1 and p2. To find the boundary limited cur-
rents in the simple mean field approximation we assume a
small value ofa or b and assume the lattice contains a whole
number of periods, so that the last lattice site is ap2 site.
Focusing initially on the entry-limited case and applying the
current continuity conditions we find, for arbitraryT

J = as1 − s1d = p1s1s1 − s2d = ¯ = p2sTs1 − s1d. s3d

Yielding the following densities and currents for theT=2
case

Ja = as1 − s1d = p1s1s1 − s2d = p2s2s1 − s1d

⇒ Ja =
p1sp2 − ada

p2sp1 + ad − ap1
= as1 − s1d

s1 =
ap2

p2sp1 + ad − ap1
s4d

s2 = a/p2.

Similarly in the exit limited case we have

J = p2sNs1 − sN−T+1d = p1sN−T+1s1 − sN−T+2d = ¯

= p1sN−1s1 − sNd = bsN, s5d

Jb = bss2d = p1s1s1 − s2d = p2s2s1 − s1d

⇒ Jb =
p1sp2 − bdb

p2sp1 + bd − bp1

s1 = 1 −
b

p2
s6d

s2 =
p1sp2 − bd

p2sp1 + bd − p1b
.

To determine the transitions between the maximal current
and entry limited regions we equate the maximal current
solutions generated by Eq.s1d to the expressions forJa and
Jb in Eq. s3d and Eq.s5d and solve for the transition values
a* andb* . For theT=2 case this yields

a* = b* =
p2

Îp1

Îp1 + Îp2

. s7d

Finally, equating the current expressions in equationss3d and
s5d we find that the transition between the entry and exit
limited regions occurs whena=b.

B. Refined mean field methods

As we will see in the next section, the results of the
simple mean field approach do not provide a particularly
good match to the results of Monte CarlosMCd simulations.
We attribute the poor performance of the simple mean field
method to the method’s failure to capture the correlations
between the occupation probabilities of different lattice sites.
To address this deficiency we apply two related mean field
approaches. The first refined mean field approach, which we
call thefinite-segmentmethodsFSMFd f25g, involves exactly
solving the master equation for a finite segment of the dual-
rate TASEP lattice in a self-consistent mannerssee Appendix
Ad. While primarily numerical in nature, this method can
produce estimates for the current and density comparable to
the results from MC simulations. The quality of the estimates
produced by the FSMF approach is a function of the length
of the finite-segment, with longer segments producing supe-
rior results.

The second enhanced mean field method is related to the
cluster mean field approach described inf18–20g ssee Ap-
pendix Bd. This mean-field method becomes increasingly un-
wieldy as the size of the cluster increases, thus we only show
results for theT=2 case. In the maximal current phase the
current and density results are

s1 =
p1 + 2p2

3sp1 + p2d
,

s2 =
2p1 + p2

3sp1 + p2d
, s8d

J =
p1p2

2sp1 + p2d
.

As expected, the solutions are invariant under the exchange
ss1,p1d↔ ss2,p2d, and regenerate the standard TASEP re-
sults in the limitp1=p2.

We can use the results of Eq.s8d to predict the location of
the phase boundary between the maximal current and entry

1If the instantaneous lattice occupancy isxi P f0,1g, the average
density at sitei in the steady state is defined assi =kxil.
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limited phases. Using the results for the densities in the
maximal current phase and applying current continuity at the
entrance of the lattice we find

a*S1 −
p1 + 2p2

3sp1 + p2dD =
p1p2

2sp1 + p2d
⇒ a* =

3p1p2

2s2p1 + p2d
. s9d

To find the critical value of the extraction rateb* , we enforce
current continuity at the exit of the lattice

b* 2p1 + p2

3sp1 + p2d
=

p1p2

2sp1 + p2d
⇒ b* =

3p1p2

2s2p1 + p2d
. s10d

Additionally in the T=2 case we can use a similar ap-
proachssee Appendix Bd to find current and density approxi-
mations in the parameter regimes where the entry or exit rate
limits the rate of particle transport through the lattice. First
addressing the entry limited region we find

Ja =
ahp1p2 − asp1 + ad + Î4p1

2asp2 − ad + fp1sp2 − ad + a2g2j
2p2sp1 + ad

,

s1 =
ap2 + sa + p1dsa + p2d − Î4p1

2asp2 − ad + fp1sp2 − ad + a2g2

2p2sp1 + ad
, s11d

s2 =
a

p2
.

Similarly, the solution in the exit-limited phase is

Jb =
bhp1p2 − bsp1 + bd + Î4p1

2bsp2 − bd + fp1sp2 − bd + b2g2j
2p2sp1 + bd

,

s1 = 1 −
b

p2
, s12d

s2 =
p1p2 − bsp1 + bd + Î4p1

2bsp2 − bd + fp1sp2 − bd + b2g2

2p2sp1 + bd
.

Note that Eqs.s11d ands12d are the analytic forms for the
FSMF results for theT=2 dual-rate TASEP when the FSMF
segment size is set toN=2 ssee Appendix Ad.

IV. MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed to validate the
various analytical models presented in the preceding section.
As we expected the densities in the lattice to vary signifi-
cantly as the internal hopping rates were varied, we based
our Monte Carlo code on the BKL continuous-time algo-
rithm f21g. The BKL algorithm has the advantage of main-
taining a constant computational efficiency over a wide
range of particle densities.

The magnitude of the finite size effect in our simulations
was estimated by running lattices of varying lengths. For
lattices one thousand sites long, the MC results were found
to systematically deviate from the known TASEP results
sp1=p2d by less than half a percent. As a result, unless oth-
erwise noted we used lattices containing 1000 periods for all
our simulations. The simulations were run for 73108 steps,
which was sufficient to reproduce the known TASEP results
in lattices much longer than our 1000 period standard. In all

simulations,p1 was normalized to 1. To ensure an unbiased
sampling of the lattice states, a linear-congruential pseudo-
random number generator with a period of 231018 was used
f22g.

A. Currents

The maximal current resultsfFig. 2sadg show the expected
qualitative behavior with a low current for small values ofp2
and a value of 1/4 whenp2=p1=1. In Fig. 2sad the
boundary-limited current predictionsfEq. s11dg were used to
generate a prediction for the maximal current as a function of
p2. This was accomplished by maximizingJ in Eq. s11d with
respect toa. Consistent with our expectations, we find that
the two cluster mean field approaches, and the finite-segment
mean field approach, provide better approximations to the
Monte Carlo results than does the simplest mean-field
method. The relatively poor performance of the simple mean
field model can be ascribed to the pair correlations present in
the two-rate TASEP, which the simple mean field model
completely fails to capture. The 2-cluster maximal current
mean field clearly performs best whenp2/p1<1. In this limit
the model is essentially the normal single rate TASEP, and
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the expected pair correlations between adjacentp1 and p2
sites are small.sSee Fig. 3.d

B. Densities

Referring to Figs. 4–6, we find the finite-segment mean
field, and both 2-cluster mean field methods provide excel-
lent matches to the simulation results. The densities pro-
duced by the maximal current 2-cluster mean field method,
the boundary limited 2-cluster mean field method, and the
finite segment method are all within 5% of the MC results,

with the FSMF results improving with increased segment
length. For all three approaches the quality of the agreement
is relatively uniform over all the values ofp2. Figure 5 dis-
plays the density profile in the center of the lattice for
TASEPs withT=5 andT=9. Far from the boundaries, the
density profiles show the expected periodicity in all three
phases.

C. Correlations

Defining the density correlation function for sitesi and j
as

rxi,xj
=

kxixjl
kxilkxjl

− 1, s13d

Fig. 7sad, shows that in the maximal current phase in theT
=2 case, the pair correlation is large for small values ofp2
while approaching zero asp2 approachesp1. The size of this
pair correlation for smallp2 indicates that the slow sites
dominate the dynamics of the system, and is consistent with
the maximal current assumption.

Figure 7sbd displays the the density correlation between
the p2 sites and thep1 sites immediately to the right in the
maximal current phase. The anticorrelation that occurs at
longer periods can be explained if we consider the density

FIG. 2. sad The Monte CarlosMCd, N=4 finite-segment mean
field sFSMFd, 2-cluster maximal current mean fieldsMCMFd,
2-cluster boundary limited mean fieldsBLMFd, and the simple
mean field predictions for theT=2 TASEP current in the maximal
current phase. The results for the 2-cluster boundary limited mean
field method were produced by maximizingJ in Eq. s11d. The es-
timates of theN=4 FSMF and the 2-cluster BLMF approach are
nearly identical. Inset: The effect of increasing segment length on
the quality of the FSMF estimates. For segment lengths greater than
or equal to twice the period, the quality of the current estimate
shows only marginal improvement with increasing segment length.
sbd Maximal currents for dual-rate TASEPs of various periods. The
FSMF estimates were produced using a single period of the lattice
as the finite segment. While providing reasonable estimates, the
deviation between the MCspointsd and FSMFslinesd results in-
creases as the periodsTd increases. This increase in error can be
partially mitigated by increasing the number of periods included in
the finite segment.

FIG. 3. sad Current profiles along thea direction in theT=2
dual-rate TASEP phase plane. The solid lines were produced using
Eq. s11d, the dashed lines were produced using Eq.s4d, and the
dotted-dashed lines were produced using anN=8 FSMF approach.
Equations11d and the FSMF approximation are nearly identical.sbd
Current profiles for dual-rate TASEPs of various periods withp2

=0.25. The FSMF resultsslinesd were produced using anN=T
FSMF approach.

FIG. 4. Densities for aT=2 TASEP from Monte Carlo simula-
tions, the 2-cluster maximal current mean field method, the simple
mean field method, and anN=4 finite segment mean field approach.
The simple mean field assumption results in the largest error for
small values ofp2 where the density correlation between adjacent
sites is expected to be large.

FIG. 5. The bulk density profiles for theT=5 andT=9 dual-rate
TASEPs withp2=0.2, in all three current phases. The plots show
the good agreement between the Monte Carlospointsd and N=T
FSMF slinesd results.
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profiles of Fig. 5. Focusing on a single period in the center of
the lattice, for largeT the density of the first few lattice sites
in a period should be relatively low. This is a result of the
slow rate of particle injection from thep2 site immediately
left of the period, and due to the relatively large value ofT
that prevents particles from backing-up due to the slow exit
rate from the period. As a result of this density profile, the
lattice site immediately to the right of ap2 site would typi-
cally only be filled for a short time after leaving the now
emptyp2 site, leading to the observed anticorrelation. Com-
paring the predictions of the finite-segment mean field
method for the growth in the anticorrelation with increasing
T, its clear the FSMF underestimates this effect. As a result
we would expect that, for segments incorporating a fixed
number of periods, the predictions of the FSMF method
would become progressively worse asT is increased. Addi-
tionally as the FSMF would over-estimate the degree of par-
ticle blocking at the period boundaries, we would expect the
FSMF method to in general underestimate the current with

increasingT, as is confirmed by the results of Fig. 2sbd. The
degradation in performance of the FSMF method with in-
creasingT can be partially offset by increasing the number of
periods in the finite segment, however the rapid increase in
computational cost with increased segment length limits the
effectiveness of this approach.

D. Phase diagram

The phase diagram derived from simulations is displayed
in Fig. 8sad for the T=2 case, along with the phase bound-
aries predicted by the various mean field methods. The
Monte Carlo phase boundaries were computed by taking nu-
merical derivatives of the mean value ofs2 in the central
half of the lattice as a function ofa andb, and locating any
clear discontinuities in the derivatives. The dual-rate TASEP
retains the general form of the standard TASEP phase dia-
gram, and the order of the transitions remains unchanged;
first order in the current between the high and low density
regimes, and second order between the boundary limited and
maximal current regions. The most significant deviation from
the standard phase diagram is the increase in the maximal
current region which accompanies a decrease in one of the
hopping ratessp2 in our exampled. Physically, the maximal
current region is defined as the region of thesa ,bd parameter
space where the internal motions determine the net particle
flow through the lattice. The increase in the area of the maxi-
mal current phase with decreasingp2 is then expected, as

FIG. 6. The density profile along thea direction in theT=2
dual-rate TASEP phase plane. The solid lines were produced using
Eq. s11d, the dashed lines were produced using Eq.s4d, while the
dotted-dashed lines were produced by anN=8 finite-segment mean
field approach. The FSMF results are nearly identical to those of
Eq. s11d. Although the solution fors2 is the same in Eqs.s4d and
s11d, the predicted value ofa* differs between the two mean field
theories. This is the reason for the significant difference between the
s2 profiles predicted by the two mean field methods at small values
of p2.

FIG. 7. sad The maximal current phase pair correlation function
produced by the MC simulations and the various mean field ap-
proximations for theT=2 dual-rate TASEP. The results produced by
the finite segment mean field method improve with an increasing
segment length.sbd Mean density correlations betweenp2=0.5 sites
and thep1 sites immediately to the right.

FIG. 8. sad The phase diagram for theT=2 two-rate TASEP. The
dashed lines are produced by the simple mean field theoryfEqs.s4d
and s6dg. The dotted lines are produced by the maximal current
2-cluster methodfEqs. s9d and s10dg and the solid lines are pro-
duced by the boundary-limited mean field methodfEqs. s11d and
s12dg. sbd The phase diagram for the two-rate TASEP at various
periodicities, with p2=0.1. To simulation accuracy the transition
between the high and low density phases occurred along thea=b
line for all the periodicities displayed.
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decreasingp2 slows the motion of the particles in the interior
of the lattice.

Despite the varying degrees of success in predicting ac-
curate steady state currents and densities, all three mean field
approaches predict the phase boundaries within approxi-
mately 20% error. As was observed in the mean field predic-
tions for the steady state currents and densities, the
boundary-limited 2-cluster mean field approach provides the
best predictions at small values ofp2, while the maximal
current mean field method excels whenp2<p1. We also note
that the phase transitions predicted by the boundary-limited
2-cluster approach were determined numerically by maxi-
mizing J in Eq. s11d and s12d. Figure 8sbd displays the
change in the phase diagram as the periodT is increased and
p2=0.1 is held constant. The major effect of increasingT at a
fixed p2 is to increase the values ofa* =b* . This is consistent
with Fig. 7sbd which shows an increasing anti-correlation
with increasedT. With an anti-correlation at the period
boundaries, particle blocking in the interior of the lattice
would be reduced and the values ofa or b at which the
internal movements of the particles would become the rate
limiting step would increase.

V. OTHER PERIODIC ARRANGEMENTS

The dual-rate TASEP model investigated in the previous
sections was built on lattices composed of an integer number
of hp1,p1,p1, . . . ,p2j periods. While a useful extension to the
TASEP, it is also interesting to investigate other periodic
arrangements of defect sites. For example we can consider
the case where the first defect is located at an arbitrary sited
within the firstT sites of the lattice, as well as lattices that do
not contain a whole number of periodsscf. Fig. 9d. When
considering these variations on the dual-rate TASEP model
however, the issue of particle-hole symmetry arises.

To investigate the conditions under which a periodic dual-
rate TASEP would preserve particle-hole symmetry, first de-
fine a vectorrW consisting of all the movement rates in the
TASEP lattice. Specifically,rW is constructed so that element
r i gives the rate at which particles in lattice sitei move to the
right. Additionally, N is defined to be the total length of the
TASEP lattice. Now consider the probability
Psa ,b ,rW ,x1,x2, . . . ,xNd of finding the TASEP lattice in an
occupancy statex1,x2, . . . ,xN with injection ratea, extrac-

tion rateb, and hopping ratesrW. Herexi =1 if lattice sitei is
occupied,xi =0 otherwise. Particle-hole symmetry then re-
quires

Psa,b,rW,hx1,x2, . . . ,xNjd = Psb,a,rW,hx̄N,x̄N−1, . . . ,x̄1jd,

s14d

wherex̄i =0 if xi =1, andx̄i =1 if xi =0. For Eq.s14d to hold,
the rate of the particle movement that takes the TASEP lat-
tice from a occupancy statei =hx1,x2, . . . ,xNj to an occu-
pancy statej must equal the rate of the particle movement

that takes the lattice from stateī =hx̄N, x̄N−1, . . . ,x̄1j to occu-

pancy statej̄ . This places constraints on the possible values
of N that can produce particle-hole symmetry.

To determine the symmetry-preserving values ofN, con-
sider a lattice occupancy statei where a particle located at
site k moves to sitek+1, changing the lattice state toj . By
definition this movement would occur at raterk. In lattice

stateī the equivalent move involves a particle hopping from
siteN−k to siteN−sk−1d at a raterN−k. The definition of the
particle-hole symmetry operationfEq. s14dg ensures that the
final state is thenj̄ . To have these exchange-symmetric
moves occur at the same rate,rk must equalrN−k. Now con-
sider the case whererk=p2. Then by definition of the dual
rate TASEP,k=mT+d for some integerm ssee Fig. 9d. Par-
ticle hole-symmetry will then be satisfied if

N − mT− d = nT+ d ⇒ N = sn + mdT + 2d s15d

for an arbitrary integern. Thus the dual-rate TASEP model
can only satisfy particle-hole symmetry whenN=sT+2d for
some integersù1. Geometrically, satisfying Eq.s15d guar-
antees that if the first defect is located at sited of the lattice,
the last defect will be located at lattice siteN−d.

To see that a value ofN satisfying Eq.s15d will never
confuse particle movements occurring at ratep1 for those
occurring at ratep2, consider the case whenk=mT+g where
gøT, gÞd. Then under symmetry exchange, a particle
move occurring at raterk would be mapped to a move oc-
curring at rate

rN−k = r ss−mdT+d+sd−gd. s16d

As g, døT and gÞd, there are no integersm,n,s such
that ss−mdT+d+sd−gd=nT+d. Thus a particle movement
occurring at a ratep1 cannot be mapped to a movement
occurring at ratep2 under the symmetry exchange operation.
An interesting consequence of the restriction onN is that a
lattice with the firstp2 site located at siteT and containing a
whole number of periods preserves symmetry regardless of
the value ofT, while a lattice with the firstp2 site at lattice
site 1 and containing a whole number of periods violates
symmetry ifTÞ2.

Figure 10sad shows the phase diagrams for various sym-
metric and non-symmetric realizations of the dual-rate
TASEP withT=3. From Fig. 10sad it is clear that violations
of condition s15d produce a phase diagram that does not
preserve the symmetry about thea=b line that is found in
standard TASEP phase diagram. Conversely, when condition
s15d is satisfied, this symmetry reappears. Note that, within

FIG. 9. Variations on the periodic dual-rate TASEP. The three
lattices displayed correspond tosad d=1, sbd d=2, andscd d=3. In
each case the lattice length was chosen to ensure that the resulting
TASEP possessed particle-hole symmetry.
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simulation accuracy, the phase diagrams of the nonsymmet-
ric dual-rate TASEPs retain the general three phase form the
standard TASEP phase diagram for all values ofd and N
tested.

The values ofa* andb* for the nonsymmetric phase dia-
grams of Fig. 10sad suggest that the location of the first de-
fect site determines the value ofa* , while the location of the
last defect site independently determines the value ofb* . For
example, consider theT=3 case withsd=1,N=1203d where
a* <0.27 andb* <0.19. By construction, this realization of
the T=3 dual-rate TASEP and the symmetric version of the
T=3 dual-rate TASEP withsd=1,N=1205d both place the
first defect at lattice site 1. The two realizations of the
TASEP then share the same value fora* s<0.27d. Con-
versely, the nonsymmetricsd=1,N=1203d case and the sym-
metric sd=2,N=1204d case both have the last defect in lat-
tice siteN−2, and share the same value ofb* <0.19. This
pattern held for all values ofd andN examined.

Finally we note that mean field methods similar to those
worked out in detail for thed=T case can be applied to both
symmetric and nonsymmetric cases independent of the value
of d. As can be seen in Fig. 10sbd, the finite-segment mean

field method provides reasonably accurate estimates for the
phase boundaries in all three nonsymmetric cases displayed.
We note however that the convergence properties of the finite
segment method are most advantageous in thed=T case.

VI. CONCLUSION

We have developed three approximate methods to com-
pute the current and densities of totally asymmetric exclu-
sion processes involving two internal hopping rates. Addi-
tionally, we have simulated the two-rate TASEP and have
explored its phase diagram. We find that the dual-rate TASEP
retains the three phases found in the standard TASEP model.
Within each of these phases the best of our mean field theo-
ries provide reliable approximations to the particle currents
and densities. In particular, a maximal current phase mean
field theory was developed that provides accurate estimates
fEq. s8dg for the current and the densityfFigs. 2sad and 4g in
the sd=2,T=2d case. Similarly, in the boundary limited
phases a mean field method was introduced for thesd=2,T
=2d casefEqs. s11d and s12dg, which produced accurate es-
timates for the boundary currents, and reasonably accurate
estimates for the maximal currentssFig 3d. In addition to the
generally inferior simple mean field approachfEqs.s2d, s4d,
and s6dg, we have developed a primarily numerical mean
field approach that we have termed the finite segment mean
field methodsFSMFd. This method can rapidly produce ac-
curate estimates for the currents and densities in all three
phases of the dual-rate TASEP. However, as shown in Fig.
2sbd, an increasing number of periods must be included in
the finite segment as the period lengthT is increased in order
to accurately model the dual-rate TASEP.

Finally, we have used the finite segment mean field
method and Monte Carlo simulations to briefly investigate
TASEPs with alternative arrangements of periodic defects.
Specifically, we investigated dual-rate TASEPs where the
first defect was located at an arbitrary positiond within the
first T sites of the lattice. We found that these dual-rate
TASEPs do not possess particle-hole symmetry unless the
number of sites in the TASEP lattice equalsmT+2d for an
integermù1. When the particle-hole symmetry condition is
not met, the phase diagram of the dual rate TASEP is no
longer symmetric about thea=b line. Additionally, both
Monte Carlo simulations and finite segment mean field meth-
ods suggest that in the nonsymmetric case, the value ofa* is
determined by the position of the first defect in the TASEP
lattice, while the value ofb* is independently determined by
the position of the last defect.
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APPENDIX A: THE FINITE-SEGMENT MEAN
FIELD METHOD

Here we give a detailed description of the the finite seg-
ment mean field method, and focus on using the method to
solve for the currents and densities in the maximal current
phase. Consider a finite lattice containingN sites and a whole
number of sp1,p1, . . . ,p2d periods sFig. 11d. Assuming the
bulk densities in the TASEP lattice are periodic and inherit
the same periodicity as the movement rates, we define an
effective injection ratesaeffd and an effective extraction rate
sbeffd for this finite segment. Specifically, we setaeff=p2sN

andbeff=p2s1−s1d. Using these rates and the known values
of p1 andp2, we can build the transition matrix for the mas-
ter equation describing the motion of the particles in the
N-site finite segment.

To construct the master equation, define a vectorrW con-
taining the internal hopping rates of the finite segment, and
supply an initial guess for the densitiess1 and sN. Specifi-
cally, set thei th entry of rW equal to the hopping rate of theith
lattice site in the finite segment. The hopping rate of the last
site in the finite segment however is set tobeff, so thatrN
=beff. With the finite segment and the rate vectorsrWd defined,
the algorithm to construct the master equation transition ma-
trix is ssee Fig. 12d as follows.

s1d Label the occupancy states of the finite segment. Label
each occupancy state of the finite-segment with a number
determined by treating the occupancy of the lattice as an
integer value expressed in base-2. For example, anN=3 lat-
tice with only the last site filledsi.e., an occupancy ofh001jd,
is said to be instate 1, while the same lattice with the last
two sites filledsan occupancy ofh011jd is said to be instate
3.

s2d Separate the states into two groups. Separate the states
labeled in steps1d into two groups; one group containing the
states with the leftmost lattice site unoccupiedsthe0-statesd,
and the other group containing the states with the leftmost
lattice site occupiedsthe 1-statesd.

s3d Enumerate the transitions between the 1-states and the
0-states. The transitions between the 0-states and the 1-states
will always occur between the lowest half of the 1-states, and
the highest half of the 0-states. For example, in anN=3 finite
segment, the transitions take state 4sh100jd to state 2sh010jd,

and state 5sh101jd to state 3sh011jd. To determine the rate of
the transitions, we make use of the rate vectorrW. Specifically,
we consider the current recursive iteration of the algorithm,
and use this as an index for the rate vector. For example, if it
is currently the second recursive iteration then all the transi-
tions enumerated involve a particle occupying site 2 moving
to site 3. Thus all the transitions occur at rater2; the rate
associated with the second site in the finite segment. In gen-
eral, theith recursive iteration of the algorithm will enumer-
ate transitions where a particle occupying sitei of the finite
segment moves to sitei +1. These transitions occur at rater i.

s4d Recurse on the 0-states and on the 1-states. Recurse
on the 0-states, and the 1-states, ignoring the leftmost lattice
site and starting the recursion from steps2d. For example, if
on iterationi we are working with anN=3 site segment, in
iterationi +1, we work withtwo N=2 site segments. The first
of theseN=2 site segments is generated by ignoring the
leftmost lattice site of the 0-states of theN=3 segment, while
the secondN=2 site segment is generated by ignoring the
leftmost lattice site of the 1-states.

s5d Enumerate the injection events. Once the recursion
specified in stepss1d throughs4d has been completed, enu-
merate all the transitions representing injections into the fi-
nite segment. These transitions take the 0-states to the corre-
sponding 1-states at rateaeff. For example, if we are working
on anN=3 finite segment, we enumerate the following tran-
sitions; 0sh000jd→4sh100jd, 1sh001jd→5sh101jd, 2sh010jd
→6sh110jd, and 3sh011jd→7sh111jd. All these transitions
occur at rateaeff.

Using this recursive algorithm to produce the transition
matrix for the finite-segment master equation, we can apply
an iterative procedure to find the densities and currents
through any finite segment of the TASEP lattice. This itera-
tive procedure proceeds as follows.

s1d Build the master equation. Given an initial guess for
the values ofss1,sNd, use the recursive algorithm to produce

FIG. 11. The arrangement of lattice sites used for anN=4 finite
segment mean fieldsFSMFd approximation to theT=2 TASEP. The
master equation for the state of the four marked lattice sites is
solved exactly. The four sites are coupled to the rest of the lattice by
assuming an effective injection rate ofaeff=p2s4 on the left, and an
effective extraction rate ofbeff=p2s1−s1d on the right.

FIG. 12. The steps in the algorithm to generate the transition
matrix for a TASEP model. For the purposes of illustration a three
site model has been used. Each possible occupancy of the lattice is
treated as a bit pattern, and each state is labeled with the corre-
sponding decimal valuesi.e., lattice occupancy 011→state3d. The
states are divided into two groups: states where the first lattice site
is occupied(1-states), and states where the first lattice site is empty
(0-states). Regardless of the number of lattice sites in the TASEP,
the transitions between the two classes of states always occur be-
tween the first half of the 1-states and the second half of the 0-states
ssolid arrowsd. Calling the algorithm recursively on both the
1-states and the 0-states, and ignoring the highest order bitsi.e., the
leftmost lattice sited, enumerates all the remaining state transitions
sdashed arrowsd. Finally the transitions between each 0-state and
each 1-state generated by injection at the left edge of the lattice
sdotted arrowsd are enumerated.
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the transition matrix fM ss1,sN,p1,p2dg for the finite-
segment master equation. The finite segment densities
ss1,sNd are introduced intoM solely through the effective
injection rateaeff=p2sN, and the effective extraction rate
beff=p2s1−s1d.

s2d Solve the master equation. To find the steady-state
currents and densities, compute the eigenvector

fVW ss1,s2,p1,p2dg of M ss1,sN,p1,p2d associated with the
zero eigenvalue

Mss1,s2,p1,p2dVW = 0. sA1d

NormalizeVW using the expression

VW =
VW

oi
2N

Vi

. sA2d

The vector elementVi gives the steady state probability of
finding the finite segment in the state with labeli. For ex-
ample, with anN=3 finite segmentV3 gives the steady state
probability of finding the finite-segment in occupancy state
h011j.

s3d Compute new density estimates. With the steady state
occupancy probabilities from steps2d, compute new esti-
mates fors1 andsN

s1
* = o

i=2N−1

i=2N−1

Vi ,

sA3d

sN
* = o

i=1

2N−1

V2i−1.

s4d Start a new iteration or finish. Compare the new den-
sity estimatesss1

* ,sN
* d, to the previous estimatesss1,sNd. If

us1
* −s1uøe andusN

* −sNuøe, then the iteration has reached a
fixed point and the procedure ends. Otherwise return to step
s1d, settings1=s1

* , andsN=sN
* . Heree is an arbitrary con-

vergence parametersset to 10−4 in this studyd.
Once a fixed point in the finite-segment densitiesss1,sNd

is finally reached, the current through the finite segment can
easily be computed from the expression

J = aeffs1 − s1d = p2sNs1 − s1d. sA4d

In this appendix we have described an implementation of
the finite-segment method useful for generating current and
density estimates in the maximal current phase. However, the
finite-segment method can be extended to treat the boundary
limited phases as well. This can be accomplished by setting
aeff=a or beff=b as appropriate, and applying the density
self-consistency condition at the end of the finite-segment
that lies in the interior of the TASEP lattice.

While a simple and effective approach, the exponential
increase in the size of the transition matrix with the length of
the segment quickly renders Eq.sA1d analytically intrac-
table. As a result, Eq.sA1d was solved numerically. Employ-
ing the fast Arnoldi-method eigensolvers in the well-known

ARPACK linear-algebra software libraryf23g and built into
the commercial program MATLAB, we could easily treat
segments containing,20 lattice sites.

APPENDIX B: CLUSTER MEAN FIELD METHODS

To begin the derivation of the current and density approxi-
mations displayed in Eq.s8d consider the pair probability
Psxi ,xi+1d. The pair probabilityPsxi ,xi+1d is the probability
of finding ap1 site with occupancyxi s xi =0 if lattice sitei is
empty,xi =1 if lattice sitei is occupiedd, followed by ap2 site
with occupancyxi+1. The time evolution of the occupancy
state of any two adjacent sites in a TASEP will depend on the
two sites themselves along with the pair of lattice sites im-
mediately to the left or the right of the two site grouping.
Thus the master equation for the two site probabilityPs0,0d
is

dPs0,0d
dt

= − p2fPs0,1,0,0d + Ps1,1,0,0dg

+ p2fPs0,1,0,0d + Ps0,1,0,1dg. sB1d

Now assume that each pair ofsp1,p2d sites behaves
like a statistically independent unit, uncorrelated with the
othersp1,p2d periods in the lattice. Using these assumptions
the probabilities in Eq.sB1d can be decomposed into
products of pair probabilities, Psxi ,xi+1,xi+2,xi+3d
< Psxi ,xi+1dPsxi+2,xi+3d. This yields the following equation
for Ps0,0d in the steady state:

dPs0,0d
dt

= p2fPs0,1d2 − Ps0,0dPs1,1dg = 0. sB2d

Additionally, by definition

s1 = Ps1,0d + Ps1,1d,
sB3d

s2 = Ps0,1d + Ps1,1d,

Ps0,0d = 1 − Ps0,1d − Ps1,0d − Ps1,1d.

Using Eq.sB3d in Eq. sB2d, produces the relation

Ps1,0d =
s1s1 − s2d − ss2 − s1d2

1 + ss2 − s1d
. sB4d

An equation forQs1,0d, the probability of having an occu-
pied p2 site followed by an unoccupiedp1 site, can be found
from Eq. sB4d by interchangingp1 andp2, as well ass1 and
s2. Applying the current continuity conditionp1Ps1,0d
=p2Qs1,0d, results in the relation

p1
s1s1 − s2d − ss2 − s1d2

1 + ss2 − s1d
= p2

s2s1 − s1d − ss1 − s2d2

1 + ss1 − s2d
.

sB5d

Now make the substitutions2−s1=k and definep1 to be the
larger of the two rates. Thuss1,s2 andk.0. Solving Eq.
sB5d for s1, yields
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s1 =
fp2s1 − k2d − p1sk − 1d2g + Îs1 − k2dfksp1 + p2d − sp1 − p2dgf3ksp1 + p2d − sp1 − p2dg

2fksp1 + p2d − sp1 − p2dg
. sB6d

Equation sB6d shows thats1 is real only when −1,k
, sp1−p2d /3sp1+p2d or sp1−p2d / sp1+p2d,k,1. Substitut-
ing Eq. sB6d into Eq. sB5d gives J=kp1p2/ fsp1−p2d−ksp1

+p2dg, which showsJ,0 for k. sp1−p2d / sp1+p2d, J.0 for
0,k, sp1−p2d / sp1+p2d, and dJ/dk=p1p2sp1−p2d / sfksp2

+p1d+sp2−p1dg2d.0∀k. SinceJ must be positive,s1 must
be real, andJ is monotonically increasing with k, the maxi-
mum value of the current must occur whenk=sp1

−p2d /3sp1+p2d. Substituting this value ofk into Eq. sB6d
yields Eq.s8d.

An analogous approach can be used to find current and
density estimates in the entry and exit limited regions. Con-
sidering the entry limited case first, we find the following
master equation for the occupancy of the first two sites in the
lattice:

dPs0,0d
dt

= − aPs0,0d + p2Ps0,1dfPs0,0d + Ps0,1dg,

dPs0,1d
dt

= − aPs0,1d − p2Ps0,1dfPs0,0d + Ps0,1dg

+ p1Ps1,0d,
sB7d

dPs1,0d
dt

= aPs0,0d + p2Ps1,1dfPs0,0d + Ps0,1dg − p1Ps1,0d,

dPs1,1d
dt

= − p2Ps1,1dfPs0,0d + Ps0,1dg + aPs0,1d.

Similarly, in the exit limited phase we find the following
master equation for the last two sites in the lattice:

dPs0,0d
dt

= bPs0,1d − p2Ps0,0dfPs0,1d + Ps1,1dg,

dPs0,1d
dt

= − bPs0,1d − p2Ps0,1dfPs0,1d + Ps1,1dg

+ p1Ps1,0d,
sB8d

dPs1,0d
dt

= bPs1,1d + p2Ps0,0dfPs0,1d + Ps1,1dg − p1Ps1,0d,

dPs1,1d
dt

= − bPs1,1d + p2Ps0,1dfPs0,1d + Ps1,1dg.

EquationssB7d andsB8d assume that the occupancy prob-
abilities Psxi ,xi+1d do not vary significantly as a function of
position near the entrance and exit of the lattice. This as-
sumption is analogous to that used with the standard TASEP
in the boundary limited regions, where the density is as-
sumed to be essentially constant near the rate limiting bound-
ary. Applying the normalization condition on the probabili-
ties Psxi ,xi+1d and solving Eqs.sB7d and sB8d generates the
results displayed in Eqs.s11d ands12d, respectively. We note
that Eqs.s11d and s12d are equal to the results of the finite-
segment mean field method withT=2 and a segment length
of N=2.
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