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Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion
is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual
steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward
steps, and detachments. A theoretical study of mechanochemical coupling in kinesins, which extends the
approach used successfully to describe the dynamics of motor proteins, is presented. The possibility of irre-
versible detachments of kinesins from the microtubules is explicitly taken into account. Using the method of
first-passage times, experimental data on the mechanochemical coupling in kinesins are fully described using
the simplest two-state model. It is shown that the dwell times for the kinesin to move one step forward or
backward, or to dissociate irreversibly, are the same, although the probabilities of these events are different. It
is concluded that the current theoretical view—that only the forward motion of the motor protein molecule is
coupled to ATP hydrolysis—is consistent with all available experimental observations for kinesins.
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I. INTRODUCTION

There are several classes of enzymes, called molecular
motor proteins, that are critical for many biological pro-
cesses, but especially they are important for cellular transport
and motility, cell division, and transfer of genetic informa-
tion f1–3g. The motor proteins, such as kinesins, myosins,
and DNA and RNA polymerases, move in a stepwise motion
along rigid molecular trackssmicrotubules, actin filaments,
and DNA moleculesd. The motion of motor proteins is fueled
by the hydrolysis of ATP or related compounds. However,
the exact mechanism of the coupling between the chemical
energy of hydrolysis and the mechanical motion of motor
proteins is still unknown, and it remains one of the most
important problems in biology.

Kinesins provide the most convenient system to investi-
gate the mechanochemical coupling in motor proteins since
biophysical, chemical, and mechanical properties of these
molecules are now well studied at the single-molecule level
f4–13g. Conventional kinesins are dimeric two-headed mol-
ecules, which hydrolyze ATP and move stochastically in
8.2-nm steps along the microtubules. These motor proteins
can make hundreds of steps before dissociating from the mi-
crotubules, and they can be processive even against the op-
posing load as high as 7–8 pNf8–10g. Kinesins move pref-
erentially in the forward direction splus end of
microtubulesd; however, at high loads the frequency of back-
ward stepssin the direction of minus end of the microtubuled
is increasingf11g.

In order to understand how the motor proteins function, it
is important to investigate how the chemical energy of ATP
hydrolysis is transformed into the mechanical motion of pro-
teins. To approach this fundamental problem, first, several
critical questions should be answered:s1d How many ATP
molecules consumed for each kinesin’s step?s2d Are ATP
molecules hydrolyzed for any step, forward or backward?s3d

Is there a futile hydrolysis in kinesin motion—i.e., ATP con-
sumption without actual moving of the motor protein?

In recent experimentsf11g, the mechanism of mecha-
nochemical coupling in motor proteins has been studied by
correlating the forward and backward movements of single
kinesin molecules to the hydrolysis of ATP. Using an optical
trapping nanometry system, the time trajectories of single
kinesin molecules have been measured for different external
forces and for different ATP concentrations. It was found that
the dwell times before the forward and backward steps are
the same at all external forces and at all ATP concentrations.
A biased Brownian motion model with asymmetric potentials
was developed to explain the bidirectional motions of kine-
sins. Based on this model, it was concluded that the hydroly-
sis of single ATP molecules is coupled to either forward or
backward steps of kinesins.

Although the theoretical picture presented in Ref.f11g—
that both forward and backward steps of kinesins are created
by the same mechanochemical transduction mechanism—
seems to be able to describe several features of the kinesin
motility, there are serious fundamental problems with this
view. It contradicts the current biochemical view of this pro-
cess and earlier studiesf6,14,15g that show a tight mecha-
nochemical coupling; i.e., one ATP molecule is hydrolyzed
per each forward 8-nm step. According to the theoretical
model of Nishiyamaet al. f11g, one ATP molecule is hydro-
lyzed when the motor protein moves one step forward or
backward. Note, however, that earlier experimental investi-
gations f6,14,15g mainly neglected the backward steps in
their statistical analysis. In addition, the asymmetric potential
used in the biased Brownian motion model breaks the peri-
odic symmetry of the system, and it violates the principle of
microscopic reversibility since the backward processes are
not taken into account. Furthermore, this model fails to ac-
count for irreversible detachments of kinesin molecules from
the microtubules, which are observed in experiments.
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Clearly, a better quantitative theoretical description, which
does not violate the basic physical and chemical principles,
is needed in order to satisfactorily understand the mecha-
nochemical coupling in kinesins. The aim of this article is to
discuss in detail such a theoretical approach.

We present a theoretical analysis of mechanochemical
coupling and dynamics of kinesin molecules which utilizes
the first-passage-time processesf16g in periodic discrete-
state stochastic models. This is an extension of a recently
developed approachf17–23g, which has been used success-
fully to analyze in detail the dynamics of single conventional
kinesin moleculesf24g and myosin-Vf25g. We argue that the
experimental observations by Nishiyamaet al. f11g can be
described by the simplestsN=2d-state model with irrevers-
ible detachments, in which ATP hydrolysis is tightly coupled
only to the forward steps of motor proteins. Also note that
the dynamics of motor proteins has been studied theoreti-
cally using other methods and approachesf3,26–28g.

II. THEORETICAL APPROACH

A. Chemical kinetic models

Our approach is based on using multistate discrete sto-
chastic, or chemical kinetic, models. The main assumption of
the simplest periodic sequential chemical kinetic model,
which is shown in Fig. 1sad, is that a motor protein molecule
is viewed as a particle that moves along a periodic linear
track from one binding site to the next one through the se-
quence ofN biochemical conformations. The particle in state
j can jump forward to statej +1 with the rateuj, or it can
slide one step backward to the sitej −1 with the ratewj.
After movingN sites forward the motor protein comes to the
same biochemical state but shifted by a step size distanced.
For kinesins this distance is 8.2 nm, and it is equal to the size
of a tubulin subunit in microtubulesf3g. The statesj = lN sl

=0, ±1, ±2, . . .d represent the biochemical conformations
where the motor protein molecule is tightly bound to the
track—i.e., to the microtubule in case of kinesins—and with-
out the ATP fuel molecule. ATP binding corresponds to the
transitions from statesj = lN to j =1+lN, while other forward
transitions describe the ATP hydrolysis and subsequent re-
lease of hydrolysis products. It is important to note that,
although the motor protein moves preferentially in one direc-
tion, the reverse transitions cannot be ignored in any reason-
able model of motor protein motility, and the backward steps
are frequently observed experimentally at certain conditions
shigh loadsd f6,11g.

In the periodic sequential multistate stochastic model the
dynamics of the motor protein can be viewed as the motion
of the particle on a periodic one-dimensional latticeswith a
periodNd. This observation allows one to derive an explicit
analytical expressions for the mean velocityVshuj ,wjjd,

V = lim
t→`

dkxstdl
dt

, s1d

in terms of transition rateshuj ,wjj for any value ofN f19,20g.
Here, xstd measures the position of the single molecule on
the linear track. Specifically, the mean velocity is given by
f21g

V = d

1 − p
j=0

N−1

swj/ujd

RN
= dsuef f − weffd, s2d

where the effective forward and backward rates are defined
as

uef f = 1/RN, weff =

p
j=0

N−1

swj/ujd

RN
, s3d

with

RN = o
j=0

N−1

r j, r j =
1

uj
S1 + o

k=1

N−1

p
i=j+1

j+k

wi/uiD . s4d

Note also the periodicity of transition rates—i.e.,uj±N=uj
andwj±N=wj.

Similar arguments can also be applied to obtain closed-
form exact analytic formulas for the dispersionDshuj ,wjjd
sor the effective diffusion constantd of the motion, which is
defined as follows:

D =
1

2
lim
t→`

d

dt
fkx2stdl − kxstdl2g. s5d

The simultaneous knowledge of both the velocityV and the
dispersionD determines the bounds on rate-limiting bio-
chemical transitions and thus provides a valuable informa-
tion about the mechanism of motor proteins motility
f8,21,24g.

One of the advantages of using chemical kinetic models
to describe the processivity of motor proteins is the ability to
easily incorporate the effect of external forceF on their dy-

FIG. 1. sad General schematic view of periodic multistate sto-
chastic models. A motor protein particle in statej can make a for-
ward transition at rateuj, or it can undertake a backward transition
at the ratewj. The statesj = . . . ,−N,0 ,N, . . . correspond to the
strongly bound states.sbd General scheme of periodic multistate
stochastic models with irreversible detachments. The particle in
statej can dissociate with a rated j.
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namicsf19,20,24g. This can be done with the introduction of
load-distribution factorsu j

+ and u j
− sfor j =0,1, . . . ,N−1d,

which modify the transition rates in the following way:

uj ⇒ ujsFd = uj
0 exps− u j

+Fd/kBTd,

wj ⇒ wjsFd = wj
0 expsu j

−Fd/kBTd. s6d

This is a consequence of the fact that the external loadF
modifies the activation barriers for forward and backward
transitions, and the load-distribution factors reflect how they
changed. It is also reasonable to assume that

o
j=0

N−1

su j
+ + u j

−d = 1, s7d

since the motor protein, making a stepd against an external
force F and going throughN intermediate steps, produces a
work equal toFd. A force at which the motor protein stops
moving is called a stall force.

1. First-passage time processes

In many single-molecule experiments on motor proteins
the fractions of forward and backward steps and dwell times
between the consecutive events are measuredf11,12,29g. In
terms of chemical kinetic models discussed above, these ex-
perimental quantities can be associated with the so-called
splitting probabilities and conditional mean first-passage
times, correspondingly. First-passage processes for sequen-
tial multistate stochastic models are well studiedf16,30g, and
thus the available results can be easily adopted for the de-
scription of motor proteins dynamics.

Consider a motor protein particle in statej , as shown in
Fig. 1sad. Recall that the sites −N, 0, andN correspond to the
binding sites for motor proteins. Now let us define
p j ,Nshuj ,wjjd as the probability that the particle starting from
state j will reach the siteN, before backtracking to the pre-
vious binding site −N. Similarly, we can define
p j ,−Nshuj ,wjjd as the probability for the particle to advance to
state −N for the first time before reaching the forward bind-
ing siteN. These quantities are called the splitting probabili-
ties f16g. We are mainly interested in the case ofj =0, since
the probabilitiesp0,±N give us the forward and backward
fractions of stepping for the motor protein particle. The ex-
plicit expressions for splitting probabilities are knownf16g,
and for the periodicN-state stochastic models we obtain a
simple relation

p0,N = 1 −p0,−N =
1

1 + p
j=0

N−1

swj/ujd

. s8d

In a similar fashion, we can define the conditional mean
first-passage timest j ,±Nshuj ,wjjd, which represent the aver-
age time the particle, that starts at sitej , spends before ad-
vancing forward or backward to sites ±N, correspondingly.
Then it is easy to conclude that the dwell times for the for-
ward steps of motor proteins correspond tot0,N, while the
dwell times for the backward steps are given byt0,−N. The

explicit expressions for the dwell times within the periodic
N-state chemical kinetic model can be derived from more
general equations that are not restricted by periodicity con-
ditions ssee Pury and Caceresf30gd, yielding

t0,N =
p0,N

uef f
, t0,−N =

p0,−N

wef f
, s9d

where the effective transition ratesuef f andweff are defined
in Eqs. s3d and s4d. Then applying the Eqs.s3d and taking
into account the relations for the forward and backward frac-
tions fsee Eq.s8dg, we conclude that

t0,N = t0,−N. s10d

This is a specific but very important result derived from the
general calculations of mean first-passage times for a single
particle on a latticef30g applied for periodic systems that
describe the motion of motor proteins along the molecular
tracks. It indicates that the dwell times for the forward and
backward steps arealwaysequal to each other foranyset of
transition rates, although the probabilities of these steps may
differ significantly. It is also important to note that periodic
conditions in the system are crucial for this conclusion.

B. Effect of detachments

Motor proteins do not always stay bounded to the linear
track; they can dissociate and diffuse away. For kinesins
moving along the microtubules the effectively irreversible
detachments have been observed experimentallyf9,11g.
Theoretically, the effect of detachments on the drift velocity,
dispersion, and stall force has been investigatedf21g using
an extension of the simplest sequential multistate stochastic
model. However, to the best of our knowledge, the problem
of how the motor protein dissociations change the mean first-
passage-time processes—namely, the fractions and mean
dwell times of forward and backward steps—has not been
studied at all. Below we outline how this effect can be solved
by mapping it onto another sequential multistate stochastic
model but without detachments, for which the results are
already known.

Consider a motor protein particle in statej as shown in
Fig. 1sbd. It can move forwardsbackwardd with the rateuj
swjd, or it can dissociate irreversibly with the rated j. We
again definep j ,N andp j ,−N as splitting probabilities of reach-
ing for the first time the forwardsat Nd or the backward
sat −Nd binding site. In addition, we introduce a new function
p j ,d as a probability for the motor protein, which starts at the
site j , to detach before reaching the forward or the backward
binding states. These probabilities are related through the
normalization condition

p j ,N + p j ,−N + p j ,d = 1. s11d

Now we may recall that the particle at the sitej has to
jump to the sitej +1 or j −1, or it will detach. These jumps
have the probabilitiesuj / suj +wj +d jd, wj / suj +wj +d jd, and
d j / suj +wj +d jd, correspondingly. Then the expression for the
forward splitting probability is given byf16g
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p j ,N =
uj

suj + wj + d jd
p j+1,N +

wj

suj + wj + d jd
p j−1,N, s12d

for any −N, j ,N and with the obvious choice of boundary
conditions

pN,N = 1, pN,−N = 0. s13d

Similar equations can be derived for the backward splitting
probabilitiesp j ,−N.

Equation s12d can be easily rewritten as a difference
equation—i.e.,

ujp j+1,N + wjp j−1,N − suj + wj + d jdp j ,N = 0. s14d

Assume that the solution of this equation can be presented as

p j ,N = f jp j ,N
* , s15d

where the functionp j ,N
* is the splitting forward probability

for a new system without detachments and the auxiliary
functionf j is yet to be determined. Substituting Eq.s15d into
the Eq.s14d we obtain

ujf j+1p j+1,N
* + wjf j−1p j−1,N

* − suj + wj + d jdf jp j ,N
* = 0.

s16d

If we define new rates for the stepping process without de-
tachments as

uj
* = ujf j+1, wj

* = wjf j−1, s17d

and also require that

uj
* + wj

* = ujf j+1 + wjf j−1 = suj + wj + d jdf j , s18d

then Eq.s16d is easily transformed into

uj
*p j+1,N

* + wj
*p j−1,N

* − suj
* + wj

*dp j ,N
* = 0, s19d

with the boundary conditionspN,N
* =1 andp−N,N

* =0. These
boundary conditions also mean thatf−N=fN=1. Examining
Eq. s19d, one can observe that this is the expression to deter-
mine the forward splitting probability of the sequential mul-
tistate stochastic process with rateshuj

* ,wj
*j but without de-

tachments, for which solutions are availablef16g. It leads to
an explicit equation for the forward splitting probability.
Similar arguments can be developed for the backward split-
ting probabilities.

Our analysis relies on the ability to compute the functions
f j, which can be accomplished by utilizing the Eq.s18d.
However, it is more convenient to look atf j as elements of
the left eigenvector of as2N+1d3 s2N+1d matrix M , for
which the nonzero elements are given by

Mij = 5− suj + wj + d jd, for i = j ,

wj , for i = j − 1,

uj , for i = j + 1,
6 s20d

with −N, i , j ,N.
The effect of detachments for conditional mean first-

passage times can be investigated in a similar way. Here we
again definet j ,N st j ,−Nd as the mean time to reach the forward
sbackwardd binding stateN s−Nd for the first time. In addi-
tion, we definet j ,d as a mean first-passage time for the motor

protein particle to dissociate from the molecular track before
reaching the forward or backward binding sites ±N, provided
that it started from the statej . The mean first-passage times
can be found by solving the backward master equationssee
f30gd

ujt j+1,N + wjt j−1,N − suj + wj + d j ,Ndt j ,N = − 1, s21d

with the boundary conditionst±N,N=0. Again, looking for a
solution in the formt j ,N=f jt j ,N

* and using Eqs.s17d ands18d,
we obtain the expression

uj
*t j+1,N

* + wj
*t j−1,N

* − suj
* + wj

*dt j ,N
* = − 1, s22d

which determines the forward mean first-passage time for the
system without detachments. Because exact solutions for this
case are availablef16,30g, expressions for the mean first-
passage times for the system with detachments can beeasily
obtained.

The general equations for splitting probabilities and mean
first-passage times are quite complex, and we present in the
next subsection the expressions only for the simplest cases
N=1 andN=2. However, it can be shown generally, using
the explicit mathematical formalism presented in Ref.f30g,
that for anyN the calculations of the mean dwell times to
move forward, backward, or to dissociate lead to the impor-
tant relation

t0,N = t0,−N = t0,d. s23d

This is one the main result of our theoretical analysis. It can
be understood in the following way. The motion of the motor
protein along the molecular track, which takes place through
the sequence of biochemical transitions, can be viewed as a
Markov process. The average lifetime of the state when the
motor protein is bounded to the track does not depend on the
direction of where the particle will go after this state—
forward, backward, or to detach irreversibly. Only the prob-
abilities to move forward, backward, or to dissociate irre-
versibly are different. This is because there is no memory in
the Markov processesf16g. Equation s23d expresses this
statement in a mathematic form.

C. Results for N=1 and N=2 models

To illustrate our method, let us consider two simple cases:
N=1 and N=2 periodic sequential stochastic models with
detachments. When the period of the system isN=1, the
auxiliary functionf0 can be easily calculated,

f0 =
u + w

u + w + d
, s24d

and also recall thatf−1=f1=1. This leads to the simple re-
lations for the splitting probabilities,

p0,1= u/su + w + dd, p0,−1= w/su + w + dd,

p0,d = d/su + w + dd, s25d

and for the mean first-passage times,

t0,1= t0,−1= t0,d = 1/su + w + dd. s26d

For theN=2 case, the calculations become more tedious.
The results for the functionsf−1, f0, and f1 are given by
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f−1 =
u0u1

2 − u0w1
2 + w1su0 + w0 + d0dsu1 + w1 + d1d

fsu0 + w0 + d0dsu1 + w1 + d1d − su0w1 + u1w0dgsu1 + w1 + d1d
, s27d

f0 =
u0u1 + w0w1

fsu0 + w0 + d0dsu1 + w1 + d1d − su0w1 + u1w0dg
, s28d

f1 =
w0w1

2 − w0u1
2 + u1su0 + w0 + d0dsu1 + w1 + d1d

fsu0 + w0 + d0dsu1 + w1 + d1d − su0w1 + u1w0dgsu1 + w1 + d1d
. s29d

Then, after lengthy but straightforward calculations, it can be shown that the splitting probabilities are

p0,2=
u0u1

fu0u1 + w0w1 + d0d1 + d0su1 + w1d + d1su0 + w0dg
, s30d

p0,−2=
w0w1

fu0u1 + w0w1 + d0d1 + d0su1 + w1d + d1su0 + w0dg
, s31d

andp0,d=1−p0,2−p0,−2. Similar calculations for the mean first-passage times yield

t0,2= t0,−2= t0,d =
u0 + u1 + w0 + w1 + d1

u0u1 + w0w1 + d0d1 + d0su1 + w1d + d1su0 + w0d
. s32d

Thus these examples again illustrate our main theoretical
findings. For the motor proteins moving along periodic mo-
lecular tracks the mean first-passage times to go forward,
backward, or to detach irreversibly are the same, while the
probabilities of these events are always different. Note that in
the cased0=d1=0, Eqs.s26d and s32d give the correct ex-
pressions for the mean first-passage times without detach-
mentsf16,30g. Thus, the effect of dissociations might be es-
timated quite easily.

III. ANALYSIS OF KINESIN DATA

Structural, biochemical, and kinetic data on kinesins sug-
gest that the protein molecule goes through at least four in-
termediate statesf1,2g. However, a recent study of kinesin
dynamics usingsN=2d-state chemical kinetic model, which
takes into account the irreversible detachments, provides a
very reasonable description of some aspects of mecha-
nochemical coupling in this systemf24g. Thus, in order to
analyze the experimental data of Nishiyamaet al. f11g we
adopt the simplest model which includes only two states. The
states j = . . . ,−2,0,2, . . .would correspond to the kinesin
with both molecular heads tightly bound to the microtubule
and without an ATP molecule. The statesj = . . . ,−1,1, . . .
label all other kinesin conformations after ATP binding and
subsequent hydrolysis and release of its products.

It now follows that the forward ATP-binding transition
depends linearly on ATP concentration,u0

0=k0
0fATPg, where

the superscript 0 indicates the case of zero load: see also Eq.
s6d. At the same time the next forward rateu1 and the back-
ward ratew1 do not depend on the ATP concentration, while
they may change under the effect of external forces.

The final backward ratew0 might, in principle, depend on

concentrations of ADP and inorganic phosphate, which both
are the products of ATP hydrolysis. However, most current
experiments on kinesins utilize an ATP regeneration system
f5,8,9,11g, in which there is no independent control offADPg
and fPig. As a result, we adopt a phenomenological descrip-
tion of this backward transition—namely,

w0
0 = k08fATPg/s1 + fATPg/c0d1/2, s33d

where the parameterc0 effectively describes the ATP regen-
eration process. This approach has been used successfully to
describe the mechanochemical transitions in kinesin and
myosin-V f24,25g. Note, however, that the specific descrip-
tion of the ATP regeneration process has a minimal effect in
the fitting of experimental results.

The fitting of the model was done by minimization of a
trial function defined as a sum of deviations between the
calculated data and the experimentally observed values for
both mean dwell times and fractions of different steps. This
trial function also reflects the error bars in the data for mean
dwell times. A combined scheme was used for the two parts
sfor dwell times and for the fractionsd of the trial function
with different weight factors.

After systematically exploring the multidimensional space
of parameters and using Eqs.s30d–s33d the fractions of for-
ward and backward steps and mean dwell times between the
consecutive steps of kinesins can be well described by the
rate constants

k0
0 . 5.1 mM−1 s−1, k08 . 2.8 mM−1 s−1,

c0 . 1.7 mM, w1
0 . 5.53 10−4 s−1,

u1
0 . 121 s−1, d0

0 . 1.1 s−1, d1
0 . 1.63 10−3 s−1 s34d
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and load-distribution parameters

u0
+ . 0.0, u0

− . 0.391, u1
+ . 0.086,

u1
− . 0.523, u0

d . 0.047, u1
d . 0.466. s35d

The results of the fitting of experimental observations are
given in Figs. 2 and 3. Note that the values for the param-
eters reported here are in a good agreement with the other
independent investigation of kinesin motilityf24g, where the
multistate periodic stochastic models have been used to ana-
lyze the single-molecule experimental measurements of ve-
locities, stall forces, and dispersionsf8g.

IV. DISCUSSION

Our theoretical analysis provides explicit expressions for
the fractions of forward and backward steps and dissocia-
tions, and for the mean dwell times between consecutive
steps of motor proteins. This allows us to investigate the
problem of mechanochemical coupling between the motion
of kinesins and ATP hydrolysis. Our main conclusion is that
the mean dwell times to move forward, backward, or irre-
versibly detach are equal to each other independently of ATP

concentration or external force. It means that the picture of
tight coupling between ATP hydrolysis and forward steps of
kinesins does not contradict the experimental findings of
Nishiyamaet al. f11g. Moreover, the proposed bidirectional
biased-modelf11g, which assumes that a hydrolysis of a
single ATP molecule is coupled to either forward or back-
ward movement, is basically incorrect since it violates the
principle of microscopic reversibility and breaks the symme-
try of the system if the biochemical states of the motor pro-
tein belong to a single kinetic pathway.

Our theoretical results could also be understood in the
following way. The mean dwell times between movements
measured in single-molecule experiments actually corre-
spond to the mean lifetimes of states when the motor protein
binds strongly to the linear track. Then these lifetimes should
be independent of what direction the motor protein will go in
the next step, although the probability of these steps might be
rather different.

The analysis of mean dwell times at different external
forces, as shown in Fig. 3, suggests that there is a maximum
at high loads. This maximum is close but not exactly at the
stall force. WhenfATPg=10 mM the maximum can be found
at F.6.6 pN, while the stall force is approximately equal to
6.8 pN. At high ATPs1 mMd the position of maximum is
shifted to 7.7 pN, with the calculated stall forceFS
.9.2 pN. This can be understood in the following way. The
external load decreases the forward transition rates, while
accelerating the backward transitions. These two tendencies
have an opposite effect on mean dwell times, and it leads to
the observation of maximum at some specific value of exter-
nal force.

Because our method provides exact expressions for dy-
namic characteristics, we are able to study the effects of ATP
concentration and external forces on these parameters, and
we can make a qualitative predictions that can be checked
experimentally.

FIG. 2. Probabilities, or fractions, of forward stepsscirclesd,
backward stepsstrianglesd and detachmentsssquaresd, as a function
of the external force atsad fATPg=1 mM, sbd fATPg=10 mM.

FIG. 3. Dwell times between the adjacent movements of the
kinesin molecule as a function of external force. The solid symbols
correspond to experimental measurements atfATPg=10 mM, while
open symbols describe the experiments atfATPg=1 mM. The
circles mark the experimental measurements for dwell times before
the forward steps, the triangles correspond to experimental dwell
times before the backward steps, and squares describe the dwell
times before detachments.
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First, we investigate how mean dwell times depend on
fATPg at different external loads. As shown in Fig. 4, the
larger the external force, the larger is the mean dwell time.
However, at constant force, the mean dwell time decreases
with an increase in the concentration of ATP. This is in agree-
ment with intuitive expectations since at largefATPg the
binding process is faster. At the same time the external force
slows down the binding and other forward processes less
than it accelerates the backward transitions. These observa-
tions are also consistent with a theoretical investigation of
the processivity of motor proteins using a thermal ratchet
approachf28g.

The dependence of the fractions of different movements
on ATP concentration at different external loads is presented
in Fig. 5. The increase infATPg increases the probability of
the forward steps, while making the fractions of backward
steps and detachments negligible. Finally, the predictions for
the force and velocity based on the fitted parameters are
given in Fig. 6. These predictions are generally agree with
the values of drift velocities and stall forces obtained in other
single-molecule experiments on kinesinsf8g. However, the
shapes for force-velocity curves are different for ATP satu-
rating conditions.

The results of the fitting of experimental data suggest that
there are substeps at approximatelydsu0

++u1
−d.4.3 nm when

the kinesin makes 8.2-nm steps from one binding site to
another. However, they are not found in experiments on the
dwell times of kinesin moleculesf11g. In addition, the ex-
perimental observations of Nishiyamaet al. f10g indicate that
there are no substeps at distances larger than 1 nm that
would correspond to intermediate states with a lifetime of
more than 1 ms. The apparent contradiction between the the-
oretical predictions and experimental data can be explained
in the following way f31g. The kinesin molecules move
along a complex three-dimensional potential energy surface,
and the simplified one-dimensional energy landscape, as as-
sumed in the discrete-state stochastic models, might not pro-
duce a correct description of intermediate states. The basic
stochastic models can be extended to include more realistic
three-dimensional energy potentials. However, most of the

features of kinesin motility can still be well described by the
one-dimensional chemical kinetic models utilized in this
work.

V. CONCLUSIONS

In summary, we have presented a theoretical study of
mechanochemical coupling in kinesins. The analysis of mul-

FIG. 4. Predictions for the dwell times as a function offATPg at
low sF=1 pNd and high external loadsF=5 pNd.

FIG. 5. Predictions for the variation of the fractions of forward
steps, backward steps, and detachments atsad F=1 pN andsbd F
=5 pN.

FIG. 6. Predictions for the force-velocity curves at different
fATPg.
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tistate stochastic models of motility using the method of
first-passage times allowed us to obtain explicit formulas for
fractions of steps in different directions and for the mean
dwell times between the steps, including irreversible detach-
ments. The experimental data on kinesins can be well de-
scribed by this approach. Our analysis is consistent with the
current theoretical view of a tight coupling between catalytic
cycles and mechanical steps for kinesins; i.e., one ATP mol-
ecule is hydrolyzed per each forward step, and the rare back-
ward steps correspond to ATP production. Although our the-
oretical approach seems to provide a reasonable and
convenient framework for investigating the mechanochemi-

cal coupling in different motor proteins, further experiments
are needed in order to validate our theoretical picture.
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